
No-Free-Lunch Theorems and the Diversity of
Algorithms

Mario Köppen
Dept. of Security and Inspection Technologies

Fraunhofer IPK
Pascalstr. 8-9, 10587 Berlin, Germany

Email: mario.koeppen@ipk.fhg.de

Abstract— In this paper, the No-Free-Lunch theorem is ex-
tended to subsets of functions. It is shown that for algorithm
a performing better on a set of functions than algorithm b,
there has to be another subset of functions on whichb performs
better in average than a. To achieve a performance evaluation
for an algorithm, it is not sufficient to demonstrate its better
performance on a given set of functions. Instead of this, the
diversity of an algorithm will be considered in this paper in more
detail. The total number of possible algorithms will be computed
and compared with the number of algorithm instances that a
random search or a population-based algorithm can have. It
comes out that the number of different random searches is very
small in comparison to the total number of algorithms. On the
other hand, population-based algorithms are principally able to
cover the set of all possible algorithms. The smaller variance of
algorithm performance, measured by the repeated application of
the algorithm under different settings on different random sets
of functions, comes out to be a value reflecting the higher count
of instances.

I. I NTRODUCTION

The No-Free-Lunch theorem [9][10] states that without any
structural assumption on a search or optimization problem,
no algorithm can perform better than blind search. Several
discussions on this theorem were provided in the last decade,
including discussion of information theoretic aspects (e.g. [2]),
alternate proofs and notations [6][4], and extension to other
problem classes (as multi-objective optimization [1][5]). The
general viewpoint taken by the proof of this theorem is to
average the performance overall possible quality functions.
The quality functions are assumed to be uniformly distributed.
Once the averaging is performed over a subset of such func-
tions, this theorem will only hold if and only if this subset
is closed under permutation (this is the so-called Generalized
No-Free-Lunch theorem [7]). Recent discussion claimed that
since the majority of function subsets is not closed under
permutation, the No-Free-Lunch theorem does not seem to
have much practical importance [3]. The averaging over all
functions involves a vast majority of functions that will never
appear in a practical optimization scenario (an approach that
was used e.g. to point out the usability of gray encoding in
[8]). However, in this paper we will continue in this matter
and show that the Generalized No-Free-Lunch theorem gives
raise to a further theorem, stating the equal average of average
performances over all subsets of functions that are not closed
under permutation. In this context, demonstrating the better

performance of an algorithma compared to algorithmb for
a set of functions is doing nothing more than showing the
existence of another set of functions, for whichb will perform
better thana. Nothing more is known about this other function
set than its existence, as long as the function set is assumed to
be uniformly distributed, and alternate viewpoints are not taken
into account (as the possible elimination of high complexity
functions). However, there is another aspect on algorithm
performance that has not been considered so far in more
detail: the diversity of an algorithm. So, by speaking about an
algorithm like ”genetic algorithm”, we usually do not refer to a
single algorithm but to a distribution of algorithms, according
to different configurations, runtime parameter settings and
pseudo-random number sequences. The question, which will
be studied in this paper and considered an alternate viewpoint
on algorithm performance is: how many different algorithms
can be provided by such an algorithm class, and how does this
number behave with respect to the total number of possible
algorithms? The answer gives us a ranking for algorithms
according to their smaller or larger number of instances. It
comes out that by such a ranking, random search is worst,
while evolutionary approaches are (at least theoretically) able
to provideany search sequence that is possible. To see this,
we are going to use the framework of the No-Free-Lunch
theorem itself to compute the total number of algorithms and
the number of instances that a certain algorithm can have.

Section II of the paper states and proves the No-Free-
Lunch theorem for sets of functions. Then, in section III, we
derive the total number of algorithm instances and prove the
correctness of this derivation. The alternate viewpoint on the
number of algorithm instances is introduced and discussed in
section IV, followed by a discussion of its relation to algorithm
performance variance in section V. Section V also provides a
procedure to estimate the number of instances by using the
variance of algorithm performance.

II. N O-FREE-LUNCH THEOREMS FORSETS OFFUNCTIONS

The following notation will be used. BeX andY two finite
sets, andfi a mapping fromX to Y . There areN = |Y ||X|

such mappings, thusi = 1, . . . , N .
Now we consider a deterministic, non-repeating algorithm

a. Applying algorithma for m steps to a functionf , it samples
an ordered set(y1, y2, . . . , ym) of function values off , and

a performance measurep assigns a performance value to this
set of function values. We will indicate this performance value
aspa,m(fi) in the following.

With Π we indicate a permutation of the numbers
(1, 2, . . . , |X|) and we write

Π(1, 2, . . . , |X|) = (Π(1),Π(2), . . . ,Π(|X|))
Now we define the permutation of a functionf as follows:
whenf mapsxk to yk, thenΠ(f) mapsxΠ(k) to yk.

Further we specify some sets. The symbolsa denotes the
set ofall functionsf mappingX to Y . With sn we denote a
subset ofsa with exactlyn elementssn = (f1, f2, . . . , fn).

Definition 1. The setsn is closed under permutation (c.u.p.)
iff

∀Π(f ∈ sn → Π(f) ∈ sn)

The performance measurep is extended to sets of functions:

pa,m(sn) =
1
n

n∑
i=1

pa,m(fi)

which stands for the average performance of algorithma after
m steps on the setsn of n functions.

The symbolTnl denotes a set ofl setssn, i.e. subsets of
sa of n elements. A setTnl is said to be c.u.p. if and only if
each element ofTnl is c.u.p. and thetotal performance of a
on Tnl is given by

pa,m(Tnl) =
∑

sn∈Tnl

pa,m(sn)

(note that the total performance isnot divided by l).
With Tna we denote the set ofall subsets ofsa of sizen,

with Tnc the set of all subsets ofsa of sizen that are c.u.p.
and withTnn the set of all subsets ofsa of sizen that are not
c.u.p. (thus havingTna = Tnc + Tnn).

Now we can formulate the Generalized No-Free-Lunch
Theorem [7] as:

Theorem 1. We havepa,m(sn) = pb,m(sn) for all algorithms
a and b and each number of stepsm ≤ |X| if and only if sn

is c.u.p.

This directly gives that fromTnl being c.u.p. it follows that
pa,m(Tnl) = pb,m(Tnl) and as a special case:

Lemma 1. The total performance of any two algorithmsa
and b and any number of stepsm ≤ |X| on the set of all
subsets ofsa that are c.u.p. is equal.

pa,m(Tnc) = pb,m(Tnc)

Now we consider the total performance on the set ofall
subsets of sizen of sa and show that this also does not depend
on the algorithm:

pa,m(Tna) =
∑
sn

pa,m(sn)

=
∑
sn

1
n

∑
f∈sn

pa,m(f)

In this sum, each termpa,m(f) appears
(
N−1
n−1

)
times, since

there are exactly
(
N−1
n−1

)
subsets ofsa of sizen that containf

(each of these subsets is the set{f} unified with a subset of
(n − 1) elements ofsa \ {f}, which has(N − 1) elements).
So, we may continue

pa,m(Tna) =
1
n

(
N − 1
n− 1

) ∑
f

pa,m(f)

=
N

n

(
N − 1
n− 1

)
pa,m(sa)

The setsa of all functions is c.u.p., thus

pa,m(sa) = pb,m(sa)

which givespa,m(Tna) = pb,m(Tna) in consequence:

Lemma 2. The total performance of any two algorithmsa
and b and any number of stepsm ≤ |X| on the set of all
subsets ofsa is equal.

pa,m(Tna) = pb,m(Tna)

Finally we consider the set of all subsets ofsa that are not
c.u.p. Using the two lemmas, we get for any two algorithms
a andb and any number of stepsm ≤ |X|:

pa,m(Tnn) = pa,m(Tna)− pa,m(Tnc)
= pb,m(Tna)− pb,m(Tnc)
= pb,m(Tnn)

So, for anyn the total performance on all sets ofn functions
that are not c.u.p. does not depend on the algorithm. Finally,
if K is the number of all subsets ofsa that are not c.u.p. we
get the No Free Lunch Theorems for subsets of functions:

Theorem 2. For any two algorithmsa and b and any number
of stepsm ≤ |X| it holds

1
K

N∑
i=1

pa,m(Tin) =
1
K

N∑
i=1

pb,m(Tin) (1)

The average of the average performances of an algorithma
over all subsets of functions that are not closed under permu-
tation does not depend on the algorithma. The alternative
formulation is that if an algorithma shows better average
performance on a set of functions than an algorithmb (this
can only happen if this set of functions is not closed under
permutation) than nothing more was shown as the existence of
another set of functions (not necessarily of same size, but not
closed under permutation) for whichb will show better average
performance than algorithma. In no way, the ”superiority” of
a has been demonstrated.

To make the concept behind the proof more clear, we may
consider an example. We choose forX the setX = (x1, x2)
and forY the setY = (0, 1). With fij (i, j ∈ Y) we denote
the function that mapsx1 to i andx2 to j (e.g.f01 mapsx1

to 0 andx2 to 1).

There are 22 = 4 possible functions f : sa =
(f00, f01, f10, f11). This set has 16 subsets. Out of these
subsets, one subset has 0 elements, 4 subsets have one element,
6 subsets have two elements, 4 subsets have 3 elements and
one subset has four elements.

For |X| = 2 we have two permutations of(1, 2): Π1 =
(1, 2) and Π2 = (2, 1). For example,Π2(f01) = f10 and
Π1(f00) = Π2(f00) = f00.

There are 8 subsets closed under permutation:∅, (f00),
(f11), (f00, f11), (f01, f10), (f00, f01, f10), (f01, f10, f11) and
(f00, f01, f10, f11). The remaining 8 subsets are not closed un-
der permutation:(f01), (f10), (f00, f01), (f00, f10), (f01, f11),
(f10, f11), (f00, f01, f11) and(f00, f10, f11). For example, for
the set(f10, f11) the permutationΠ2 transformsf10 into f01

but f01 is not an element of the set.
For simplicity we write p(f) instead ofpa,m(f) in the

following. So, the average of the average performances of
algorithm a after m steps over all subsets of functions that
are not closed under permutation is given by the expression:

P =
1
8
×

[
p(f01) + p(f10) +

+
1
2
(
p(f00) + p(f01)

)
+

1
2
(
p(f00) + p(f10)

)
+

+
1
2
(
p(f01) + p(f11)

)
+

1
2
(
p(f10) + p(f11)

)
+

+
1
3
(
p(f00) + p(f01) + p(f11)

)
+

1
3
(
p(f00) +

+p(f10) + p(f11)
)]

Now the generalized No Free Lunch theorems gives that
the average performances on subsets that are closed under
permutations are constant values with respect to the algorithm
(but they depend onm, of course). This gives the equations:

p(f00) = c1

p(f01) + p(f10) = c2

p(f11) = c3

with c1, c2 andc3 the corresponding constants. We use this to
resort the terms and evaluate the expression forP :

8P = c2 + c1 +
1
2

c2 + c3 +
1
2

c2 +
2
3

c1 +
2
3

c3 +
1
3

c2

Thus it can be easily seen that the expression forP will also
not depend on the algorithm.

III. N UMBER OF ALGORITHMS

The foregoing section demonstrated that the testing of
algorithms by applying them onto a set of given functions
(usually called a benchmark) does not prove so much about
the superiority of an algorithm. We are going to introduce a
different viewpoint on algorithm performance here, related to
the diversity of an algorithm.

The framework of the NFL theorems allows for the com-
putation of the number of different algorithms for given
set sizes|X| and |Y |. Assume that we have indexed all

possible mappingsf : X → Y by f1, f2, . . . , fN with
N = |Y ||X|. The setX = {x1, x2, . . . , xn} with n = |X|
is the domain of allfi and Y = {y1, y2, . . . , y|Y |} the
codomain. Related to this (fixed) indexing, thek-th function
column fck is the set of all function values, to whichxk

is mapped:fck = {f1(xk), f2(xk), . . . , fN (xk)}. The set
of all function values of a functionfi will be denoted by
y(fi) = {fi(x1), fi(x2), . . . , fi(xn)}.

With a we denote a deterministic, non-repeating algorithm,
which is applicable to anyfi mappingX to Y . The specifica-
tion is given by a suite of mappings from partial sampling
sequences tox-values not sampled so far. In more detail:
initially, an algorithm, if applied to a functionf , starts with
the (deterministic) choice of an elementxa1 of X. Then,f
provides the function valueya1 = f(xa1). Thus, algorithm
a initially builds the sampling listS1 = ((xa1 , ya1)) and
computes the next sampling valuexa2 6= xa1 from S1 by
xa2 = a[S1]. With ya2 = f(xa2) we can extend the sampling
list S2 = S1+(xa2 , ya2) with ”+” standing for list appending.
The next sampling point is a function ofS2, which is given by
the specification of the algorithm:xa3 = a[S2]. In the(k+1)-
th step (k < N) of the algorithm, we append to the partial sam-
pling list Sk = ((xa1 , ya1), . . . , (xak

, yak
)) the next sampling

point xak+1 , derived by the algorithm fromSk, and which
is different from allxai with i = 1, 2, . . . , k evaluated so far,
and the corresponding function valueyak+1 = f(xak+1). Once
k = N − 1, the algorithm terminates in the next step. Now,
the set ofy values{ya1 , ya2 , . . . , yan

} has to be a permutation
of the function values{f(x1), f(x2), . . . , f(xn)} of f . In that
sense, an algorithm can be specified by stepwise constructing
a permutation of the (unknown) function values. We denote
the ordered set of function values sampled by the algorithma
when applied tof with ya(f).

An important fact is that for different functionsfa and
fb, these permutations have to be different. Assume that an
algorithm a samples they-values of two functionsf in the
same order. By induction, we can show that in such a case the
functions are equal (among other, see [5] for the proof).

Lemma 3. For any algorithma and any two functionsfa and
fb ya(fa) = ya(fb) iff fa = fb.

This lemma is a precursor for the Generalized No Free Lunch
Theorem. Thus, once an algorithma is applied to all N
functionsfi (i = 1, . . . , N) step by step, the ordered set of
sampling sequences{ya(f1), . . . , ya(fn)} is a permutation of
the ordered set of function mappings

Y/X = {y(f1), y(f2), . . . , y(fN)}.

It comes out that an algorithm is fully specified either

• by the choice ofxa1 and the complete set of mappings
xak+1 = a[Sk] for k = 2, ..., n− 1, or

• by the permutation ofY/X.

Using the first specification, we can compute the total number
of different algorithms, which can be applied to all mappings
fi : X → Y with 1 ≤ i ≤ N . For doing so, we simply

follow a scheme of stepwise assignments. Consider the case
X = {x1, x2, x3, x4} andY = {0, 1} and the scheme:

xa1 xa21 xa31 xa41

xa42

xa32 xa43

xa44

xa22 xa33 xa45

xa46

xa34 xa47

xa48

In the first step, an algorithm has to specify an indexa1. Then,
the value off(xa1) can be either 0 or 1. In the second step,
the algorithm selects one of the three remainingx-values,
depending on the value off(xa1). If it is 0, the algorithm
selects as secondx-value xa21 , if it is 1 then xa22 . In the
third step, the algorithma selects one of the two remainingx-
values. Now, there are the four cases that the first two function
values sampled were either(0, 0), (0, 1), (1, 0) or (1, 1). In
each of these four cases, the algorithm may select a different
x-value. Then, for the fourth step, only onex-value remains,
so the selection is unique.

So, in this case we can completely specify an algorithma
by providing the 7 indicesa1, a21, a22, a31, a32, a33 anda34.
For a1 there are four choices, since|X| = 4. For a21 as well
as for a22 we can choose one out of the three remainingx-
values (including the case thata21 = a22), giving 3 · 3 = 9
possibilities, and finally24 possibilities for the third step. So,
the total number of assignments is4 · 9 · 16 = 576.

This scheme can be easily extended to the general case. In
the first step, we haven = |X| choices for the indexa1 of the
first x-value. According to the|Y | possible values off(xa1)
there are|Y | independent cases, for which a second indexa2

from the(|X| − 1) remaining indices has to be selected. This
gives (|X| − 1)|Y | choices for the second step. For thek-th
step, one has|Y |k−1 cases, and in each case one can choose
one from the remaining(|X| − (k − 1)) indices ofx-values.
So, we may formulate the following theorem:

Theorem 3. The number of different algorithms that can be
applied to all functions mapping a finite setX to a finite set
Y is given by

Na =
|X|−1∏
k=0

(|X| − k)(|Y |k) . (2)

Proof. That equation 2 is an upper bound for the number of
algorithms has been demonstrated in the foregoing paragraph.
It remains to show that any two different assignments of
indices to

a1, a21, . . . , aa|Y |, a31, . . . , a3|Y |2 , . . . , a|X|1, . . . , a|X||Y ||X|−1

will indeed give two different permutations ofY/X, hence
two different algorithms.

For showing this, consider the firstk elementsΠ =
(π1, π2, . . . , πk) of a permutation of(x1, x2, . . . , xn) and a set

(y1, y2, . . . , yk) of k elements ofY . Now, i andj shall be two
different of the remaining indices, i.e.xi /∈ Π, xj /∈ Π, i 6= j
(thereforek < n− 1).

Now consider the set

M = {l | fl(π1) = y1, fl(π2) = y2, . . . , fl(πk) = yk}

(with 1 ≤ l ≤ N) and for the indexi and a fixedya ∈ Y its
subset

M1 = {l | l ∈ M ∧ fl(xi) = ya}.

The setM1 has exactly|Y ||X|−(k+1) elementsl, and for all
of them isfl(xi) = ya per definition.

Next, sincek ≤ n− 1, we consider the set

M2 = {l | fl(π1) = y1, . . . , fl(πk) = yk, fl(xi) = ya}

(again1 ≤ l ≤ N) Obviously M1 = M2, but M2 contains
only |Y ||X|−(k+2) elementsl, for which fl(xj) = ya.

Defining for any index setI the operatorCi with

Ci(I) = {fj(xi) | j ∈ I}

then this meansCi(M1) 6= Cj(M2) and usingM2 = M1 ⊆
M it follows

Ci(M) 6= Cj(M)

However, while specifying the algorithma we had to assign
the next testing pointxi for any suchM , so different as-
signments fori and M will give different (partial) outcomes
Ci(M). Thus in general, different assignments will specify
different algorithms and the number of algorithms equals the
number of possible assignments.

To illustrate the proof, we take as an exampleX =
{x1, x2, x3} and Y = {0, 1}, thus having eight possible
functions that are listed below.

l x1 x2 x3

1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1

The table shows the casek = 1, π1 = x2, y1 = 1 and i =
1, j = 3. The setM of all indices l for which fl(x2) = 1 is
M = {3, 4, 7, 8}. Then,M1 is the subset of indicesl of M
for which alsofl(x1) = 1 holds. This is the setM1 = {7, 8}.
The setM2 is the set of indicesl for which fl(x2) = 1 and
fl(x1) = 1, which is also the setM2 = {7, 8}. As we can
see, the setC1(M1) = {1, 1} contains two times the value 1
(2 = |Y ||X|−(k+1) = 21) , while the setC3(M2) = {0, 1}
only contains one times the value 1 (1 = |Y ||X|−(k+2) = 20).
So, any algorithm specified by selectingx2 at first, and then

x1 in casef(x2) = 1 will have a different outcome ofy-values
than an algorithm, which selectsx2 first and thenx3 in case
f(x2) = 1. The proof basically generalizes this approach.

IV. ON ALGORITHM INSTANCES

In the foregoing section, we computed the numberNa

of different samplings of algorithms, when applied to all
possible functionsf . Now, if we consider a particular algo-
rithm, usually such an algorithm can provide more than one
of such samplings, depending on its configuration and run-
time parameters. We will refer to such different samplings
as algorithm instancesand are looking for the number of
instances that a given algorithm can have, in comparison to
the maximum numberNa of possible instances.

In particular we are considering the class of algorithms,
which are using pseudo-random numbers to perform their
internal computations. Among them we find random search,
algorithms using mutation operation (like hill-climbing) and
algorithms using recombination (or crossover) operations, like
evolutionary algorithms. Such algorithms can be modeled in
similarity to the concept of a very simplified Turing machine:
assume that there is a linear tape with a sequence of numbers
(referring to configuration parameters, runtime parameters or
pseudo-random numbers). The tape is read out and moved
forward each time the algorithm needs one or more pseudo-
random numbers to specify one of its operations (e.g. to
apply mutation onto a bitstring). Thus it will be said that an
algorithm performs an operation ”randomly”. If we consider
different tapes, the application of the algorithm may achieve
different instances, and if there is a distribution function for
the values on the tape, there will be a distribution function for
the algorithm instances as well.

We may reformulate our question about the number of
algorithm instances by using a design viewpoint: if we want
to achieve a given instance of an algorithm, can we provide
an appropriate sequence of numbers on the tape?

The simplest case here is the random search: in the decision
rule xk+1 = a[Sk], the value ofa will only depend onk and
never onyk. This means, a random search is not directed by the
y-values sampled so far. So, it can be easily seen that random
search has exactlyn! instances, each of which corresponds
to a permutation of the sample points{x1, x2, . . . , xn}. This
is obviously a small number, if compared to the maximum
numberNa of possible instances. So, the question is if we
can obtain a larger number of instances or even all, and the
positive answer will come from the evolutionary approach.

To show this, we will consider the following model situa-
tion: given is a set of functions that has not been distinguish-
able so far by an algorithma for k steps, but for step(k +1),
for the first time we will get different results. We assume
f1 and f2 to be two such functions, i.e.Sk(f1) = Sk(f2),
thus followingxk+1|f1 = xk+1|f2 but f1(xk+1) 6= f2(xk+1).
So, if we want to have an algorithma to be able to provide
all possible instances, it is necessary that the algorithm has
to be able to decide on a differentxk+2 for any different
valuef(xk+1). The more different sample pointsxk+2 can be

selected bya out of the remainingx-values, the more instances
the algorithm will have.

We are considering the class ofpopulation-based algo-
rithms. Such algorithms maintain a varying set ofx-values
(the population) and base all decisions for the next sampling
point and on the next population on they-values of these
x-values and the pseudo-random numbers on the tape alone.
The problem of initializing such a population will be discussed
below.

For our model situation, afterk steps we have a population
of size l with elements(xa1 , xa2 , . . . , xal

). Since we are
considering a function set that was not distinguishable by the
algorithm so far, the algorithm will decide on the same next
sampling pointx̃ for all these functions as well. However,
we assumed to have twof1 and f2 in our function set with
f1(x̃) 6= f2(x̃). Altogether, there are|Y | possible values for
f(x̃).
Now we introduce three operators:

1) Selection: By using the next number(s) from the tape,
and the valuesf(xai

) andf(x̃), an index1 ≤ i ≤ l + 1
is computed and used to selectxai

, or x̃ in casei = l+1.
2) Mutation: Given anyxa, by using next number(s) from

the tape this sample point is transformed into any other
xb ∈ X.

3) Recombination: Given any pair ofx-valuesxa andxb,
by using next value(s) from the tape a valuexc is
assigned toxa andxb. In contrary to mutation, the set
of attainable valuesxc can be restricted (as e.g. the
crossover operation on two bitstrings can not result into
any bitstring).

Based on such operation, we consider two algorithms:hill
climbing (HC) as the iterated application of selection and
mutation, andevolutionary algorithm (EA) as the combination
of selection, selection, recombination and mutation1. Now, we
can discuss both algorithms to learn about their attainable
number of instances.

• Case HC: Here, the selection can only depend on the
value f(x̃), since everything else went equally so far
for two functions f1 and f2 and this will give one
out of min(|Y |, l + 1) different x-values (either one
from the population, or̃x, but not more than possible
function values off(x̃)). Then, mutation can transform
the selectedx-value into any otherx value (including the
avoidance of mutating into anyx-value that was sampled
already). Thus, an hill climbing algorithm can maximally
decide on one ofl +1 possible choices for the next step,
but there are in general|Y | possible cases to consider.
This means, once|Y | > l + 1, an hill climber can not
provide all algorithm instances anymore.

• Case EA: For two selections, there aremin2(|Y |, (l+1))
possible results, each of which may give a different next
sample point after applying the recombination operation.
However, not all possiblex-values can be obtained this

1Yes, in such a framework we ignore the fitness function completely. Here,
fitness has to be considered a technical means to perform the operations.

way, so a further mutation is needed to transform them
into any other desired sample point (again excluding
repetitions). It follows that a necessary condition for
an EA to provide all possible algorithm instances is
|Y | ≤ (l+1)2. As we can see, this is a smaller effort than
for the case of an HC, who needs at least a population
of size |Y | − 1 to achieve the same goal.

To obtain a sufficient criteria, we have to consider the
initialization of an algorithm: the standard approach is to
perform a random search (RS) forl steps. It can be easily
seen that this procedure makes some algorithm instances
inaccessible by the algorithm, and, for large sizes of|X| and
|Y |, the number of instances effectively vanishes against the
total number of algorithms. Instead of this, we may consider
a ”smart” diversity initialization (DI) to maintain a higher
diversity (despite of the fact that it does not seem to be useful
for HC or EA itself): select first element of the population
xa1 randomly, then make the selection of the next element
depending onf(xa1) and do the same for the next initial
populationx-values until population has grown to sizel. This
makes sure that we will not loose any sampling sequence at the
beginning. Once using DI and making sure that(l+1)2 ≥ |Y |,
an EA becomes able to provide (by chance, or by providing
the needed values on the tape)all possible instances (as well
as for an HC with(l + 1) ≥ |Y |)2.

So, we may conclude this section by providing a kind of
ranking among three famous algorithm classes according to
their number of different possible instances:

NRS � NHC ≤ NEA ≤ Na

From the foregoing discussion it can also be seen that
the ability of an algorithm to provide more instances can
be increased by a higher ”socialization” of the operators,
i.e. by using higher order operators than mutation (order 1)
or recombination (of order 2).

V. D ISCUSSION

Finally, we will shortly discuss the reasonable question:
Is it useful for an algorithm to have more instances than
another algorithm? To approach an answer here, we consider
all algorithm instancesai of a particular algorithma. Caused
by the distribution of its configuration parameters and pseudo-
random numbers, the algorithm will instantiate anyai with
a probabilitywi with

∑
i wi = 1. From the No-Free-Lunch

theorem, it can be easily seen that different values ofwi will
not have any influence of the performance ofa, even if it
is taken over all of its instances. However, the variance of
the performances can be different! Even more, the minimum
variance can only be achieved when allwi are equal. In case an
algorithm has a limited number of instances, it also achieves
its minimum variance when all instances are equally likely,
but any algorithm with more instances can achieve a smaller
variance. So, if we measure variance e.g. by the expression

2It has to be noted that for such a viewpoint the size of the population is
related to the size ofY and not the size ofX

σ = x̄2− x̄2, anda achieves a maximum ofk instances, then
minimum variance is

σmin =
1

k ·Na
− 1

Na

which is achieved iff allk probabilitieswi are equal to1/k.
The higherk, the smaller the minimum variance. Thus, by
comparing variances of algorithms we get, basically, the same
ranking as for the number of instances. While there is no
procedure to estimate the number of algorithm instances, the
variance of its performance can be estimated by repeated
application of the algorithm with random ”tapes” to a random
set of functions.
Some final remarks:

1) The No-Free-Lunch theorems points out the equal aver-
age performance of any algorithm, once applied to any
possible function. In a practical sense, it may be even of
interest to have an algorithm, which is coming close to
this average at all. If there is a smaller variance in the
algorithm outcome, it is more likely that the algorithm
is closer to this average. On the opposite, the ”worst”
algorithm, random search will have a high variance in
the results, with a few excellent results and lots of
failures. This is reflected by the variance measure.

2) The viewpoint used in this paper on discussing the
number of algorithm instances can be extended to other
algorithms. However, the use of pseudo-random num-
bers in algorithms like EA and HC comes out to be of
an advantage to be (at least theoretically) able to provide
a large number of instances.

3) An alternate performance measure for algorithms can
thus be described as follows: apply the algorithm under
varying setups and differing pseudo-random numbers,
each time on a random set of quality functions, and
get an estimate for the variance of the algorithm per-
formance. The fewer this variance, the ”better” the
algorithm (i.e. the higher the number of instances that
can be expected, or the more the algorithm is differing
from random search, or the more it is likely that the
algorithm can approach the average performance).

REFERENCES

[1] D. W. Corne and J. D. Knowles, ”No Free Lunch and Free Leftovers The-
orems for Multiobjective Optimization Problems” inEvolutionary Multi-
Criterion Optimization (EMO 2003) Second International Conference,
Faro, Portugal, April 2003, Proceedings, pp. 327-341, Springer LNCS,
2003.

[2] T. M. English, ”Optimization is Easy and Learning is Hard in the
Typical Function,” inProceedings of the 2000 Congress on Evolutionary
Computation (CEC 2000), A. Zalzala et al., Eds., La Jolla, CA, USA,
pp. 924-931, 2000.

[3] Ch. Igel and M. Toussaint, ”On Classes of Functions for which No Free
Lunch Results Hold,”Information Processing Letters 86, pp. 317-321,
2003.

[4] M. K öppen and D. W. Wolpert and W. G. Macready, ”Remarks on a
Recent Paper on the No Free Lunch Theorems,”IEEE Trans. Evol. Comp.,
vol. 5(3), pp. 296-296, 2000.

[5] M. K öppen, ”On the Benchmarking of Multiobjective Optimization
Algorithms,” in Knowledge-Based Intelligent Information Systems, 7th
Intl. Conference, KES2003, Oxford, UK, September 2003, V. Palade et
al., Eds., Proceedings, Springer LNAI 2773, pp. 379-385, 2003.

[6] N. J. Radcliffe and P. D. Surry, ”Fundamental Limitations on Search Al-
gorithms: Evolutionary Computing in Perspective,” inComputer Science
Today: Recent Trends and Development, J. van Leeuwen, Ed. LNCS vol.
1000, pp. 275-291, 1995.

[7] C. Schumacher and M. D. Vose and L. D. Whitley, ”The No Free Lunch
and Description Length,” inGenetic and Evolutionary Computation
Conference (GECCO 2001), L. Spector et al, Eds. San Francisco, CA,
2001.

[8] D. Whitley, ”A Free Lunch Proof for Gray versus Binary Encodings,”
in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 1999), W. Banzhaf et al., Eds., Orlando, FL, USA, pp. 726-733,
1999.

[9] D. W. Wolpert and W. G. Macready, ”No Free Lunch Theorems for
Search,”Technical Report SFI-TR-05-010, Santa Fe Institute, Santa Fe,
NM, USA, 1995.

[10] D. W. Wolpert and W. G. Macready, ”No Free Lunch Theorems for
Optimization,” IEEE Trans. Evol. Comp., vol. 1(1), pp. 67-82, 1997.

