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Abstract—We previously proposed the parallel evolutionary
P2P networking technique to realize an adaptive large-scaled
P2P network. This technique divides all nodes composing a
large-scale P2P network into multiple node groups, and then
reconstructs the network topologies by an evolutionary algorithm
in each node group. In this technique, a timing at which a set of
network topologies (a population of the evolutionary algorithm) is
evaluated and reconstructed by evolutionary operators is the same
for all the node groups. However, this simultaneous evaluation
and topology reconstruction has been shown to be not effective in
terms of adaptation of the network topologies to users’ (nodes’)
demands in our previous study. Therefore, in the present paper
we propose a method that evaluates and reconstructs a set of
network topologies in a one-by-one manner. Simulation results
show that the proposed method improves the performance of
the parallel evolutionary P2P networking technique conducting
simultaneous evaluation and topology reconstruction.

I. INTRODUCTION

The recent growth of information and communication
technologies, for example, progress of communication speed,
storage capacity, and processing speed, is remarkable. Under
this quantitative technological progress, degree of dependence
of humans on networks becomes much higher. For instance,
the number of users of the Internet in the world reaches
around nine hundred and sixty five million in 2005, while
the number in 1991 is just around four million [1]. While the
quantitative technological progress is being made continuously,
the quantitative characteristics of humans as a leading part
of the network society, such as calculation speed, has not
changed so far and will not change in future basically. Thus,
the difference in quantitative characteristics between humans
and networks is becoming larger, so that it would be needed for
sustainable growth of humans as well as networks to consider
a relationship between humans and networks deeply.

One technique that considers a relationship between hu-
mans and computers, between which quantitative difference are
also becoming larger, is interactive evolutionary computation
[2][3]. The technique implements an evolutionary algorithm
as an optimization method in a computer that can quickly
conduct fixed procedures by including humans as a evaluation
system of optimization problem. This technique enables us to
optimize parameters of system whose outputs are evaluated
only by humans by means of cooperation between humans
and computers. Meanwhile, there is few technique considering
a relationship between humans and networks at this moment.

In our previous study, we thought that for sustainable
growth of the network society, a network adapting to demands

of humans who are a leading part of the network society is
needed. Then, we proposed an evolutionary peer-to-peer (P2P)
networking technique that reconstructs network topologies
based on fitness values given by nodes (users), which is called
EP2P hereinafter [4]. However, the basic evaluation of EP2P
in [4] did not consider a large size of networks as seen in
the real P2P networks. For example, LimeWire [7], which is
one of the real P2P file sharing networks and is prohibited to
distribute the LimeWire software since October 26, 2010, was
reported to hold several millions of users simultaneously. EP2P
needs a special node called a super node that plays a role of
collecting fitnesses from nodes and executing EA to adaptively
change the P2P network topologies, but it can happen that the
super node is overloaded as the number of nodes increases and
then the P2P network stops working due to that. That is the
problem of EP2P.

So, as a solution of the problem of EP2P, we then proposed
a parallel evolutionary P2P networking technique, which is
called P-EP2P hereinafter, that first divides an entire P2P
network into several smaller networks to avoid the overload of
a super node and then applies EP2P to each of the small net-
works to make the entire network adaptive [5]. However, even
P-EP2P has a problem such that search failure rate becomes
higher as the number of divided node groups increases. More
precisely, in P-EP2P, timing of evaluating and reconstructing
network topologies is the same for all node groups, but the
simultaneous evaluation and topology reconstruction causes
inefficient adaptation of network topologies to users’ demands.

In this paper we propose a new method for evaluating and
reconstructing network topologies in P-EP2P to simultaneously
achieve load balancing of super nodes and low search failure
rate. The proposed method evaluates network topologies in
a one-by-one manner with some time interval between two
sequential evaluations. In addition, we examine if the proposed
method improves conventional P-EP2P in terms of search
failure rate when the number of node groups increases.

EP2P and P-EP2P are meant to dynamically and evolu-
tionarily optimize several coexisting topologies of a running
P2P network using evaluation values obtained from the actual
nodes (users). No such networking technique has yet been
reported. However, a number of methods for local topology
reconstruction in a sole P2P network topology based on
the observation of local network states have been proposed
[10][11][12]. EA has been used to optimize the parameter
values of a P2P network using fitnesses obtained from a
simulation model of the P2P network [8][9]. Unlike EP2P
and P-EP2P, this is not an online approach to optimizing the



parameters of P2P networks. In addition to P2P networks, EA
has been applied to on-line optimization of communication
networks, such as on-line optimization of routing tables of
routers in the Internet [13] and that of protocol stacks [14].

The remainder of the present paper is organized as follows.
In Section II, we describe P-EP2P that is a target to be
improved. Section III proposes a method for evaluating and
reconstructing network topologies sequentially. Section IV
shows the simulation results of evaluation of the proposed
method. Finally, Section V presents conclusions and describes
areas for future research.

II. PARALLEL EVOLUTIONARY P2P NETWORKING
TECHNIQUE

P-EP2P divides all of nodes into multiple node groups
and then applies EP2P to each group. The overview of P-
EP2P is shown in Figure 1. The method for evaluating and
reconstructing network topologies proposed in the next section
is related to a timing at which network topologies are evaluated
and reconstructed when applying EP2P to each node group.
Thus, understanding P-EP2P is needed to understand the
method proposed in this paper. Therefore, we explain P-EP2P
in this section.

new network 
topologies

P2P network

super node super node super node

fitness values

parallel evolutionary P2P networking (P-EP2P)

node group 1 node group 2 node group 3

Fig. 1. Overview of the parallel evolutionary P2P networking technique.

A. Network Composition

As shown in Figure 1, a network using P-EP2P is composed
of a P2P network that includes several network topologies,
in which all of the nodes are included at the same time,
and multiple super nodes, in which EA is used to optimize
the topologies. P-EP2P first divides an entire network into
several smaller networks. Let NG be the number of node
groups, which are obtained by dividing the entire network,
and Gk be the number of nodes in the k-th node group
(k = 1, 2, . . . , NG). Then, one super node is assigned to each
node group.

The actual role of the super node is (1) to determine links
for a node in its node group that joins the network for the
first time, (2) to reconstruct the network topologies of its node
group by executing the EA, and (3) to manage which nodes
in its node group join the network at each moment. The super
node does not manage which services each node in its node
group can provide to other nodes. For example, in a P2P file-
sharing network, the super node does not manage which files
each node holds. However, the P2P nodes communicate their
joining and leaving the network to the super node. Thus, the
super node can determine which P2P nodes in its node group

have joined the network and whether these nodes are currently
in the network.

B. Fitnesses Assigned by Nodes

A P2P node in each node group uses all network topologies
to which it is included for time period T and then assigns a
fitness to each of the topologies. The fitness of each network
topology is set to zero initially and at every time interval
T . Otherwise, each network topology basically increases the
fitness by being used by the nodes.

When a P2P node searches the P2P network for P2P nodes
that can provide the desired service, this P2P node uses all of
the P2P network topologies in which it is included for the
search. Therefore, it is possible that within a given allowed
number of hops, Hmax, the P2P node can find the desired
service in some topologies while not being able to find the
service in other topologies. If the desired service is not found
in a certain topology, the fitness of the topology is increased
by one. Otherwise, the fitness does not change.

If the above-mentioned search and assignment of fitnesses
are conducted for a period of time T , each topology will
be assigned a certain fitness in each node group. Then, the
topologies with smaller fitnesses are regarded as better in the
EA used herein.

In P-EP2P, one super node is assigned to each of NG node
groups and gathers fitnesses only from Gk (k = 1, 2, . . . , NG)
nodes that belong to its node group. All L nodes simultane-
ously belong to N network topologies and are divided into NG

node groups. Therefore, it can happen that the node groups
assign different fitnesses to the identical network topology.

C. Representations of Network Topologies

In EA, a solution candidate for an optimization problem
is represented in an alternative form. This alternative form is
designed by a person who is attempting to solve the problem
using the EA and is referred to as a genotype or an individual.
Meanwhile, a solution candidate itself is referred to as a
phenotype in the EA. In P-EP2P, the P2P network topology
is an object of optimization and an individual is an alternative
form of a P2P network topology.

Suppose that a P2P network consists of L nodes. The
P2P network topology assumed herein is generated by having
each of the L nodes make NC directed links to other nodes.
Therefore, an individual is an internal representation of this
network topology in the EA. The EA individual used here is
shown in Figure 2. As shown in Figures 2, in which NC is
2, the individual is a one-dimensional vector with L × NC

elements. An element in an individual is generally referred to
as a gene in the EA.

Each node is assigned a serial number as its identifier,
and when NC = 1, the identifier corresponds to the index
of the vector representing the individual. When NC ≥ 2, the
identifier corresponds to the index representing each chunk of
NC elements. An element value of the individual represents an
identifier of the node to which a focus node makes a directed
link. A direction represented by a directed link indicates that
a search query can be forwarded only in that direction. Thus,
if flooding is used as a query forwarding method, a search



query generated at some node is forwarded node by node in
the direction represented by the directed links, and the paths
for forwarding the query (flooding tree) are then determined
accordingly. However, when data, such as a file, is found
during this search, the node having the object transmits the
data to the node making the query by means of a direct
communication.

Individual

1 2 L

ID: 1
ID: 12

ID: 2

ID: L

ID: 5

ID: 8

ID: 3

12 8 5 3

network topology

Node ID

Each node makes two directed links to other nodes.

identifiers (ID) of nodes

identifiers (IDs) of nodes to which 
each node makes a directed link

1 8

Fig. 2. Representation of a P2P network topology in the EA (EA individual)
when NC = 2.

D. Evolutionary Operators

Evolutionary operators are applied to the set of individuals
mentioned above, which is referred to as a population, in order
to generate a new set of individuals, which is referred to as
the new population. The number of individuals held in the EA,
i.e., the population size, is N . Evolutionary operators generally
include a selection operator, which is inspired by natural
selection in Darwinism, a recombination or crossover operator,
which models genetic recombination, and a mutation operator,
which models gene mutation. The evolutionary operators used
in P-EP2P are explained below.

1) Selection: The selection operator used herein is a tour-
nament selection with a tournament size of K. The tournament
selection randomly selects K individuals from the EA popu-
lation and selects the individual with the best fitness among
the K individuals. This selection procedure is repeated until
N individuals have been selected. N is a population size and
an even number. In each node group, the tournament selection
is conducted using fitnesses assigned to individuals encoding
network topologies. Since it can happen that the node groups
provide different fitnesses for identical individuals, selected
individuals can be different in the node groups.

2) Crossover: The crossover operator used in the present
study is hereinafter referred to as node linkage crossover
(NLX). NLX is applied to the selected individuals by the
tournament selection in each node group as follows. A range
within which NLX is applied in each node group are the vector
elements (the loci) that are correspondent to the nodes of that
group.

1) N individuals selected by the selection operator are
divided into N/2 pairs of individuals. The selected
individuals become parent individuals in this genera-
tion.

2) The crossover operator is applied to each pair of par-
ent individuals with probability pc, which is referred
to as the crossover rate. Child individuals generated

from each pair of parent individuals are identical to
the parent individuals before the crossover operator is
applied. Each parent individual has a corresponding
child individual.

3) For each pair of parent individuals to which the
crossover operator is applied, one element is ran-
domly selected from among the L elements of the
individual. Recombination is conducted for the se-
lected element with probability pe.

4) For the element to which the recombination is to
be applied, which child individual corresponding to
one parent individual receives the element values of
the other parent individual to be copied on itself is
decided randomly.

5) After deciding which parent individual provides the
element values for recombination, the node (element
value) linkage generated by directed links between
nodes is copied to the target child individual.
Figure 3 shows an example of NLX with NC = 2.
In Figure 3, the third node has been selected as the
initial node of the linkage. However, since each node
makes two directed links, the third node has two
elements that can be referred to by NLX, which, in
this example, are 10 and 1. Then, NLX randomly
chooses one of the two possible elements and refers
to the value of the selected element, which is 10.
Next, since the second node of the linkage, which is
the tenth node, also has two elements, NLX randomly
chooses one of the elements and refers to the value
of the selected element, which is 2. In this way, the
node linkage is formed. Generally, when NC ≥ 2,
NLX is performed in the same manner.
However, when there are multiple node groups
(NG ≥ 2), the way becomes complicated. For ex-
ample, suppose that a node a1 in a node group 1 of
focus makes a directed link to a node b2 in another
node group 2 and the node b2 makes a directed link
to a node c3 in another node group 3. Then, we will
consider a copy of the linkage among these nodes,
a1 → b2 → c3. In case that those nodes belongs to the
same node group, the linkage of a1 → b2 → c3 can
be copied. However, in case that those nodes belong
to different node groups, the linkage from the node
a1, which is in the node group 1 of focus, to the node
b2, which is outside the node group 1, is copied, but
the linkage from the node b2 to the node c3, which
is also outside the node group, cannot be copied.
In one attempt of NLX, when the number of times of
recombination has not reached NL yet and a linkage
from a node in a node group of focus to a node
in another node group appears, a linkage from the
node in that other group to some node can not be
copied, as mentioned above. In this case, one new
vector element is selected from all of the vector
elements in the node group of focus to be copied. The
node linkage again starts from that selected element
(node). One attempt of NLX is finished when the total
number of the vector elements copied becomes NL.

6) Repeat Steps (3) through (5) NC × (L/NG) times.

3) Mutation: The mutation operator used herein is such
that the value at each element (the gene) on the N individuals
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Fig. 3. Example of node linkage crossover (NLX) when NC = 2.

obtained after the node linkage crossover (NLX) is randomly
changed to some other possible value with probability pm,
which is referred to as the mutation rate. The element value
of the individual represents an identifier of a node to which
the node corresponding to the element position is linked, so
that the mutation operator changes a node to which the node of
focus is linked. Since all the super nodes exchange information
on which nodes are present in their networks among them,
every element value of the individual can become one of the
identifiers for all of the nodes in the entire network by the
mutation operator. This mutation operator is introduced mainly
for bringing novel genes that did not appear in the initial
population. In addition, if we set the mutation rate to be higher,
the P-EP2P approaches to a random method.

E. Timing for Topology Generation

The EA population obtained after applying the evolutionary
operators is transformed into a new set of P2P network
topologies on the super node mentioned above, and the nodes
to which each node must make directed links are then com-
municated to each node in the network. The nodes then make
directed links to other nodes according to this information.
Nodes that are not present in the network at this moment obtain
information on nodes to which they must link upon joining the
network.

III. SEQUENTIAL EVALUATION METHOD FOR NETWORK
TOPOLOGIES

P-EP2P proposed in our previous study [5] conducts col-
lection of fitness values to network topologies from nodes and
evolutionary reconstruction of the network topologies based on
the fitness values at the same time for all node groups. In [5], it
was suggested from simulation results that change in network
topologies of some node group can cause bad effect on fitness
values of other node groups, that is, evolution of network
topologies that each node group manages does not occur
harmoniously. In the conventional P-EP2P, all node groups can
give a different fitness value to one network topology, and then
each node group can select and modify pieces of different
network topologies for the next generation. Then, the entire
network topologies are formed by randomly combining such
pieces of different network topologies that all node groups
selected. There is no basis that this random combination of
pieces of different network topologies yields better network

topologies. The problem of P-EP2P mentioned above is also
shown in Figure 4.

P2P networknode group 1 node group 2 node group 3

fitness 2 

fitness 30 
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network topologies
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of network topologies
in EA

pieces of network topologies with 

different topologies are combined 
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Fig. 4. Problem of the parallel evolutionary P2P networking technique.

Meanwhile, the method proposed in this section evaluates
and reconstructs network topologies one by one in a fixed
order. This method allows a node group to reconstruct its own
network topologies under the condition that network topologies
of other node groups are fixed.

Procedures of P-EP2P including the proposed method for
evaluating and reconstructing network topologies are as fol-
lows: (1) all nodes are divided into NG node groups, (2) nodes
in each node group uses the network topologies for a fixed time
period of T , (3) a super node in each node group gathers fitness
values from its nodes, (4) only a node group that is now at its
turn evolutionarily reconstructs its network topologies, where
order of the topology reconstruction for all node groups is
determined in advance, (5) returns to (2). For example, suppose
that two node groups, A and B, exist. Then, only the node
group A first evolutionarily reconstructs its network topologies
at time T using fitness values that were obtained from the
real use of the network topologies by its nodes from time 0
to T . Next, only the node group B reconstructs its network
topologies at time 2T using fitness values gathered from time
T to 2T . Then, the turn comes to the node group A again.
This procedure is repeated.

IV. SIMULATIONS

In this section, we compare P-EP2P using the sequential
evaluation method for network topologies proposed in Section
III and the conventional P-EP2P through simulations.

A. Simulation Model and Configurations

To focus only on the examination of the relationship
between the number of node groups and the adaptability of
network topologies as much as possible, we simplify other
things. We consider that all of the nodes are always present in
the network without leaving during the simulation period. In
addition, it is assumed that all of the nodes excluding a node
as a search object search the entire network for only one node
to receive some service over the simulation period of time. The
node as a search object does not conduct search. The above-
mentioned assumptions are not practical, but the network in the



simulation model is static and therefore changes in the network
topologies affect the adaptability of the network topologies. A
time unit is regarded as the period of time required for all of
the nodes to complete one search in turn.

The parameter values of the P-EP2P used in the simulations
are listed in Table I. The parameters whose values are changed
in the simulations are just the number of nodes L, which takes
103, 104 and the number of node groups NG, which takes 1, 2,
5, and 10. Also, the number of nodes as a search object is just
one and all of the nodes excluding the search object conduct
only one search in a time unit, so that the search result for
every node is always the same until the network topologies
are changed by applying the evolutionary operators.

TABLE I. PARAMETERS VALUES OF P-EP2P USED IN THE
SIMULATIONS.

Parameter Description Value

L number of nodes (genes) 103, 104

N number of P2P network topologies (individ-
uals)

30

T time period for which generated topologies
are used

20

Hmax allowed number of hops for one search 5
D number of directed links generated by a node

in one topology
1

K tournament size for the tournament selection 2
pc crossover rate 100%
pe probability with which recombination is con-

ducted for a selected element in NLX
10%

NL length of node linkage in NLX 5
pm mutation rate 0.5%
NG number of node groups 1, 2, 5, 10
Gk number of nodes in the k-th node group L/NG

B. Results

We observed the search failure rate of the present network
topologies during a period of use, which is T = 20. Figures 5
and 6 show the time-varying search failure rates for a variety
of the number of nodes and the number of node groups, for the
case of using the proposed sequential evaluation method and
for the case of not using it, respectively. The results shown in
those figures are averages over 10 independent simulation runs.
The results for NG = 1 in the figures are the same because
there is only one node group. In addition, Figure 7 shows
the time-varying fitness values that were given to a particular
network topology by each node group when L = 103 and
NG = 5.

Comparing Figures 5 and 6, we can observe that P-EP2P
using the proposed evaluation method improved fitness values
better than P-EP2P not using it for all tested pairs of the
number of nodes and the number of node groups. P-EP2P
not using the proposed method hardly improved fitness values
after approximately time of 1, 000. Meanwhile, P-EP2P using
the proposed method gradually improved fitness values over
all the simulation times. Furthermore, we can also observe
from Figure 7 that only in P-EP2P using the proposed method,
all the node groups harmoniously improved fitness values
for the particular network topology over all the simulation
times. Thus, we can say that the proposed method evaluating
network topologies sequentially adapts network topologies
to users’ demands better than the method evaluating them
simultaneously.
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Fig. 5. The time-varying search failure rates for the case of using the proposed
sequential evaluation method for network topologies.
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Fig. 6. The time-varying search failure rates for the case of not using the
proposed sequential evaluation method for network topologies.

Finally, we compare the proposed evaluation method with
its variants in terms of search failure rate. The proposed
sequential evaluation method evaluates network topologies
one by one. Here, we think that evaluation target is not
limited to one network topology but E (2 ≤ E < NG)
network topologies. Moreover, as order of evaluating the E
network topologies, we consider a way to evaluate E network
topologies in a fixed order and a way to evaluate E network
topologies randomly chosen. Suppose that all node groups
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Fig. 7. The time-varying fitness values given to a particular network topology
by each node group when L = 103 and NG = 5.

are assigned serial numbers from 1 to NG. Then, the way to
evaluate E network topologies in a fixed order evaluates node
groups with serial numbers (1 + i) mod NG, (2 + i) mod
NG, . . . , and (E + i) mod NG at the i-th evaluation.
The way to evaluate E network topologies randomly chosen
literally always chooses E node groups randomly from among
NG node groups as evaluation targets. Figure 8 shows results
for E = 2, 3, 4, 5, N = 1000, and NG = 10.
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Fig. 8. Results of the way to evaluate E network topologies in a fixed
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We can observe from Figure 8 that the smaller the value
of E, the better search failure rate. This observation does not
contrary to intuition because when E = NG, the evaluation
method considered here is the same as the conventional method
by which all node groups simultaneously evaluates network
topologies. In addition, we can observe that there is almost no
difference in search failure rate between the way to evaluate
E network topologies in a fixed order and that to evaluate
E randomly chosen network topologies. This observation
suggests that an essential procedure for lowering search failure
rate is to evaluate network topologies of each node group

separately in time.

V. CONCLUDING REMARKS

This paper proposed a new method for evaluating and
reconstructing network topologies in the parallel P2P network-
ing technique (P-EP2P) that presented in our previous study,
and evaluated the proposed method through simulations. P-
EP2P attempts to adapt entire co-existing network topologies
to users’ demands by accumulating adaptation of pieces of
entire network topologies that several node groups manage.
The proposed evaluation method allows the node groups to
evaluate and reconstruct their own network topologies sequen-
tially, while in the conventional evaluation method, all node
groups do that simultaneously. The simulation results showed
that the proposed evaluation method yields better adaptability
of network topologies than the conventional one. In future,
we will assume more realistic search behaviors of users in
simulations and demonstrate the proposed method.
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