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Abstract 
The TEXRET-System, a texture retrieval system based 

on soft-computing technologies is being developed. One of 
the main system features is synthesis of the requested 
textures when these are not found in the database, which 
allows a growing of the database. Missing textures are 
synthesized interactively using Markov Random Fields and 
interactive genetic algorithms. This article is centered on the 
texture synthesis of the textures  
 
1. Introduction 
 

Textures are homogeneous visual patterns that we 
perceive in natural and synthetic scenes. They are made of 
local micropatterns, repeated somehow, producing the 
sensation of uniformity. Texture perception plays an 
important role in human vision. It is used to detect and 
distinguish objects, to infer surface orientation and 
perspective, and to determine shape in 3D-scenes [9]. An 
interesting psychological observation is the fact that human 
beings are not able to describe textures clearly and 
objectively, but only subjectively by using a fuzzy 
characterization of them. On the other hand, with the new 
advances in communication and multimedia computing 
technologies, accessing mass amounts of digital information 
(image databases) is becoming a reality.  In this context, 
textures, due to their esthetical properties, play today an 
important role in the consumer-oriented design, marketing, 
selling and exchange of products and/or product 
information. For this reason, systems that allow the search 
and retrieval of textures in image databases are of increasing 
interest [12]. 

This work is part of a main research effort, whose aim 
is the construction of the TEXRET-System, a texture 
retrieval system based on soft-computing technologies. The 
TEXRET-System has the following features: (i) direct 
access from the Internet, (ii) texture queries using human-
like or fuzzy description of the textures, and (iii) synthesis 
or generation of the requested textures when these are not 
found in the database, which allows a growing of the 
database. This article is centered on this last feature of the 
system. 

Texture Synthesis has been an increasingly active 
research field in computer graphics. Many different 
approaches have been used to generate textures, but till now 
no fully successful generation model has been found. 
Among the most interesting models we can distinguish 

structural models, reaction-diffusion like models and 
probabilistic models. In this last group, Markov random 
fields stands out for their large versatility and performance. 
For this reason, in this work Markov random fields are 
chosen to implement the generation of textures. 

The article is structured as follows. The TEXRET-
System is outlined in section 2. In section 3 and 4, the 
system modules dealing with the synthesis of textures are 
described. Finally, in section 5 and 6 some preliminary 
results and conclusions are given. 
 
2. The TEXRET-System 
 

The TEXRET-System, whose block diagram is shown 
in figure 1, is made of the FI (Fuzzy Interface), the Q2TPT 
(Qualitative to Quantitative Textural Properties 
Transformation), the TR (Texture Retrieval), the TG 
(Texture Generation), and the EPA (Evolutionary Parameter 
Adjustment) modules.  

The on-line phase of the texture retrieval process works 
as follows: A human user makes a query of a texture using a 
subjective, linguistic or human-like texture description. The 
FI module enters this description into the system using a 
fuzzy representation of it. The Q2TPT module interprets the 
query and translates it into a quantitative texture description 
that is implemented using Tamura Descriptors [15]. This 
qualitative description is used by the TR module to search 
the texture in the database (see description in [12]). 

In the case that the texture is not found in the database, 
the user can choose the automatic generation of it. The TG 
module generates the texture using Markov Random Fields 
(MRF) [1] [2] [3] [4] [5] [6] [16]. The parameters of the 
MRF are calculated from the Tamura descriptors and then 
the textures are generated. As a result of this generation 
process a set of textures is presented to the user. If the user 
considers that one of the generated textures satisfy his 
query, the process finishes here. If not, the user enters into 
an iterative process. The iterative generation of the textures 
is implemented using interactive evolutionary computation 
(EPA module). 

It should be pointed out that the subjective or human-
like texture description that the system accepts, was 
determined by a psychological study in texture perception, 
performed by co-workers of the authors, and that will be 
presented elsewhere. 

In the next two sections the modules dealing with the 
generation of textures are presented. 
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Figure 1. Block Diagram of the Proposed System.  
 

3. The FI and Q2TPT Modules 
 
 The function of the Q2TPT module is to interpret 
subjective textural properties and to translate them into 
objective features. The FI module allows obtaining an 
internal representation of these subjective textural properties 
using fuzzy logic. The Q2TPT is implemented by using a 
Neuro-Fuzzy architecture, whose training phase is shown in 
Figure 2. 
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Figure 2. Training-phase block diagram of the Q2TPT module. 
 

3.1. Neuro-Fuzzy Network 
 
 The implemented architecture corresponds to a modified 
variant of the Khan network [8]. This network is based on a 
variation of the Multilayer Back-Propagation Network 
(MBPN). In the original description it consists of seven 
layers, which also do fuzzification and rule approximation. 
In the modified variant, the product-sums of the MBPN 
formulas are replaced by multiplications and the learning 
rule is modified appropriately (see a detailed description in 
[9]). 
 

3.2. FE (Features Extraction)  
 

As it can be seen in Figure 2, the extraction of Color-
Textural Features (CTF) from textures (textured images) is a 
fundamental step in the training of the Q2TPT module, and 
also in the construction of the texture database. This process 
is performed by the FE module. The features extraction 
process works as following (see block diagram in figure 3): 
- First, the input texture is transformed from its original 

RGB color space representation into a HSL (Hue-
Saturation-Luminosity) color space representation by 

the R2H (RGB to HSL) module. This transformation is 
performed because the representation of the colors in 
the RGB space is quite adapted for monitors but not for 
human beings, like the HSL. 

- Then, Color (CF) and Textural Features (TF) are 
extracted from the HSL images (TH, TS and TL) by the 
CFE (Color Features Extraction) and TFE (Textural 
Features Extraction) modules. 

- Finally, both of them, Color and Textural Features, are 
fused by the FF (Features Fusion) Module. 
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Figure 3. Block diagram of the FE. 

 
3.2.1 CFE Module 
 

This module is implemented by using color histograms 
of the Hue and Saturation components of the HSL texture 
representation (TH and TS). From each component 
histogram, the mean and the standard deviation values are 
taken as color features. Color histograms are chosen because 
they are invariant to translations and rotations about the 
viewing axis, and they change only slowly under 
modifications of angle of view, changes in scale, and 
occlusion [14]. 
 
3.2.2 TFE Module 
 

This module is implemented by using modified 
Tamura Features [15], which correspond to standard 
features for texture description. We used all six Tamura 
Features, coarseness, directionality, contrast, line-likeness, 
regularity and roughness, but we modified the calculation 
process of first three ones.  
 The calculation of coarseness is performed by using 
the Minimal Binary Representation [10] and the 



Morphological Distance Transformation. On the calculation 
of the directionality and line-likeness features, we used the 
original method of Tamura but we changed the gradient he 
used by a fuzzy definition of the gradient [11]. 
 
3.2.3 FF Module 
 

While some color features are useful features for texture 
search, other color features influence the psychological 
evidence of textural features. For example, the subjective 
impression of contrast is influenced by background color. 
Contrasts on blue or green backgrounds appear to be 
different, even if the contrasts measured from the intensity 
image are equal. A useful technique for feature extraction is 
to extract or synthesize new features from the whole set of 
color and textural features. In this case, a weighted-sum 
approach is not sufficient due to the fact that textural 
features are differently influenced by color information. For 
this reason, this module is implemented using the fuzzy 
integral [13]. 
 
4. The TG and EPA Modules 
4.1. TG (Texture Generation) 
 

Texture Generation has been an active research area in 
computer graphics. Among many generation methods, as for 
example structural and reaction-diffusion-like ones, methods 
considering textures as samples from probabilistic 
distributions are of increasing interest. By determining the 
form of these distributions (i.e. the model), textures can be 
generated. The performance of the methods depends on the 
structure of the probabilistic density estimator being used. In 
this context, Markov Random Fields and autoregressive 
models have been successfully used to the generation of 
textures. For this reason, these methods are chosen to 
implement the TG module. Nevertheless, at the moment the 
authors are testing high-order statistical methods to improve 
the generation results. All mentioned methods are briefly 
described in the following subsections. 
 
4.1.1. Markov Random Fields 
 

The study of Markov random fields has had a long 
history, beginning with studies on ferromagnetism at the 
beginning of the last century. The model has been applied to 
the case of binary or Gaussian variables on a lattice. 
Extensions to the case of variables that have integer ranges, 
together with the use of estimation procedures, allow the 
application of the Markov random field to texture modeling. 
The following formulation has been taken from Cross and 
Jain [3]. 
 
Let be the pixel value at a point  on a N×N 
lattice L. For simplicity let use  where 

. 
 

Definition 1: The point j is said to be a neighbor of the point 
i if  
depends on . It should be pointed out that this 
definition does not imply that the neighbors of a point are 
necessarily close in terms of distance, although this is the 
usual case. 

 
Definition 2: A Markov random field (MRF) is a joint 
probability density on the set of all possible X of the lattice 
L, subject to the following conditions: 
1) Positivity:  for all X. 
2) Markovianity: 

 
3) Homogeneity: depends only on 

the configuration of neighbors and is translation 
invariant. 

In most cases, we are interested in the models where the 
point i is a neighbor of the point j if i is close to j. 
Nevertheless, the influence of the neighborhood depends on 
the probability function model that has been chosen.  
 
Definition 3: The order of a Markov random field process 
(O(N)) on a lattice is the largest value of i such that 

 is nonzero ( parameters of the 
Markov model). 
 
Definition 4: A Markov random field is isotropic at order i 
if . Otherwise, it is said to be anisotropic at 
order i. 

Autobinomial-MRF Model 

In this model, the probability of a point  having a 
gray level k is binomial, with parameter T determined by its 
neighbors : 

    (1) 

 
where a first-order model has the form: 

  (2) 
 
and a second-order model the form: 

  (3) 
 
Additional high-order terms can be obtained by extending 
the orders in a similar way beyond those shown in figure 4. 

Gaussian-MRF Model 

In this case, pixel gray levels have a joint Gaussian 
distributions and correlation controlled by a number of 
parameters representing the statistical dependence of a pixel 
value on the pixel value in a symmetric neighborhood. The 
probability density function can be written as follows: 
 



p(X(i) | X(i + r),r ∈N) =  

1
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Figure 4. Neighbors of the point X. 

4.1.2. Autoregressive-Model 

 
This is another statistical approach for texture modeling. 

Autoregressive-models can be either causal or non-causal 
[2]. Both of them consider that the gray level X(i,j) at the 
pixel (i, j) is a linear combination of the gray levels at the 
neighborhood (N), and additive white noise which can have 
an arbitrary density of probability. Specific restrictions on 
the neighbor set N yield familiar representations in the 
image processing literature. For instance, the "causal" 
models are obtained when the gray level of the pixel (i, j) 
consider the terms “before” this pixel, i. e., the "earlier" 
values only. As an example, the work of Hering [7] 
considers the following dependence (see figure 5): 
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Figure 5. Neighborhood considered in Hering's model [7]. 
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Figure 6. Arbitrary neighborhood for causal Autoregressive–
Models. 

 
This model can be extended by considering more pixels, 

like in the following formula: 
g(i, j ) =

σ(i, j) + a(i − k, j − l) ⋅ g(i − k, j − l)
l=Ll

Lr

∑
k= 0

Nk

∑
 (6) 

where the neighborhood N is show in the figure 6. 

4.1.3. Other Statistical Models  

The models that had been shown has concentrated on 
exploitation of only second-order statistics of the data either 
explicitly by restricting attention to correlation properties of 
the random field, or implicitly by assuming that the random 

field is Gaussian. A consequence of this is that the impulse 
response of the underlying parametric model must possess 
certain symmetry (such a “symmetric non-causality”), in 
order to achieve parameter identifiability. 

Recently has been interest in exploiting the high–order 
cumulative statistics of the random field, in addition to or in 
lieu of the usual second–order statistics. In [16] the authors 
develop a method that exploits both the second–order and 
the third–order correlations of the observed random field. 
The basic assumption is that the observed random field has 
been generated by driving 2D–ARMA (Autoregressive 
Moving Average) model by an i.i.d. non-gaussian sequence. 
They presented and analyzed a new family of inverse filter 
criteria for consistent estimation of the parameters of a 2D–
ARMA model (with minimum phase or mixed phase, causal 
or non-causal) of a non-gaussian random field. The criteria 
are potentially useful for image representation and analysis, 
deconvolution, inverse as well as direct system modeling, 
image (texture) classification and hypothesis testing. 
One major disadvantage of MRFs is that, in general, an 
explicit form of the joint probability of the random variables 
describing the model is not obtainable. However, a popular 
subclass of MRFs, called Markov Mesh Models (MMMs), 
allows the explicit description of the joint probability in 
terms of spatially local conditional probabilities. In [4] it is 
shown how Partially-Ordered Markov Models (POMMs) 
are a generalization of MMMs and it is demonstrated the 
versatility of POMMs to texture synthesis and pattern 
recognition in imaging. 

 
Table 1. Models and their parameters. 
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Name of  
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4.2. EPA (Evolutionary Parameter Adjustment) 
 

The EPA (Evolutionary Parameter Adjustment) 
module allows the user to perform an interactive adjustment 
of the texture-generation model parameters by using 
(interactive) genetic algorithms. Interactive genetic 
algorithms can be defined as genetic algorithms that do not 
use a standard fitness function but a user’s choice as fitness 
criterion. 

In the here proposed system (see block diagram in 
figure 1) a set of generated textures are presented to the user 
at each iteration. The user selects a subset of textures that 
better achieve his requirements. This information is used to 
adjust the parameters of the texture-generation model. The 
system and the user iterate until the required texture is 
generated. 



As usual, the parameters of the model are packed into a 
chromosome (array), whose size depend on the texture-
generation model being used (see table 1). As an example, 
when the Gaussian model is being used, the chromosome 
looks like the one shown in figure 7. 

 
   .....  

Figure 7. The chromosome structure corresponding to the Gaussian 
MRF model, with a neighborhood order of 4. 

 
All real-valued parameters are encoded into binary 

values using interval numbering. From such bitstrings, 20 
textures are synthesized and presented to the user. The user, 
if not satisfied by any of the presented textures, can select 
the five textures that come most close to his needs. This is 
the only interactive part in the evolutionary procedure, and 
replaces the usual fitness-proportionate selection. By 
selecting the texture images, the corresponding bitstrings are 
selected as well. From these five bitstrings, 20 new 
bitstrings are created by crossover and mutation operators. 
For crossover, two of the five bitstrings are randomly 
selected, and one-point crossover is performed. The new 
bitstrings are mutated as well, by flipping their bits with a 
low probability (<0.01). Then, the 20 new texture images 
are generated and presented to the user, who again could 
either stop or select the best five textures. The whole 
procedure is repeated as long as the user wishes. 

For user convenience, a reject feature is also offered, 
which allows to drop the newly created bitstrings and to 
restart the operations for creating the next generation. 
 
5. Preliminary Results 
 

The texture images shown in figure 8 were generated 
using the Metropolis Algorithm [3], which corresponds to a 
very known implementation of autobinomial-MRF. As it 
can be seen from the images, the results are very good for 
some kind of textures like lines and clouds. Nevertheless, 
this algorithm is relative slow, compare with the others, 
because it need to perform a big number of iterations before 
reaching a stable texture image. On the other hand, the 
algorithm performance depends on the number of graylevels 
of the image and the calculations should be done with a 
variable internal precision of the numbers (256 to 1024 bits 
in floating point representation). 

The texture images shown in figure 9 were generated 
using the Gaussian-MRF algorithm proposed by Chellappa 
[1], which has some advantages relatives to the Metropolis 
Algorithm. The calculation of the texture image is 
performed in only one iteration, the size of the image has 
only a small importance in the processing time, and the 
algorithm is independent of the number of graylevels of the 
image. Additionally, as it can be seen in figure 9, the 
generated images show a greater variability than the 
generated using the autobinomial model. 

The images generated with the causal autoregressive 
model (see figure 10) have a similar characteristic: all of 
them are like lines, i.e. all images have a similar linear 

pattern. The values of the neighborhood parameters allow 
changing the orientation of the image and the medium gray 
level, but all the textures are rather similar. 
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Figure 8. Textures generated using the Metropolis Algorithm. The 
size of the images is 64 x 64. 
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Figure 9. Textures generated using the Chellappa algorithm. The 

number of graylevels is 256 in all images. 
 

  

   
Figure 10. Texture Generated using the Autoregressive model. In 

each case the order of the neighborhood is 2. 
 
Just to compare the obtained results, in figure 11 are 

shown some textures generated using a structural approach 
combined with a random placement of the basic patterns. 
The textures were generated using the TextureScape 
software. 
 



   

   
Figure 11. Textures generated using a structural approach. 

 
It should be mentioned that the described texture 

generation methods greatly differ in their computational 
effort to generate a texture image, ranging from a couple of 
seconds to a few minutes, which has an influence on the 
comfortability of the whole framework. 

 
6. Conclusions 

 
Providing the facility of a user-friendly texture retrieval 

system comes out to be a very complex task. In this paper, a 
framework was presented, which is fully specified for 
solving all of the subtasks related to the retrieval of textures. 

One of the most essential points is to relate literal texture 
descriptions to existing texture images. Two strategies are 
employed in the presented TEXRET system. The first 
strategy is to use a Neuro-Fuzzy network for training a 
mapping from literal texture descriptions to texture features. 
Then, the user query is translated into literal features, the 
corresponding textural features are computed and used for 
retrieving the texture images from a database. However, the 
texture database might be too small for finding a 
corresponding image. This is, when the second strategy 
comes into play. Missing textures are synthesized by an 
interactive genetic algorithm. When the user has 
interactively found his texture, the database can be 
expanded, and a new pair of training data is supplied as 
well. From this, even a small-at-the-beginning texture 
database can grow from its very beginning on. 

Approaches for texture synthesis were presented as well. 
Regarding the fact that such approaches are more or less the 
"heart" of the generation part of the TEXRET system, the 
set of investigated approaches presented so far is not 
satisfying. Either the computational effort is high, or the 
variability among the generated textures is low. In future 
work, this set has to be expanded by non-Gaussian random 
field models, POMM models and structural approaches. In 
particular, for the last case a more straightforward inclusion 
of coloring is expected. 

In this moment the authors are working in the final 
integration of all the modules and in the testing of the whole 
system. 
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