
Texture Synthesis using Soft-Computing

Javier Ruiz-del-Solar, Patricio Parada

Dept. of Electrical Engineering
Universidad de Chile

Email: {jruizd,pparada}@cec.uchile.cl

Mario Köppen

Dept. of Pattern Recognition
Fraunhofer-Institut IPK Berlin

Email: mario.koeppen@ipk.fhg.de

Abstract
The TEXRET-System, a texture retrieval system based

on soft-computing technologies is being developed. One of
the main system features is synthesis of the requested
textures when these are not found in the database, which
allows a growing of the database. Missing textures are
synthesized interactively using Markov Random Fields and
interactive genetic algorithms. This article is centered on the
texture synthesis of the textures

1. Introduction

Textures are homogeneous visual patterns that we
perceive in natural and synthetic scenes. They are made of
local micropatterns, repeated somehow, producing the
sensation of uniformity. Texture perception plays an
important role in human vision. It is used to detect and
distinguish objects, to infer surface orientation and
perspective, and to determine shape in 3D-scenes [9]. An
interesting psychological observation is the fact that human
beings are not able to describe textures clearly and
objectively, but only subjectively by using a fuzzy
characterization of them. On the other hand, with the new
advances in communication and multimedia computing
technologies, accessing mass amounts of digital information
(image databases) is becoming a reality. In this context,
textures, due to their esthetical properties, play today an
important role in the consumer-oriented design, marketing,
selling and exchange of products and/or product
information. For this reason, systems that allow the search
and retrieval of textures in image databases are of increasing
interest [12].

This work is part of a main research effort, whose aim
is the construction of the TEXRET-System, a texture
retrieval system based on soft-computing technologies. The
TEXRET-System has the following features: (i) direct
access from the Internet, (ii) texture queries using human-
like or fuzzy description of the textures, and (iii) synthesis
or generation of the requested textures when these are not
found in the database, which allows a growing of the
database. This article is centered on this last feature of the
system.

Texture Synthesis has been an increasingly active
research field in computer graphics. Many different
approaches have been used to generate textures, but till now
no fully successful generation model has been found.
Among the most interesting models we can distinguish

structural models, reaction-diffusion like models and
probabilistic models. In this last group, Markov random
fields stands out for their large versatility and performance.
For this reason, in this work Markov random fields are
chosen to implement the generation of textures.

The article is structured as follows. The TEXRET-
System is outlined in section 2. In section 3 and 4, the
system modules dealing with the synthesis of textures are
described. Finally, in section 5 and 6 some preliminary
results and conclusions are given.

2. The TEXRET-System

The TEXRET-System, whose block diagram is shown
in figure 1, is made of the FI (Fuzzy Interface), the Q2TPT
(Qualitative to Quantitative Textural Properties
Transformation), the TR (Texture Retrieval), the TG
(Texture Generation), and the EPA (Evolutionary Parameter
Adjustment) modules.

The on-line phase of the texture retrieval process works
as follows: A human user makes a query of a texture using a
subjective, linguistic or human-like texture description. The
FI module enters this description into the system using a
fuzzy representation of it. The Q2TPT module interprets the
query and translates it into a quantitative texture description
that is implemented using Tamura Descriptors [15]. This
qualitative description is used by the TR module to search
the texture in the database (see description in [12]).

In the case that the texture is not found in the database,
the user can choose the automatic generation of it. The TG
module generates the texture using Markov Random Fields
(MRF) [1] [2] [3] [4] [5] [6] [16]. The parameters of the
MRF are calculated from the Tamura descriptors and then
the textures are generated. As a result of this generation
process a set of textures is presented to the user. If the user
considers that one of the generated textures satisfy his
query, the process finishes here. If not, the user enters into
an iterative process. The iterative generation of the textures
is implemented using interactive evolutionary computation
(EPA module).

It should be pointed out that the subjective or human-
like texture description that the system accepts, was
determined by a psychological study in texture perception,
performed by co-workers of the authors, and that will be
presented elsewhere.

In the next two sections the modules dealing with the
generation of textures are presented.

Q2TPT

TG

EPA

Linguistic
DescriptionNot Expert

User

Textures

FI

TR

Figure 1. Block Diagram of the Proposed System.

3. The FI and Q2TPT Modules

 The function of the Q2TPT module is to interpret
subjective textural properties and to translate them into
objective features. The FI module allows obtaining an
internal representation of these subjective textural properties
using fuzzy logic. The Q2TPT is implemented by using a
Neuro-Fuzzy architecture, whose training phase is shown in
Figure 2.

Q2TPT

FETRGB

STP

CTF

Figure 2. Training-phase block diagram of the Q2TPT module.

3.1. Neuro-Fuzzy Network

 The implemented architecture corresponds to a modified
variant of the Khan network [8]. This network is based on a
variation of the Multilayer Back-Propagation Network
(MBPN). In the original description it consists of seven
layers, which also do fuzzification and rule approximation.
In the modified variant, the product-sums of the MBPN
formulas are replaced by multiplications and the learning
rule is modified appropriately (see a detailed description in
[9]).

3.2. FE (Features Extraction)

As it can be seen in Figure 2, the extraction of Color-
Textural Features (CTF) from textures (textured images) is a
fundamental step in the training of the Q2TPT module, and
also in the construction of the texture database. This process
is performed by the FE module. The features extraction
process works as following (see block diagram in figure 3):
- First, the input texture is transformed from its original

RGB color space representation into a HSL (Hue-
Saturation-Luminosity) color space representation by

the R2H (RGB to HSL) module. This transformation is
performed because the representation of the colors in
the RGB space is quite adapted for monitors but not for
human beings, like the HSL.

- Then, Color (CF) and Textural Features (TF) are
extracted from the HSL images (TH, TS and TL) by the
CFE (Color Features Extraction) and TFE (Textural
Features Extraction) modules.

- Finally, both of them, Color and Textural Features, are
fused by the FF (Features Fusion) Module.

R2H
TRGB CTFFF

TH , TS

TL

CF

TF

CFE

TFE

FE

Figure 3. Block diagram of the FE.

3.2.1 CFE Module

This module is implemented by using color histograms
of the Hue and Saturation components of the HSL texture
representation (TH and TS). From each component
histogram, the mean and the standard deviation values are
taken as color features. Color histograms are chosen because
they are invariant to translations and rotations about the
viewing axis, and they change only slowly under
modifications of angle of view, changes in scale, and
occlusion [14].

3.2.2 TFE Module

This module is implemented by using modified
Tamura Features [15], which correspond to standard
features for texture description. We used all six Tamura
Features, coarseness, directionality, contrast, line-likeness,
regularity and roughness, but we modified the calculation
process of first three ones.
 The calculation of coarseness is performed by using
the Minimal Binary Representation [10] and the

Morphological Distance Transformation. On the calculation
of the directionality and line-likeness features, we used the
original method of Tamura but we changed the gradient he
used by a fuzzy definition of the gradient [11].

3.2.3 FF Module

While some color features are useful features for texture
search, other color features influence the psychological
evidence of textural features. For example, the subjective
impression of contrast is influenced by background color.
Contrasts on blue or green backgrounds appear to be
different, even if the contrasts measured from the intensity
image are equal. A useful technique for feature extraction is
to extract or synthesize new features from the whole set of
color and textural features. In this case, a weighted-sum
approach is not sufficient due to the fact that textural
features are differently influenced by color information. For
this reason, this module is implemented using the fuzzy
integral [13].

4. The TG and EPA Modules
4.1. TG (Texture Generation)

Texture Generation has been an active research area in
computer graphics. Among many generation methods, as for
example structural and reaction-diffusion-like ones, methods
considering textures as samples from probabilistic
distributions are of increasing interest. By determining the
form of these distributions (i.e. the model), textures can be
generated. The performance of the methods depends on the
structure of the probabilistic density estimator being used. In
this context, Markov Random Fields and autoregressive
models have been successfully used to the generation of
textures. For this reason, these methods are chosen to
implement the TG module. Nevertheless, at the moment the
authors are testing high-order statistical methods to improve
the generation results. All mentioned methods are briefly
described in the following subsections.

4.1.1. Markov Random Fields

The study of Markov random fields has had a long
history, beginning with studies on ferromagnetism at the
beginning of the last century. The model has been applied to
the case of binary or Gaussian variables on a lattice.
Extensions to the case of variables that have integer ranges,
together with the use of estimation procedures, allow the
application of the Markov random field to texture modeling.
The following formulation has been taken from Cross and
Jain [3].

Let be the pixel value at a point on a N×N
lattice L. For simplicity let use where

.

Definition 1: The point j is said to be a neighbor of the point
i if
depends on . It should be pointed out that this
definition does not imply that the neighbors of a point are
necessarily close in terms of distance, although this is the
usual case.

Definition 2: A Markov random field (MRF) is a joint
probability density on the set of all possible X of the lattice
L, subject to the following conditions:
1) Positivity: for all X.
2) Markovianity:

3) Homogeneity: depends only on

the configuration of neighbors and is translation
invariant.

In most cases, we are interested in the models where the
point i is a neighbor of the point j if i is close to j.
Nevertheless, the influence of the neighborhood depends on
the probability function model that has been chosen.

Definition 3: The order of a Markov random field process
(O(N)) on a lattice is the largest value of i such that

 is nonzero (parameters of the
Markov model).

Definition 4: A Markov random field is isotropic at order i
if . Otherwise, it is said to be anisotropic at
order i.

Autobinomial-MRF Model

In this model, the probability of a point having a
gray level k is binomial, with parameter T determined by its
neighbors :

 (1)

where a first-order model has the form:

 (2)

and a second-order model the form:

 (3)

Additional high-order terms can be obtained by extending
the orders in a similar way beyond those shown in figure 4.

Gaussian-MRF Model

In this case, pixel gray levels have a joint Gaussian
distributions and correlation controlled by a number of
parameters representing the statistical dependence of a pixel
value on the pixel value in a symmetric neighborhood. The
probability density function can be written as follows:

p(X(i) | X(i + r),r ∈N) =

1
2πν

⋅ exp −
1
2ν

X(i) − θrX(i + r)
r∈N
∑

 


 



 




 (4)

m

v u z
l t X t' l'
z' u' v'
m'

Figure 4. Neighbors of the point X.

4.1.2. Autoregressive-Model

This is another statistical approach for texture modeling.

Autoregressive-models can be either causal or non-causal
[2]. Both of them consider that the gray level X(i,j) at the
pixel (i, j) is a linear combination of the gray levels at the
neighborhood (N), and additive white noise which can have
an arbitrary density of probability. Specific restrictions on
the neighbor set N yield familiar representations in the
image processing literature. For instance, the "causal"
models are obtained when the gray level of the pixel (i, j)
consider the terms “before” this pixel, i. e., the "earlier"
values only. As an example, the work of Hering [7]
considers the following dependence (see figure 5):

),()1,()1,1(

),1()1,1(),(

0

0 0

jijiXajiXa
jiXajiXajiX

lr

l

σ+−++−

+−+−−=
 (5)

)1,1(−− ji),1(ji −)1,1(+− ji

)1,(−ji),(ji

Figure 5. Neighborhood considered in Hering's model [7].

),(ll LjKi −−)1,(−− jKi l),(jKi l−)1,(+− jKi l
.....),(rl LjKi −−

: : : : :

: : : : :

),2(lLji −−)1,2(−− ji),2(ji −)1,2(+− ji),2(rLji −−

),1(lLji −−)1,1(−− ji),1(ji −)1,1(+− ji),1(rLji −−

),(lLji −)1,(−ji),(ji

Figure 6. Arbitrary neighborhood for causal Autoregressive–
Models.

This model can be extended by considering more pixels,

like in the following formula:
g(i, j) =

σ(i, j) + a(i − k, j − l) ⋅ g(i − k, j − l)
l=Ll

Lr

∑
k= 0

Nk

∑
 (6)

where the neighborhood N is show in the figure 6.

4.1.3. Other Statistical Models

The models that had been shown has concentrated on
exploitation of only second-order statistics of the data either
explicitly by restricting attention to correlation properties of
the random field, or implicitly by assuming that the random

field is Gaussian. A consequence of this is that the impulse
response of the underlying parametric model must possess
certain symmetry (such a “symmetric non-causality”), in
order to achieve parameter identifiability.

Recently has been interest in exploiting the high–order
cumulative statistics of the random field, in addition to or in
lieu of the usual second–order statistics. In [16] the authors
develop a method that exploits both the second–order and
the third–order correlations of the observed random field.
The basic assumption is that the observed random field has
been generated by driving 2D–ARMA (Autoregressive
Moving Average) model by an i.i.d. non-gaussian sequence.
They presented and analyzed a new family of inverse filter
criteria for consistent estimation of the parameters of a 2D–
ARMA model (with minimum phase or mixed phase, causal
or non-causal) of a non-gaussian random field. The criteria
are potentially useful for image representation and analysis,
deconvolution, inverse as well as direct system modeling,
image (texture) classification and hypothesis testing.
One major disadvantage of MRFs is that, in general, an
explicit form of the joint probability of the random variables
describing the model is not obtainable. However, a popular
subclass of MRFs, called Markov Mesh Models (MMMs),
allows the explicit description of the joint probability in
terms of spatially local conditional probabilities. In [4] it is
shown how Partially-Ordered Markov Models (POMMs)
are a generalization of MMMs and it is demonstrated the
versatility of POMMs to texture synthesis and pattern
recognition in imaging.

Table 1. Models and their parameters.

Model Number of
Parameters

Name of
Parameters

Autobinomial MRF)(2 NO?)2,(y)1,(ibib

Gaussian MRF 7)(4),(2 2
3)(),(2
≤≤?+

≤?

NONO
NONO

rθ

4 lrl aaaa ,,, 000
Autoregressive - Model

5 – 18),(ljkia −−

4.2. EPA (Evolutionary Parameter Adjustment)

The EPA (Evolutionary Parameter Adjustment)
module allows the user to perform an interactive adjustment
of the texture-generation model parameters by using
(interactive) genetic algorithms. Interactive genetic
algorithms can be defined as genetic algorithms that do not
use a standard fitness function but a user’s choice as fitness
criterion.

In the here proposed system (see block diagram in
figure 1) a set of generated textures are presented to the user
at each iteration. The user selects a subset of textures that
better achieve his requirements. This information is used to
adjust the parameters of the texture-generation model. The
system and the user iterate until the required texture is
generated.

As usual, the parameters of the model are packed into a
chromosome (array), whose size depend on the texture-
generation model being used (see table 1). As an example,
when the Gaussian model is being used, the chromosome
looks like the one shown in figure 7.

Figure 7. The chromosome structure corresponding to the Gaussian
MRF model, with a neighborhood order of 4.

All real-valued parameters are encoded into binary

values using interval numbering. From such bitstrings, 20
textures are synthesized and presented to the user. The user,
if not satisfied by any of the presented textures, can select
the five textures that come most close to his needs. This is
the only interactive part in the evolutionary procedure, and
replaces the usual fitness-proportionate selection. By
selecting the texture images, the corresponding bitstrings are
selected as well. From these five bitstrings, 20 new
bitstrings are created by crossover and mutation operators.
For crossover, two of the five bitstrings are randomly
selected, and one-point crossover is performed. The new
bitstrings are mutated as well, by flipping their bits with a
low probability (<0.01). Then, the 20 new texture images
are generated and presented to the user, who again could
either stop or select the best five textures. The whole
procedure is repeated as long as the user wishes.

For user convenience, a reject feature is also offered,
which allows to drop the newly created bitstrings and to
restart the operations for creating the next generation.

5. Preliminary Results

The texture images shown in figure 8 were generated
using the Metropolis Algorithm [3], which corresponds to a
very known implementation of autobinomial-MRF. As it
can be seen from the images, the results are very good for
some kind of textures like lines and clouds. Nevertheless,
this algorithm is relative slow, compare with the others,
because it need to perform a big number of iterations before
reaching a stable texture image. On the other hand, the
algorithm performance depends on the number of graylevels
of the image and the calculations should be done with a
variable internal precision of the numbers (256 to 1024 bits
in floating point representation).

The texture images shown in figure 9 were generated
using the Gaussian-MRF algorithm proposed by Chellappa
[1], which has some advantages relatives to the Metropolis
Algorithm. The calculation of the texture image is
performed in only one iteration, the size of the image has
only a small importance in the processing time, and the
algorithm is independent of the number of graylevels of the
image. Additionally, as it can be seen in figure 9, the
generated images show a greater variability than the
generated using the autobinomial model.

The images generated with the causal autoregressive
model (see figure 10) have a similar characteristic: all of
them are like lines, i.e. all images have a similar linear

pattern. The values of the neighborhood parameters allow
changing the orientation of the image and the medium gray
level, but all the textures are rather similar.

256 levels 256 levels 256 levels

64 levels 256 levels 256 levels

Figure 8. Textures generated using the Metropolis Algorithm. The
size of the images is 64 x 64.

128x128, neighborhood order 1 128x128, neighborhood order 4

64x64, neighborhood order 4 64x64, neighborhood order 4

Figure 9. Textures generated using the Chellappa algorithm. The

number of graylevels is 256 in all images.

Figure 10. Texture Generated using the Autoregressive model. In

each case the order of the neighborhood is 2.

Just to compare the obtained results, in figure 11 are

shown some textures generated using a structural approach
combined with a random placement of the basic patterns.
The textures were generated using the TextureScape
software.

Figure 11. Textures generated using a structural approach.

It should be mentioned that the described texture

generation methods greatly differ in their computational
effort to generate a texture image, ranging from a couple of
seconds to a few minutes, which has an influence on the
comfortability of the whole framework.

6. Conclusions

Providing the facility of a user-friendly texture retrieval

system comes out to be a very complex task. In this paper, a
framework was presented, which is fully specified for
solving all of the subtasks related to the retrieval of textures.

One of the most essential points is to relate literal texture
descriptions to existing texture images. Two strategies are
employed in the presented TEXRET system. The first
strategy is to use a Neuro-Fuzzy network for training a
mapping from literal texture descriptions to texture features.
Then, the user query is translated into literal features, the
corresponding textural features are computed and used for
retrieving the texture images from a database. However, the
texture database might be too small for finding a
corresponding image. This is, when the second strategy
comes into play. Missing textures are synthesized by an
interactive genetic algorithm. When the user has
interactively found his texture, the database can be
expanded, and a new pair of training data is supplied as
well. From this, even a small-at-the-beginning texture
database can grow from its very beginning on.

Approaches for texture synthesis were presented as well.
Regarding the fact that such approaches are more or less the
"heart" of the generation part of the TEXRET system, the
set of investigated approaches presented so far is not
satisfying. Either the computational effort is high, or the
variability among the generated textures is low. In future
work, this set has to be expanded by non-Gaussian random
field models, POMM models and structural approaches. In
particular, for the last case a more straightforward inclusion
of coloring is expected.

In this moment the authors are working in the final
integration of all the modules and in the testing of the whole
system.

Acknowledgements

This research was supported by FONDECYT (Chile) under Project
Number 1990595 and by the join “Program of Scientific
Cooperation” of CONICYT (Chile) and DFG (Germany).

References

[1] R. Chellappa, S. Chatterjee, and R. Bagdazian, “Texture
synthesis and compression using Gaussian Markov
random fields”, IEEE Trans. System, Man, Cibern., Vol.
SMC - 15, no. 2, pp. 298 - 303, Mar /Apr. 1985.

[2] R. Chellappa, R. Kashyap, "Texture synthesis using 2D-
Noncausal Autoregressive Models", IEEE Trans. on
Acoustics, Speech and Signal Processing, Vol. ASSP - 33,
No. 1, February 1985, pp. 194 - 203.

[3] G.R. Cross and A.K. Jain, “Markov random field texture
models”, IEEE Trans. Pattern and Machine Intell., vol.
PAMI- 5, pp. 25 – 39, January 1983.

[4] J.L. Davidson, N. Cressie, X. Hua, “Texture Synthesis and
Pattern Recognition for Partially Ordered Markov
Models”, Elsevier Pattern Recognition 32, pp. 1475 –
1505, 1999.

[5] M. Hassner and J. Sklansky, “The use of Markov random
field models for textures,” Comput. Graphics Image
Processing, vol. 12, pp. 357 – 370, Apr. 1981.

[6] M. Hassner and J. Sklansky,”Markov random fields
models of digitized image texture,” Proc. Int. Joint Conf.
Pattern Recognition, Kyoto, Japan, Nov. 1978, pp. 357 –
370, 1980.

[7] F. Hering, "Modellbasierte Textureanalyse", Heidelberger
Bildverarbeitungsforum: Textureanalyse, Germany, pp. 43
- 53, 1996.

[8] E. Khan and P. Venkatapuram, “Neufuz: Neural Network
Based Fuzzy Logic Design Algorithms”, Proc. IEEE
ICFS’93, San Francisco, pp. 647-654, 1993.

[9] M. Köppen and J. Ruiz-del-Solar, “A fuzzy-based texture
retrival system that considers psychological aspects”,
Proc. of the Int. Conf. 5th Fuzzy Days, Dortmund,
Germany, April 1997, Springer, pp. 585-586, 1997.

[10] M.C. Maccarone, V. Di Gesù and M. Tripiciano, “An
algorithm to compute medial axis of fuzzy images”, Proc.
of the 9th Scandinavian Conf. on Image Analysis, 525-
532, Uppsala, Sweden, 1995.

[11] N.R. Pal, N.R and S. Mukhopadhyay, “A psychovisual
fuzzy reasoning edge detector”, Proc. of the IIZUKA '96,
201-204, Japan, 1996.

[12] J.Ruiz-del-Solar, “Neuro-fuzzy system for the
administration of texture databases”, Proc. of the XIII
Chilean Congress on Elect. Eng., 1999 (Spanish).

[13] M. Sugeno, Theory of fuzzy integral and its applications,
Ph.D. Thesis, Tokyo Institute of Technology, 1974.

[14] M.J. Swain and D.H. Ballard, “Color Indexing”, Int.
Journal of Computer Vision, 7:1, 11-32, 1991.

[15] H. Tamura, S. Mori, and T. Yamawaki, “Textural features
corresponding to visual perception”, IEEE Trans. on Sys.,
Man and Cyb., SMC – 8, no. 6, pp. 460 – 472, 1978.

[16] J. K. Tugnait, “Estimation of Linear Parametric Models of
NonGaussian Discrete Random Fields with Application to
Texture Synthesis”, IEEE Transaction on Image
Processing, Vol. 3 No. 2, pp. 109 – 127, March 1994.

