
Maxmin Fairness under Priority for Network
Resource Allocation Tasks
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Abstract—Many network control policies can benefit from
introducing priorities among users, traffic flows, or service provi-
sions e.g. for QoS improvement or network congestion avoidance.
In order to ensure fairness of concomitant resource sharing
tasks, generic extensions of maxmin fairness under priority are
considered. A critical analysis of existing approaches leads to the
definition of two fairness relations based on formal modifications
of the maxmin fairness standard of comparison. One is based
on using priority functions for internal weighting, the other on
priority classes. Experimental evaluation shows that maximizing
under these relations indeed gives relations close to maxmin
fairness that take priorities into account such that higher priority
users receive higher allocations in average. Further studying the
wireless channel allocation model problem shows that prioritizing
can give solutions of higher efficiency than maxmin fairness.

Keywords—fairness, maxmin fairness, priority fairness, wireless
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I. INTRODUCTION

The rapid growth of communication networks has given
the need for smart control policies that also take aspects
of the distribution and sharing of network resources into
account. This is commonly studied under the theme of fairness.
Most popular fairness models here are maxmin fairness [1]
and proportional fairness [2]. In these fairness models, it is
essential that all users are treated equally in the resource
allocation.

However, there are cases where priority among users or
flows has to be taken into account. Priorities in wireless
networks are often related to the management of QoS classes
or as indicator for network congestion. In [3] various queu-
ing schemes for multi-hop wireless networks are compared
according to fairness and throughput. It is concluded that for
achieving optimal bandwidth utilization, the MAC-layer needs
to support different QoS priorities. Also in [4] the improvement
especially of multimedia services quality is related to QoS
priority classes and an adaptive fairness scheme is considered.
In [5] authors propose a priority-based fair medium access
control (PMAC) protocol to reflect different weights among
traffic flows during approximation of the optimal contention
window size. Per-flow weights, related to congestion at nearby
nodes, are also at the base of the approach presented in [6].
This scheme approaches long-term fairness, where allocated
bandwidths to flows equal their long-termed arrival rate.

In such works there is no explicit model of fairness that
can be applied to a wide range of network architectures. A

similar problem domain where prioritization of users or flows
is needed to establish a suitable control paradigm can be
found in related fields: in cognitive radio there is explicit
separation between primary and secondary users. Opportunistic
networking might take the chance of users occurrence into
account and this way maintaining different node priorities.
In a practical context, in a disaster situation emergency-case
related packets should have higher transport priority, while
other traffic is still needed to probably - by distributing new
and updated information - adjust the emergency traffic content.
Needless to say that all these cases strongly refer to cross-
layer control. Nevertheless, in all cases the same need for
fairness in the distribution arises. Only few studies consider
generic approaches to fairness under priority, including so-
called weighted maxmin fairness in [7] or [8]. A common
aspect here is the use of priority functions that make priority a
function of the allocation (share, rate etc.). This is commonly
related to charging for bandwidth, where the user who pays
more can expect a specific traffic rate to be higher prioritized
than for a user who pays less.

But it was shown that with regard to maxmin fairness
all related proposals basically emulate maxmin fairness under
a corresponding variable transformation [8]. Here, we study
two possible extensions of maxmin fairness that can serve as
new fairness relations under priority, one based on priority
functions, one based on priority classes. The approaches are
based on direct formal modification of the maxmin fairness
standard of comparison. Problems with the existing extensions
of maxmin fairness will be discussed in Section II. Section
III then details the proposed maxmin fairness under priority
relations. Section IV provides results of experiments with these
two new relations to demonstrate their feasibility. Section V
concludes the paper.

II. EXTENSIONS OF MAXMIN FAIRNESS

For the inclusion of priority in maxmin fairness a more
closer look on maxmin fairness itself is needed. Generally,
decision-making problems like fair selection can be done by
specifying a standard of comparison and seeking solutions
where each other feasible solution fulfills such a standard.
For example, given a set of vectors, the well-known Pareto
efficiency for some solution x is based on the following:

(Pareto-efficiency) Increasing one component xi must be
at the expense of decreasing some other xj .



In [1], based on the analysis of the bottleneck flow control
algorithm, the standard of comparison for maxmin fairness was
given as:

(Maxmin fairness) Increasing one component xi must be
at the expense of decreasing some other xj such that xi ≥ xj .

We may formulate this as a binary vector relation between
elements of a set of feasible vectors A.

Definition 1. Given a domain A ⊆ Rn. Vector x ∈ A maxmin
fair dominates vector y ∈ A, written as x ≥mmf y, if and only
if

∀i = 1, . . . , n : (yi > xi)→ ∃j 6=i(xi ≥ xj ∧ xj > yj). (1)

Then the maxmin fair (or maxmin equitable) state is a
greatest element of this relation with regard to the domain A,
i.e. an element x′ such that for any x ∈ A it holds x′ ≥mmf x.
Thus, a relation “x ≥mmf y” expresses a lacking incentive to
change from state x to state y, or generally a preference for
the solution x against y.

Obviously, this formulation of maxmin fairness considers
all components equally and does not cover any notion of
priority. An early statement about a possible inclusion can
be found in the same source [1]. There (p.528) the following
suggestion was made:

“Several generalizations can be made to the basic approach
described above. . . . Next, we can consider ways to assign
different priorities to different kinds of traffic and to make these
priorities sensitive to traffic levels. If bp(rp) is an increasing
function representing the priority of p at rate rp, the max-
min fairness criterion can be modified as follows: For each p,
maximize rp subject to the constraint that any increase in rp
would cause a decrease of rp′ for some p′ satisfying bp′(rp′) ≤
bp(rp).”

Also here, the maximization problem can be rephrased as
the finding of a greatest element for the relation:

Definition 2. Given a domain A ⊆ Rn and a set of n (strictly)
increasing real-valued priority functions pi(x). Vector x ∈ A
maxmin fair dominates vector y ∈ A under priority if and only
if

∀i = 1, . . . , n : (yi > xi)→ ∃j 6=i(pi(xi) ≥ pj(xj)∧xj > yj).
(2)

This relation was later independently introduced as utility
maxmin fairness in [9]. A special case of this fairness concept
can also be found under the name weighted maxmin fairness,
for example in [10]:

Definition 3. Given a domain A ⊆ Rn and a set of n positive
real-valued weights wi. Vector x ∈ A maxmin fair dominates
vector y ∈ A under priority weights wi if and only if

∀i = 1, . . . , n : (yi > xi)→ ∃j 6=ixi/wi ≥ xj/wj ∧ xj > yj).
(3)

It is easy to see that this definition corresponds to the
former one for the choice of priority functions pi(x) = x/wi.

However (see also corresponding remark in [8]) none of
these definitions actually defines a new relation. Consider a
transformation

(x1, x2, . . . , xn) −→ (p1(x1), p2(x2), . . . , pn(xn)), (4)

then the definition of fairness under priority becomes equiva-
lent to the definition of maxmin fairness for the transformed
vectors, simply since the priority functions are strictly increas-
ing1. Thus, yi > xi in the definition of maxmin fairness can
be replaced with pi(yi) > pi(xi) as well as xj > yj with
pj(xj) > pj(yj). This fact might limit the applicability of the
concept, since maxmin fairness by itself was not designed to
represent priority. Assume in a limiting case that the priority
functions would not change strongly and as a consequence
there is a fixed ranking of users by priority. Then Def. 2 would
read as: the rate of the user with constant lowest priority could
always grow, while the rates for the user with constant highest
priority could only grow if all other rates grow as well. This
is not really fitting to a concept of priority.

In [7] weighted maxmin fairness is slightly differently
introduced:

Definition 4. Given a domain A ⊆ Rn and a set of n (strictly)
increasing real-valued priority functions pi(x). Vector x ∈ A
maxmin fair dominates vector y ∈ A under weighted priority
if and only if

∀i = 1, . . . , n : (yi > xi)→ ∃j 6=i(pi(xi) ≥ pi(xj)∧xj > yj).
(5)

Note that the difference here is to use the same priority
function pi for comparing between components of the vector
x. However, also here the strictly increasing character of the
priority function makes this equivalent to xi ≥ xj and the
relation is equivalent to maxmin fairness as well. The same
would happen if using pj instead of pi.

It might be surprising that extending maxmin fairness
appears less simple than it seems on first glance. In the
next section, we will take up this issue and propose two
extensions of maxmin fairness that allow for the inclusion of
priority aspects in maxmin fairness and define relations that
are different from maxmin fairness.

III. PRIORITY MAXMIN FAIRNESS RELATIONS

The former section demonstrated how recent proposals of
a maxmin fairness relation under weighting or priority define
in fact relations that are homomorph to the original maxmin
fairness, with regard to maximum state selection. To avoid this
problem, one can formally make a slight adjustment to Defs. 2
or 4 that refers to the comparison between the components of
x:

Definition 5. (Weighted Maxmin Fairness) Given a domain
A ⊆ Rn and a set of n (strictly) increasing real-valued priority
functions pi(x). Vector x ∈ A maxmin fair dominates vector

1The case of (not necessarily strictly) increasing functions makes some extra
formal effort, but will not change the general picture.



y ∈ A under weighting pi (written as x ≥wmmf y) if and only
if

∀i = 1, . . . , n : (yi > xi)→ ∃j 6=i(pj(xi) ≥ pi(xj)∧xj > yj).
(6)

In fact, here the comparison pj(xi) ≥ pi(xj) works as
a “promoter” of the comparison between xi and xj , driven
by the mutual priority functions. One can see this by con-
sidering an example: for the vectors x = (0.4, 0.5, 0.6) and
y = (0.5, 0.6, 0.5) there would be no maxmin fairness relation:
in both cases where a component increases if changing state
from x to y there would be no component that becomes smaller
(which is the case for index 3) but also already smaller or less
than the increasing component (so, 0.6 is larger than 0.4 and
0.5). Now assume that the third component is actually the
allocation to a user with higher priority than users 1 and 2. It
can be expressed by priority functions p1(x) = p2(x) = x2

and p3(x) = x - so at the same allocation (rate, share etc.)
user 3 would always have higher priority than users 1 and
2, if the components are from (0, 1]. But now vector x is in
weighted maxmin fairness relation to y, since the condition
pj(xi) ≥ pi(xj) is fulfilled for the (i, j)-pairs (1, 3) and (2, 3)
(for example for (1, 3) p3(x1) = x1 = 0.4 ≥ p1(x3) =
0.62 = 0.36). So by taking priorities into account, the modified
maxmin fairness relation holds.

We will refer to this relation as weighted maxmin fairness
in the following, or simply wmmf.

But there is also the possibility to take priorities explicitly
into account, by posing an additional constraint in the defi-
nition. Here, priorities are seen as index classes, independent
from any component magnitude. Formally priority values pi
are assigned to each index, representing the priority of the
agent receiving the magnitude given by vector component
i (and being independent from that magnitude). Then the
condition xi ≥ xj to identify an agent j that envies benefitting
agent i in the maxmin fairness relation condition, this agent j
must also be of higher priority.

Definition 6. (Priority Maxmin Fairness) Given a domain A ⊆
Rn and a set of real priority values pi (i = 1, . . . , n). Vector
x ∈ A maxmin fair dominates vector y ∈ A under priorities
pi (written as x ≥pmmf y) if and only if

∀i = 1, . . . , n : (yi > xi)→ ∃j 6=ixi ≥ xj∧pj ≥ pi∧xj > yj).
(7)

Both definitions refer to relations that are different from
maxmin fairness. The difference (with regard to their appli-
cation) is the way the priority is specified: either as a fixed
assignment to the specific user (as it is for example the
distinction of primary and secondary user in cognitive radio),
or as a weighting that represents the payment of a specific user
in relation to payments of other users.

IV. APPLICATION TO CROSS-LAYER WIRELESS
ARCHITECTURES

For using fairness relations for network resource allocation
problems, we follow the way presented in [11]. For the devel-
opment of control policies in cross-layer wireless architectures,
the problem domains are often discrete. One example would be

channel allocation based on Channel State Information (CSI)
where a set of transmission channels provided by a Base
Station (BS) have to be allocated to Subscriber Stations (SS),
while accepting a possible lower transmission via allocated
channels due to mobility of the SS, larger distance to BS or
obstacles in the cell coverage area. Channels are discrete units.
The issue now is that in such cases, often there is no greatest
element of the fairness relation (or in economical terms: no
equitable solution to the standard of comparison). In order to
come up with an effective way of selecting fair allocations,
inspiration can be taken from multi-objective optimization: for
the Pareto-efficiency, expressed as Pareto-dominance relation,
maximum elements of the feasible domain are searched, and -
since there are usually more than one - a Decision Maker (DM)
selects finally. If writing relation R as x ≥R y (for domain
elements x and y), then the asymmetric part P (R) is the
relation composed of all pairs (x, y) ∈ R where (y, x) 6∈ R and
the notation x >R y is used. An element x′ of the domain is
maximal if there is no domain element x such that x >R x′. All
maximal elements comprise the maximum set of the relation
R.

For establishing a fairness relation, the relation should be
at least implied by Pareto dominance (this way, the maximum
allocations become Pareto efficient), and it should be cycle-
free (i.e. there is no sequence of k ≥ 3 vectors such that
x1 >R x2 >R · · · >R xk and xk >R x1). For cycle-free
relations, each finite domain has a non-empty maximum set
(see e.g. [12] for more details on the relational approach).

Considering Definitions 5 and 6 given in the foregoing sec-
tion, both relations are obviously implied by Pareto dominance
since this means that for each index i xi ≥ yi and thus there
is no index i such that yi > xi. Regarding cycle-freeness, the
answer is easy for the relation pmmf of Definition 6: since
the exists-part in the condition has an additional constraint
(the priority of j is at least as large as the priority of i) it
follows that the relation pmmf is a subset of the maxmin
fairness relation, and since maxmin fairness is cycle-free, pmmf
is cycle-free as well.

For the relation wmmf the answer is not so simple, since
there are many choices for the priority functions. The iden-
tification of a class of priority functions where the relation
is cycle-free is topic of ongoing investigation. At least in all
experiments so far using priority functions like exponential
functions, sigmoid functions, and their converse, no cycle
could be observed. However, for some priority function choices
such cycles exist: consider a case of 4 dimensional vectors,
using the priority functions

pi(x) =

{
i for i = 1, 2, 3

4δ(x− 5) for i = 4
(8)

where δ(x) = 0 for x < 0 and 1 otherwise2. Now for the triple
of vectors x = (2, 4, 6, 8), y = (9, 3, 8, 4), z = (3, 7, 6, 4)
it can be seen that x >wmmf y ∧ y >wmmf z ∧ z >wmmf x
(for space reason, we cannot provide the complete calculation
here).

2Slight variation of these functions also allows to find cases of cycles where
the priority functions are strictly monotone



As cycles are - nevertheless - rather sparse, with some
caution we can also consider relation wmmf as suitable for
selection of maximum elements.

V. EXPERIMENTAL EVALUATION

In this section, the two maxmin fairness relations under
priority, Weighted Maxmin Fairness (wmmf, Def. 5) and Pri-
ority Maxmin Fairness (pmmf, Def. 6) and their relation to
Maxmin Fairness will be further investigated by numerical
simulations, in order to learn about specific strong and weak
points of these definitions with regard to applications. Three
types of experiments are performed: first experiments serve
to find out about the role as a preference relation in general,
then experiments to see how these relations reflect priority,
and a final set of experiments consider the efficiency of the
maximum selection for the wireless channel allocation problem
(the “price of fairness” [13]).

A. Experiment 1: Relational Properties

We randomly sample the frequency of the occurrence of
related pairs for wmmf and pmmf under varying priority
functions or values. In case of wmmf, the priority functions
are selected as equal for all indizes except 1 and 2. For these
two, we choose power functions xn. The priority index n gives
a larger priority to users 1 and 2 in case of negative n and a
lower priority in case of positive n. For n = 1 the relation is
equivalent to maxmin fairness. The results for 1 Mio. samples
of 5-dimensional random vectors with components from (0, 1]
are given in Table I.

TABLE I. NUMBERS OF OCCURRENCES OF MAXMIN FAIRNESS (mmf ),
WEIGHTED MAXMIN FAIRNESS (wmmf ) AND THEIR INTERSECTION AMONG

1 MIO. 5-DIMENSIONAL RANDOM VECTORS WITH COMPONENTS FROM
(0, 1]. THE PRIORITY FUNCTIONS FOR wmmf WERE p(x) = xn FOR INDEX

1 AND 2, p(x) = x OTHERWISE. FOR THE CASE n = 1 wmmf =mmf.

n occ. mmf occ. wmmf occ. both
-10.0 167149 666058 119826
-9.0 167120 665988 119754
-8.0 167209 665941 119861
-7.0 167131 666055 119802
-6.0 167141 665992 119773
-5.0 167192 665951 119852
-4.0 167142 666043 119809
-3.0 167131 665965 119761
-2.0 167191 665958 119856
-1.0 167158 666070 119822
0.0 167114 749199 154088
1.0 167205 167205 167205
2.0 167133 188835 139377
3.0 167134 210222 133849
4.0 167203 223534 132284
5.0 167128 231326 131769
6.0 167149 236423 131558
7.0 167189 240161 131592
8.0 167129 242568 131540
9.0 167156 244160 131449

10.0 167173 245622 131470

It is obvious that wmmf and mmf are different relations
(column 4 values are lower than both, column 2 and 3 values).
The second column shows the distribution of mmf occurrence
that is rather constant (about 1/6 of the domain). In all cases,
wmmf is more frequent, with quite high and nearly constant
values of about 66% for the case where agents 1 and 2 have
higher priority than the others, and values slightly larger than
mmf (about 24%) where these agents have lower priority

(positive priority index n). The number of cases where a
random pair is in both relations, mmf and wmmf, seems rather
independent from the priority functions here.

TABLE II. NUMBERS OF OCCURRENCES OF MAXMIN FAIRNESS (mmf ),
PRIORITY MAXMIN FAIRNESS (pmmf ) AND THEIR INTERSECTION AMONG 1

MIO. 10-DIMENSIONAL RANDOM VECTORS WITH COMPONENTS FROM
(0, 1]. THE PRIORITY VALUES FOR pmmf WERE 2 FOR INDIZES 1 TO n AND

1 OTHERWISE. FOR THE CASES n = 0 AND n = 10 pmmf =mmf.

n occ. mmf occ. pmmf both
0 85487 85487 85487
1 85454 53341 53341
2 85489 47126 47126
3 85454 47894 47894
4 85472 50918 50918
5 85505 55112 55112
6 85446 60371 60371
7 85450 65545 65545
8 85514 72156 72156
9 85463 78763 78763

10 85458 85458 85458

The corresponding experiment for pmmf gives a different
picture. Here, 1 Mio. 10-dimensional random vectors with
components from (0, 1] were sampled and for pmmf the
priority was set to 2 (i.e. higher priority) for the first n users,
and 1 otherwise. The results are shown in Table II. The fact
that the values in column 4 are equal to the values in column
3 and never larger than the values in column 2 confirms that
pmmf is always a subset of mmf. However, there is a notable
influence on the frequency of pmmf relation occurrence only
in case of a small number of higher priority users.

How will this influence the typical size of maximum sets
(which represents the hardness for a DM to select a final
solution)? The results for the same priority function or value
settings as before are shown in Figs. 1 and 2. In both cases,
30 times 100 random vectors with components from (0, 1]
were constructed (5-dimensional for wmmf, 10-dimensional
for pmmf ) and the average size of the maximum sets was
calculated. In general, a more abundant relation (as long as it
stays cycle-free) will produce smaller maximum sets. Figure 1
confirms this. Except for n = 0 (a constant priority case) the
maximum sets for wmmf are indeed smaller than the maximum
sets for mmf (which have a size of about 3). In general,
like mmf wmmf appears suitable for effective selection by
relational maximality.

This is not the case for pmmf. Figure 2 shows that the
relation produces maximum sets that are by a factor 2 to 3
larger than the maximum sets of maxmin fairness. Since pmmf
implies mmf , they will never be smaller, but especially for
the low-frequency case of few users with higher priority, the
maximum sets are much larger than for maxmin fairness.

B. Experiment 2: Representation of Priority

The purpose here is to find out in which way these relations
represent priority. Generally it is hard to have a clear-cut
criterion for deciding whether priority was taken into account
or not. We considered the implicit effect that higher priority
users should in average have a higher allocation. Thus we took
maximum sets with the same settings as in the experiment on
maximum set sizes before (regarding the choice of priority
functions or values, and experimental set up) but where looking
for the average component magnitude in maximal elements for
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priority users compared to other users. The results are shown
in Tables III and IV.

Here, both relations behave quite similar. In all cases higher
priority corresponds with higher magnitudes, while this is
stronger for wmmf (about 60% larger values) than pmmf (about
20% larger values). In case of users with lower priority (case
of positive n in Table III) users receive notably less, (also)
about 60% the value of normal priority users. Both tables also
show (second column) that for maxmin fairness there is no
such imbalance between users. So these experiments confirm
a tendency to take priority into account by higher allocations
to higher priority users.

C. Experiment 3: The Price of Fairness

We also wanted to study the relations within a specific
network resource allocation problem. As already mentioned,
we used the Wireless Channel Allocation problem (WCA)
where a number of channels (within a time frame) have to
be allocated to users and the performance of the allocation
per user is represented by the sum of channel coefficients of
allocated channels (a channel coefficient represents the rate at
which a user can transmit via an allocated channel). It is a
simplified model for the real-world wireless infrastructure, but
represents essential aspects of this problem domain.

TABLE III. COMPARISON OF AVERAGE COMPONENTS OF PRIORITY
AND NON-PRIORITY USERS FOR MAXIMAL ELEMENTS OF MAXMIN

FAIRNESS (MMF) AND PROPOSED WEIGHTED MAXMIN FAIRNESS (wmmf )
RELATIONS. THE PRIORITY FUNCTIONS WHERE p(x) = xn FOR USERS 1
AND 2 AND p(x) = x FOR USERS 3,4 AND 5. THE MAXIMUM SETS WERE

COMPUTED FOR 100 5-DIMENSIONAL RANDOM VECTORS WITH
COMPONENTS FROM (0, 1], AND THE AVERAGE VALUES AFTER 30

EXPERIMENTS ARE GIVEN. FOR n = 1 wmmf =mmf.

n ratio mmf ratio wmmf
-10.0 1.00271 1.50686
-9.0 0.993914 1.64135
-8.0 1.00336 1.59223
-7.0 0.998713 1.36124
-6.0 0.999166 1.77754
-5.0 1.00944 1.57733
-4.0 1.00303 1.60155
-3.0 1.0006 1.752
-2.0 0.988285 1.46511
-1.0 1.00396 1.72591
0.0 1.00252 1.72035
1.0 1.0082 1.0082
2.0 1.01914 0.852477
3.0 1.01702 0.725592
4.0 1.01636 0.735208
5.0 1.00474 0.675472
6.0 1.01269 0.636196
7.0 1.03122 0.632815
8.0 1.01624 0.627458
9.0 1.00453 0.647282
10.0 1.0307 0.602968

TABLE IV. COMPARISON OF AVERAGE COMPONENTS OF PRIORITY
AND NON-PRIORITY USERS FOR MAXIMAL ELEMENTS OF MAXMIN

FAIRNESS (MMF) AND PROPOSED PRIORITY MAXMIN FAIRNESS (pmmf )
RELATIONS. THE PRIORITY VALUES WERE 2 FOR INDIZES 1 TO n AND 1

OTHERWISE. THE MAXIMUM SETS WERE COMPUTED FOR 100
10-DIMENSIONAL RANDOM VECTORS WITH COMPONENTS FROM (0, 1],

AND THE AVERAGE VALUES AFTER 30 EXPERIMENTS ARE GIVEN.

n ratio mmf ratio pmmf
2 1.00529 1.31717
3 0.99703 1.25191
4 1.01491 1.23798
5 0.991467 1.20122
6 0.997243 1.19441
7 0.968695 1.19406
8 1.02128 1.22074

We selected the problem of allocating 6 channels to 5 users.
The channel coefficients were chosen with a uniform radial
distribution. Each channel must be allocated to exactly one
user, and each user receives at least one channel. This gives
1800 feasible allocations in total. Among them, maximum
sets were selected for various fairness relations, including
(1) maxmin fairness mmf , (2) wmmf with priority functions
p(x) = x2 for users 1 and 2, p(x) = x otherwise, (3)
pmmf with priority 2 for users 1 and 2, 1 otherwise, and (4)
proportional fairness [2]. In each case, from the maximum set
the vector with largest sum of components was selected, and
this sum put into ratio with the maximal possible sum among
all feasible allocations. The average ratios over 30 experiments
were calculated.

The results are shown in Fig. 3. It shows a clear ranking
of the relations with regard to efficiency (by “efficiency”
here we consider the sum of vector components). We give
the additional information that the same ranking appeared in
all 30 test cases. The fairness under priority relations appear
between maxmin fairness and proportional fairness. From [13],
where the phrase “price of fairness” was coined and which
inspired related investigations, it is a known fact that generally
proportional fairness is more efficient than maxmin fairness.
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This is confirmed in this experiment, where mmf gives lowest
efficiency (about 88% of maximum possible) and proportional
fairness the largest (about 98% of maximum possible). It was
also noted in [13] that generally such an efficiency loss, when
taking fairness into account, is not very high, hardly exceeding
10%. So even with regard to efficiency, fairness is still an
attractive optimization goal. We can now see that priority can
help to improve efficiency to some degree, while maintaining
“least component preference” - i.e. favouring solutions where
the minimum allocation is maximized. The relation pmmf
performs a little bit better than wmmf here, but this can be
influenced by the larger maximum sets and thus greater variety
of maximal elements of pmmf.

VI. CONCLUSIONS

Both relations that were introduced in this paper share
similarities with maxmin fairness, but also appear distinct from
maxmin fairness and each other to a sufficient degree. Both
relations modify the maxmin fairness standard of comparison,
which states that for any increase xi there must be a decrease
in another xj such that xi ≥ xj . In case of the proposed
weighted maxmin fairness (wmmf ) relation it is the condition
pj(xi) ≥ pi(xj) instead of (just) xi ≥ xj , where the pi(x) are
the priority functions. For priority maxmin fairness (pmmf ),
the additional condition pj ≥ pi is introduced. Relation pmmf
is a narration of maxmin fairness, while wmmf appears more
abundant than maxmin fairness, but closer in decision making
tasks like maximum element selection. On the other hand,
pmmf selects solutions of higher efficiency (at least for the
task studied here). Both relations might have their specific
application fields: wmmf is more attractive if a complex system
of priority functions can be specified, while pmmf is more
attractive if only few priority classes are given by the problem
specification, and the focus is on more efficient solutions.
Further investigations of the properties of these relations (esp.
for the conditions on the priority functions under which wmmf
appears to be cycle-free, or nearly cycle-free) and theoretical
underpinning of the observations made in the experiments are
subject of future work.
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