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Abstract

The expedience of today’s image-processing applications is not any longer based on the perfor-
mance of a single algorithm alone. These systems appear to be complex frameworks with a lot of
subtasks that are solved by specific algorithms, adaptation procedures, data handling, scheduling,
and parameter choices. The venture of using computational intelligence (CI) in such a context,
thus, is not a matter of a single approach. Among the great choice of techniques to inject CI in
an image-processing framework, the primary focus of this presentation will be on the usage of so-
called Tiny-GAs. This stands for an evolutionary procedure with low efforts, i.e. small population
size (like 10 individuals), little number of generations, and a simple fitness. Obviously, this is not
suitable for solving highly complex optimization tasks, but the primary interest here is not the best
individuals’ fitness, but the fortune of the algorithm and its population, which has just escaped
the Monte-Carlo domain after random initialization. That this approach can work in practice will
be demonstrated by means of selected image-processing applications, especially in the context of
linear regression and line fitting; evolutionary post processing of various clustering results, in order
to select a most suitable one by similarity; and classification by the fitness values obtained after a
few generations.

1 Introduction

In order to recognize a visual object by means of the computer, many processing steps are needed.
These steps barely resemble the nature of human visual perception, but are rather crude artificial
replacements. And although much research and development was conducted over the past decades,
computer vision is still a great challenge. In general, the common scheme for visual object recog-
nition comprises image acquisition, preprocessing, feature extraction and selection, learning and
classification. Figure 1 displays such an image-processing system and the means for its develop-
ment. The typical goal here is the transition from raw data captured from a real world scene by
means of an image-acquisition device, e.g. CCD camera, CMOS camera, scanner, other sensors,
into the abstract linguistic world of object names, relation between objects, meanings, content and
interpretation – mimicking the human ability of handling visual stimuli within a purely technical

1



domain. The intermediary steps of converting raw data into more abstract object features, and
features’ consecuting assignment to “class bins” offer a great deal of freedom, uncertainty and
variation. Nothing in the object-recognition framework is uniquely specified, nor is there any pro-
cedure known to derive the way that features are computed or classified from the application itself.
With regard to this highly multi-modal context and the increase of complexity in modern image-
processing application, automated selection and optimization procedures are needed obviously.

Its not a surprise that the usage of Evolutionary Computation (EC) in this field has gained a lot
of attraction in the past two decades. EC makes it possible to design solutions for optimization
problems. According to EC’s natural role model, life forms are enabled to adapt to particular
environmental changes over successive generations. The mechanisms that drive natural evolu-
tion are reproduction, mutation and survival of the fittest. From a computational point of view
this can be seen as an optimization process. The application of evolution mechanisms by artifi-
cial / computational systems is called EC. Therefore, one can hold that “EC takes the power of
natural selection to turn computers into automated optimization tools.” EC algorithms are effi-
cient, adaptive and robust search procedures, producing nearly optimal solutions, and they show
a high degree of implicit parallelism. General approaches and methods comprise Genetic Algo-
rithms [1, 2, 3], Genetic Programming [4, 5] and Evolutionary Strategy [6]. Many applications of
Computational Intelligence in image processing and pattern recognition have been presented in the
past two decades. The impossibility to provide a complete survey here (a technical report of the
University of Vaasa from 1999 [7] already lists over 1000 publications in this field) forces us to pick
up just a few representative fields, as e.g. in image filtering, incl. noise removal [8], design of wavelet
filters [9], morphological filters [10, 11], or general design of image operators [12, 13]; image com-
pression [14, 15, 16]; in biometrics: pre-processing of fingerprints [17], or within the more general
theme of “soft biometrics” [18, 19]; clustering and segmentation [20, 21, 22, 23]; object detection
and recognition [24, 25]; feature extraction [26, 27]; classifier fusion [28, 29, 30]; 3D-image process-
ing, esp. registration of 3D objects [31], matching [32], recognition [33], or stereo matching [34, 35];
edge detection [36, 37]; camera calibration [38, 39]; image synthesis [40], visual routines [41], digital
watermarking of still images [42, 43]; optimization of super-resolution [44]; and detection of faults
in video image transmission [45].

Image Acquisition Feature Computation Classification

Image Features Class

Training Data

Tra ining

Figure 1: Development of an image processing system.

The higher the complexity of the problem domain, or the less one knows about ways to model it, the
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more affordable it seems using EC. In this sense, EC can be also applied to the framework of fig. 1:
it can be used to select and adapt the feature computation, to train the classifier, or to support
the preprocessing of the just-acquired image to yield better object segmentation and consequently
better separability of the features with respect to the classes. In such cases, the optimization goal
is derived from an application-driven input-output behaviour that involves mass-data processing.
Typically, the amount of image-raw data is in the range of a million bytes of information. However,
this does not automatically mean that the EC algorithms have to be large-scaled as well. The
opportunities that EC algorithms can offer on a smaller scale are explored in our studies. We
investigate lightweight evolutionary algorithms that are characterized by the following features:

• small population size,

• little number of generations, and

• simple fitness.

On first glance, this concept seems futile. What can be expected at all from such lightweight
algorithms (lets call them Tiny-GAs in the following) in the highly complex domain of image
processing? We expose some pros and contras as follows:

• Such algorithms can be used online: Often, image-processing frameworks have two operation
modes, online and offline. The offline operation mode includes the interactive process of
configuring the system, its training, to championize it for the later online processing mode,
where there is usually hardly possible to modify any of its internal settings, and where there
are often strong processing-time restrictions. The high effort of training is reflected by the
opportunity to use high-effort training procedures, making it impossible to use such algorithms
in the online mode in the same manner. However, compared to the compuation time needed
for the bulk processing of raw image data, smaller ECs may become competitive with other
image-processing algorithms, from which the application framework is composed.

• They will not solve complex partial problems, and the evolved values of the optimization func-
tion will be of no value for the framework configuration. This is obviously a strong statement
against the use of such algorithms, but neglects the fact that the evolving population can
provide other information as well. As in a formula-1-car race, where most of the audience is
watching the fortune of the top three, four leading cars only, equipped with world-top drivers:
this oversees the fact that there might be much more interesting going on in the middle field
of the race, where experienced drivers push the best out of their weaker cars, or less good
drivers are handling good cars with low fortune. In a similar sense, the “middle field” of an
ECs population is sometimes worth a closer look as well.

• They may simplify the framework: a number of sensitive parameter settings that are necessary
to ensure reliable operation of the system in online mode can be integrated into a well-
designed fitness function, thus making the “external” setting of parameters in offline mode
before dispensable.

• The primary focus of the heuristic has to be given on exploration and verification, and not
on exploitation. Typically, EC algorithms are randomly initialized, with letting some a priori
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knowledge of the optimization task giving a means for influencing the distribution of these
random values. It can be also said that they are grounded in pure Monte-Carlo terrain, and
after a few generations, we might find them just airborne... and as for a starting plane,
from which we have just borrowed the analogy, this changes a lot regarding stability, speed,
operation and maintenance, but will not change much more during further flight operation.
So, some characteristics of an EC algorithm might not change much more with the increasing
number of generations, once the population has already entered a promising region of the
search space. As will be seen below, this is mostly an issue of making it probable to find such
a region, and refraining from any “needle in a haystack”-like problem specifications.

• They may become dispensable during the further development of the framework. This is
standing for the fact that other, pure non-EC image-processing algorithms may become better
specified from gaining more domain knowledge, and be it from the initial use of a simple EC
itself - but this may qualify our Tiny-GAs just as a suitable prototyping technique, and
nothing more.

• Such algorithms, in conjunction with the specific application domain and their lower dimen-
sions, can probably be better understood and analyzed, and their runtime behaviour can be
better predicted.

In the following, we are going to study the concept of a Tiny-GA in the context of image-processing
applications in more detail. First, we pick-up a random example, line-fitting to data points, to
justify the potential. It will guide to the need of specifying a typical class of combinatorial opti-
mization problems appearing in such an approach, and that does not seem to be well-studied so far.
Roughly spoken, Tiny-GAs can do a good job in subset-selection with complex selection criterias.
The mathematical notion here is the Generalized Bitstring Prototype Problem that we can iden-
tify in several typical image-processing-problem classes like regression, classification, clustering and
segmentation. At the end, its the proper organization and structure of the used framework itself
that accounts the affordability of smaller ECs. Authors hope that this study is just seen as a first
step, and that it will stimulate further research and developments also going into this direction.

2 Linear Regression

During the development of a real-world image processing application, there are a number of recur-
ring problems. Among them are regression problems: some pre-processing of the image has lead to
the identification of a number of image positions that are, yet not perfectly but nearly, located on
a model curve. The task is to find a symbolic expression for such a model curve.

In the small problem that we want to study here, the points were the result of the pre-processing
of ID cards. In the bottom area of such documents, there is the so-called machine-readable zone
(MRZ), where the information of the document is encoded and printed using a font that supports
easy readability with standard optical character recognition methods. After manual scanning with
resolution of 300dpi, the document might be slightly mis-oriented. We are about to tolerate orienta-
tion angles up to 30 degree, and thus have to acquire orientation information from the components
of the scanned image before the processing can be continued. We will not go into much details of
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Category Description Comment
Mathematical
Morphology

closing with structuring element
larger than distance between points;
connected-component analysis; lin-
ear regression with points within the
largest connected component only

processing time large; may fail if
distance of co-linear points is some-
times large

Clustering agglomerative clustering will link
the sequence of nearly equidistant
points belonging to one text row

same as for Mathematical Morphol-
ogy: failures to detect some of the
characters can produce larger gaps,
and disturb the clustering

Hough Transform default method to find lines con-
necting given points of images

needs a pre-setting of angle inter-
valls with a trade-off: the finer the
granulation of the angle values, the
more sparse the occupation of the
accumulator cells

Discriminating
Line

the plane is divided into two seg-
ments by a separating line thus that
all nearly co-linear points are lo-
cated in one half-plane

if this line is iteratively adapted, it
needs a clever intialization; if not,
several assumptions about the point
distribution have to be made

Table 1: Some approaches to handle the partial regression problem shown in fig. 2.

the processing here, as we are just interested in the intermediate optimization problem that will
arise. For the pre-processing, the image is binarized, and the connected components of the binary
image are extracted. In the MRZ, these are the single character images. The points shown in
fig. 2 then are the centers of the bounding boxes of each character component. As it can be seen,
the majority of them is nearly co-linear, but due to the strong orientation, also some points of
the second text row of the MRZ are extracted. Despite of these “outliers,” we are looking for a
procedure to estimate the total document orientation angle from these points.

Figure 2: A simple problem? Goal is to estimate the rotation angle of the document from this set
of points that has been extracted by pre-processing of an ID document image.

The problem looks easy, and several approaches will come into mind, with using an EC algorithm
not being among the primary choices. Table 1 lists some of the possible approaches.

As can be seen, each approach will be able to handle such a problem. Their common drawback
is that they need some a priori knowledge of the point alignment (expected offset of adjacent
points, selection of rotation angle granulation; expected size of the gap between the two text rows
represented by the points; initial guess of a point between these two rows), which usually results in
several application parameter that have to be set carefully in advance to ensure smooth operation.
Given that this is only one module of a larger number of modules comprising the whole processing
framework, the number of parameters can become large. So, the objective of an alternative approach
here could be to reduce the number of parameters while not increasing the computational effort, if
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compared to the given approaches.

We will consider now the use of an EC algorithm in this context. Therefore, the problem is stated
as an optimization problem, a combinatorial one, to be more specific:

Given a set of points, select the largest subset with minimal average linear regression error.

More formally: Given a set of n points (xi, yi) in the plane (n ≥ 2), the task for linear regression is
to find suitable parameters a and b such that the expression yi = axi + b fits the given data pairs
as good as possible. The average regression error than can be computed as the mean-squared error
of the mapping y = f(x):

E(a, b) =
1
n

n∑
i=1

(yi − axi − b)2 (1)

The other objective is mandatory: if just two points are selected, there is a line connecting them
with regression error zero. Once more than two points are selected, the well-known linear regression
formula will provide the values for the slope a and bias b that minimise the average regression error.

That using the linear regression formula for the whole set of points is not sufficient for the case of
a nearly co-linear subset of points with outliers, is illustrated in fig. 3.

Linear Regression Error
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Figure 3: Problem with the Linear Regression: While most of the points are nearly co-linear, the
regression line is remarkably shifted by the presence of a few outliers.

In summary, we have to express the optimization goal by two objectives, large subsets, and small
average regression error. This motivates the use of an algorithm of the recently emerging field of
Evolutionary Multi-Objective Optimization (EMO).

Without going into unnecessary details here, let us try to fuse the complex matter of multi-objective
optimization into a few words. The main difference to the optimization for a single objective is the
partial incomparability of results. If there are two objective functions y1 = f1(x) and y2 = f2(x),
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with the goal to find x that minimize both, y1 and y2, it is possible that we have, for two different
choices of x, x = xa and x = xb, the situation that f1(xa) < f1(xb) but also f2(xa) > f2(xb). So,
for such x-values, a gain in one objective can only be achieved by loosing on the other. The set of
all such points in the objective space (i.e. the space of the y-values) is usually called the Pareto
front of the multi-objective optimization problem. The goal of an EMO algorithm is to sample the
Pareto front as complete as possible.

One mandatory component of modern EMO algorithm is the archive [46]. During the generational
steps of an EMO, the archive stores the Pareto set of the totality of points in objective space that
have ever been visited by the algorithm. Initially, the archive is empty. Each time, a new individual
is created in the algorithm (be it by mutation, cross-over, or in the random initialization), it is
also checked if the objectives of this point are dominated1 by any element already stored in the
archive. If not, the new point is added to the archive, and all points within the archive that are
now dominated by the newly-added member are removed from the archive. Precaution has to be
given in order to prevent an over-growing of the archive size (so-called “crowding”), but this is not
of importance here, as we are focussing on running the algorithm in a smaller scale.

For learning more about EMO algorithms, the interested reader is referred to excellent text books
[47][48], as well as the repository web site of Carlos Coello2, and the survey article in a recent issue
of this magazine [49].

Pareto Sets for Partial Linear Regression
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Figure 4: Complete Pareto fronts for the partial linear regression of 20 points. While in the first
case all points are normally distributed around a line, in the second case, only a subset is nearly
co-linear. It can be seen that both cases are very good distinguishable. As long as the selected
subset in the second case does not contain any of the outliers, the average regression error will be
very small. Remark: The Pareto sets here are discrete points. The points have been connected
for illusration purposes only.

1Here, “dominates” stands for the relation between two points in objective space, where the dominating point is
at least as good in all objectives as the dominated one, and better in at least one objective.

2http://www.lania.mx/ ccoello/EMOO/
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After these few remarks on multi-objective optimization, and before continuing with the application
of EMO for the partial linear regression problem, it is important to have a closer look onto two
aspects of the problem domain: the above-stated multi-objective optimization problem has a well-
defined Pareto front. If we represent an arbitrary selection of a subset of points from a set of n
points by a selection number from the set {0, 1, 2, 3, . . . , 2n−1}, the digits “1” in the representation
of such a number as a dual number stand for the elements that are selected from the set of points.
For example, if we have the set of three points {(1, 2), (3, 5), (6, 2)}, and the selection number
1012 = 510, the subset {(1, 2), (6, 2)} is selected. For technical reasons, we have to exclude all
selection numbers with only one digit being “1”, as the linear regression needs at least two points.
Also, selection number 0 is excluded. Among all possible selections of k elements from the given
set of points, there will be one selection Sk with the smallest average regression error. The set
{(k, Sk)|k = 2, . . . , n} then is the Pareto front of this multi-objective optimization problem.

Figure 4 shows a plot of the two completely sampled Pareto fronts for 20 points that were
generated by two different randomized processes, with the second one including a subset of nearly
co-linear points. It can be seen that in this case its very important to have none of the outliers in
the selected subset, as otherwise the average regression error is rapidly increasing. If the selected
subset only contains nearly co-linear points, the average regression error will have very small values,
which is easily distinguishable from the reverse situation.

The second aspect of the problem domain that we have to take care for is the well-known curse-of-
dimensionality. As it was already said in the introduction, in order to use a Tiny-GA, we should
refrain from specifying the task in a “needle-in-a-haystack”-like manner. Probability issues of the
problem domain can be easily seen. If we assume that our total set of n points is composed of m
“good points” (the ones nearly located on the same line) and n−m “bad points” (the outliers, the
inclusion of which into the linear regression is disturbing the precision of the results), then we are
looking for the probability of making a random selection that includes none of the “bad points.”
For all 2n possible selections, there are exactly 2n−m selections that will not include any of the
m bad points, so the probability of a random guess is 1/2m. Its worth to note that this does not
depend on n, so the probability of such a random selection does not depend on the relative amount
of outliers, but on the absolute amount. So, we may expect that the EMO approach will only work
up to a limited number of outliers.

Finally, we apply an EMO to the points given in fig. 2. The precise choice of the EMO algorithm
itself does not matter, as we are not specifying a hard task (in this case, we have used the FPD-GA
[50], with 10 individuals for 200 generations), and the evolving Pareto fronts of the archive can
be seen in fig. 5. The algorithm has found a larger number of points in the feature space that show
a rapid drop in the average regression error. Figure 6 gives a plot of the regression line represented
by one of these individuals in the archive with a small average regression error.

3 Further Examples: Segmentation, Clustering and Classification

In this section, we will identify other domains, where the specification of a task for a Tiny-GAs is
possible. We will see that all such tasks are subset-selection tasks, with a procedural criterion for
the selection quality, and which can be easily encoded into a bitstring.
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EMO Pareto Sets
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Figure 5: Objective points in the archive of the EMO algorithm after a number of generations.
The points located very close to the bottom axis demonstrate the fact that in generation 200, the
algorithm has already found a subset of points that does not contain any of the 21 outliers.

In the field of document layout recognition, such an evolutionary algorithm was already used to
extract the invoice table part in the digitized image of an invoice sheet [51]. Several steps of pre-
processing were needed to separate the various text lines that are present in the document image.
A subset of these text lines is composing the invoice table itself. The approach was to select this
subset by the internal similarity of the patterns of these extracted text stripes, and this was also
achieved by a genetic algorithm running on a small scale.

The procedure was as follows: to each partial image of an extracted text row, a binary template
was assigned. The image of a text row is divided into cells of equal width (the estimated width
of a character in the image). Now, a bitstring is constructed from each such row, with the same
size as the number of cells of a text row. The bit at position i in the bitstring is set to 1 if the
corresponding text row cell i contains more black than white pixels (thus, there is a character of

Linear Regression Line (All Points)

Linear Regression Line (21 Points Selected by EMO)

Image Stripe with Points

Figure 6: The regression lines for all 58 points, and for 21 points selected by one of the elements
in the Pareto front.
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text within), and 0 otherwise.

Doing this for each text row, the invoice sheet image becomes represented by a set of bitstrings.
Among these bitstrings, we are interested now in the largest subset with highest similarity, and are
focussing on using a genetic algorithm to help with the finding of such a subset.

In difference to the linear regression example that was studied in the foregoing section, here we
do not consider the use of a second objective, but the use of prototype bitstrings. In the simplest
case, this is just a bitstring of the same size as the set of bitstrings that represent the invoice sheet,
and with having the smallest average Hamming distance to this set. It is not hard to find such a
prototype bitstring.

The basic procedure to solve this problem is the so-called Hamming fusion of the set B of bitstrings
derived from the text rows: with B = {bi} and bi[j] being the bit at position j in bitstring bi,
H0

j (B) annotates the number of occurrences of a 0 at position j:

H0
j (B) = |{bi ∈ B| bi[j] = 0}| (2)

and H1
j (B) = |B|−H0

j (B) gives the corresponding number of 1s at position j. Now, the Hamming
fusion of B is given with the bitstring t = HF (B) of length n and with t[j] = 0 if H0

j (B) > H1
j (B),

with t[j] = 1 if H0
j (B) < H1

j (B) and either 0 or 1 if H0
j (B) = H1

j (B). Obviously, the derivation of
HF (B) just counts for each position of the bitstrings whether there are more bits 0 or more bits 1,
and takes the dominant bit at this position into the result. This is the bitstring with the smallest
average Hamming distance to all bitstrings in B.

However, the study presented in [51] gave that just computing the Hamming fusion did not give
sufficient results on a larger set of invoices: as can be seen in fig. 7, the field “Bezeichnung” contains
item names that are differing in the number of characters. To account for such variations, the
selection of two or more prototype bitstrings was considered, with each prototype only representing
a fraction of the template bitstrings. One example is to use two prototypes, one for the left half
of the template bitstrings, and one for the right half. Given two prototype bitstrings Bl and Br of
size n/2, their evaluation is as follows

1. For each template bitstring, compute the Hamming distance between Bl and the left half of
bits of the template bitstring.

2. In case this Hamming distance exceeds a given threshold, the Hamming distance between Br

and the right half of bits of the template bitstring is computed.

3. Take the average of all computed Hamming distances, or a penalty term in case too few
Hamming distances were computed.

A moment of reasoning gives that the Hamming fusion operation (e.g. of the left and right halfs
of the template bitstrings) will not provide the optimal result. On the other hand, this procedure
can be easily used for specifying a fitness function for a genetic algorithm - and that was actually
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Figure 7: Example for a scanned image of an invoice sheet. The two thick vertical lines represent
the invoice table part that has been extracted from the document by using a Tiny-GA.

done in the invoice sheet processing. After some test runs, a standard genetic algorithm with
10 individuals run for 50 generations. If the best fitness value in the population was above 0.7,
the result was accepted, and all text rows similar to this prototype (also a thresholded Hamming
distance) were selected. In [51], it was reported that such a procedure could succesfully select close
to 90 % of the text stripes. Due to the low computational complexity of the fitness function, and
the small population and generation count needed, this application of a “Tiny-GA” could also be
used online.

Going further, we may find a similar approach to a much more general problem: the robust clus-
tering of data. With the attribute “robustness” we want to refer to the stability of the clustering
result, once the data values undergo smaller changes, or new data values are added. Among the
huge selection of clustering methods, and for a given, yet not explored set of data, we may consider
some of the clustering methods as appropriate and some of them as inappropriate. The meaning
here, in other words, is as: when a clustering method is inappropriate for the given data set, it will
produce stronger differing clustering results when the initial conditions or the given data values are
randomly modified, than for an appropriate clustering method (see fig. 8).

Assume a (numbered) data set d = (d1, d2, . . . , dn), which has to be separated into two clusters
C1 and C2. Further assume a set of M1,M2, . . . ,Mk clustering algorithms (e.g. k-means, neural
gas,...), the M1(ci),M2(ci), . . . ,Mk(ci), 1 ≤ i ≤ 2, results of which, when applied to d, will depend
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Figure 8: Scheme for applying appropriate or inappropriate clustering methods to unknown data.

on an initial configuration of the ci centers, and a set V of l random modifications of d, e.g. moving
the data point by a small amount in a random direction. Then, when a clustering algorithm
Mp, 1 ≤ p ≤ k, is applied to the modified data set Vj(d), it will assign each data point in d to either
C1 or C2. This can be represented by a bitstring. For example, if there are four data points, the
bitstring 0110 describes that data point d1 and d4 have been assigned to cluster C1 and data points
d2 and d3 have been assigned to cluster C2.

Applying all k clustering algorithms to all l modifications of the data set d will give k · l bitstrings.
Under the assumption given above, for appropriate clustering methods, there should be more similar
bitstrings than for inappropriate ones. In other words: the most common scheme among all k · l
bitstrings hints on an appropriate clustering method.

Again, it seems that we have the Hamming fusion as an appropriate procedure to yield the prototype
of the most typical clustering result for the given data. Again, there is a problem: for the clustering
algorithm, it does not make a difference if it assigns the cluster number 1 or 2 to an element of the
data set, as long as it assigns different cluster numbers to elements from different clusters. For the
bitstrings, it makes a difference, as the “interpretation” of all bitstrings representing cluster results
has to equalize a bitstring and its reverse.
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Since it is simple to account for this in the fitness specification of a genetic algorithm (find the
prototype, to which the average Hamming distance of each cluster result bitstring, or to its inverse,
is minimal), usage of a Tiny-GA in this context seems straightforward.

Finally, we also want to consider the fitness values itself obtained after a few generations of a small
evolutionary algorithm for the purpose of classification. Object classes can be specified according
to intervals, into which these fitness value fall.

An example for such a “fitness calibration” was given in [52]. There, the issue of Kirlian images
was considered, and the task was to study whether Kirlian images reflect some kind of intra-
person specificity or not. Kirlian images from all fingers were taken from a number of subjects
at different times, and subjects were selected with perceptually similar Kirlian patterns. Now, a
Tiny-GA was used to measure that perceptual similarity.

ϕ

ϕ
π

Figure 9: Unrolling of a Kirlian image.

First, each finger image was unrolled (see fig. 9). The unrollings were used to define the data
bitstrings: if at angle φ the fraction of the beam in the direction φ and starting from the (inter-
actively set) center C of the Kirlian image, is larger than 25% of the maximum value in any
direction, the bit was set to 1, 0 otherwise. By this procedure, each group of perceptual similar
Kirlian images gave a set of four bitstrings. As in the cases before, a prototype bitstring was
searched with the smallest average Hamming distance to all four bitstrings, where the Hamming
distance is only taken among bit positions, which are equal to their neighbors. But instead of using
Hamming fusion (that does not solve the problem anyway, as some bit positions are excluded from
the distance measurement), this restricted average Hamming distance was used as fitness function,
and a standard genetic algorithm run for 200 generations, to yield the fitness value of the best
individual obtained after these generations (and before the algorithm reaches the optimum).

From these fitness values, three classes could be separated: four random patterns gained fitness
values between 0.25 and 0.30; randomly selected sets of Kirlian images gained fitness values
between 0.28 and 0.32; and all perceptual groups of Kirlian images gained fitness values between
0.34 and 0.53. Thus, the class of perceptual similar Kirlian images of the same subject is clearly
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Fitness

000111111000000011000001111...0110
001111101011111000111111111...1110
000011110000000111100011110...0011
000111000011100111100011111...1110

000110000111100111011010100...0101

25%

Scheme 1
Scheme 2
Scheme 3
Scheme 4

Bitstring

1  locked position (not equal to left and right neighbor)

Average Hamming
Distance to non-
locked positions

Fitness

Figure 10: Processing of a prototype bitstring: the four schemes of four Kirlian images are
extracted from the unrolled Kirlian patterns. Only positions that are equal to their neighbors in
the bitstrings are considered for computing the average Hamming distance of a given bitstring to
these four schemes. This value then is used as a fitness of the bitstring.

distinguished from the class of random Kirlian images and random patterns.

The former examples have shown that the use of Tiny-GAs in applications is related to some
subset-selection theme, be it the selection of a larger subset of points establishing a high value
of a linear regression, be it the extraction of a larger subset of template bitstrings of highest
similarity, or the same selection for various two-cluster results accounting for the possible inversion
of the bitstrings that represent the results. The underlying mathematical problem, referred to as
Generalized Bitstring Prototype Problem (GBPP), was studied in [53], showing that in only a small
number of cases there is an exact solution that can be explicitely computed from the bitstrings (as
it can be done for the Hamming fusion). However, the study also left many questions open that
might be worth a further exploration.

Given the straightforward encoding of the GBPP into bitstrings, its hardness, and the simple fitness
computation, an identification of such a problem in the domain of an image processing framework
favours the use of a Tiny-GA.

4 Conclusions

Image processing, despite of comprising a challenging domain of computer science, which includes
mass-data processing and also demands low computational effort, can nevertheless benefit from
the usage of simple evolutionary algorithms. One pre-requisite for this is a proper structuring of
the image processing framework, as well as the identification of subset-selection tasks within the
framework modules. Examples for such subset-selection tasks were given in this paper. These
tasks, then, can be handled by most evolutionary algorithms with small populations and within a
few generations. This does not contradict with the more common use of evolutionary computation,
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which deals with problems of high complexity. But sometimes, a side-glance to the runtime charac-
teristics of evolutionary algorithms in domains of much smaller complexity may be worth the extra
conceptual effort.
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[19] K. Franke, J. Ruiz-del-Solar, and M. Köppen. Soft biometrics: Soft computing for biometric
applications. International Journal of Fuzzy Systems, 4(2):665 – 672, 2002.

[20] B. Bhanu and S. Lee. Genetic Learning for Adaptive Image Segmentation. Kluwer, 1994.

[21] P. Andrey and P. Tarroux. Unsupervised image segmentation using a distributed genetic
algorithm. Pattern Recognition, 27(5):659–673, May 1994.

[22] C.T. Li and R. Chiao. Multiresolution genetic clustering algorithm for texture segmentation.
Image and Vision Computing, 21(11):955–966, October 2003.

[23] D. Maio, D. Maltoni, and S. Razzi. Topological clustering of maps using a genetic algorithm.
Pattern Recognition Letters, 16:89–96, 1995.

[24] B.K. Jeon, J.H. Jang, and K.S. Hong. Road detection in spaceborne SAR images using a
genetic algorithm. IEEE Trans. Geoscience and Remote Sensing, 40(1):22–29, January 2002.

[25] C. Garcia and M. Delakis. Convolutional face finder: A neural architecture for fast and robust
face detection. IEEE Trans. Pattern Analysis and Machine Intelligence, 26(11):1408–1423,
November 2004.

[26] L.S. Oliveira, R. Sabourin, F. Bortolozzi, and C.Y. Suen. Feature selection using multi-
objective genetic algorithms for handwritten digit recognition. In Proc. ICPR02, pages I:
568–571, 2002.

[27] I.S. Oh, J.S. Lee, and B.R. Moon. Hybrid genetic algorithms for feature selection. IEEE Trans.
Pattern Analysis and Machine Intelligence, 26(11):1424–1437, November 2004.

[28] M.A. Kupinski and M.A. Anastasio. Multiobjective genetic optimization of diagnostic clas-
sifiers with implications for generating receiver operating characteristic curves. IEEE Trans.
Medical Imaging, 18(8):675–685, August 1999.

[29] C. de Stefano, A. della Cioppa, and A. Marcelli. Exploiting reliability for dynamic selection
of classifiers by means of genetic algorithms. In Proc. ICDAR03, pages 671–675, 2003.

[30] K. Sirlantzis and M.C. Fairhurst. Optimisation of multiple classifier systems using genetic
algorithms. In Proc. ICIP01, pages I: 1094–1097, 2001.

[31] J.J. Jacq and C. Roux. Registration of 3-d images by genetic optimization. Pattern Recognition
Letters, 16:823–841, 1995.

16



[32] P.W.M. Tsang and Z. Yu. Genetic algorithm for model-based matching of projected images of
three-dimensional objects. IEE Proceedings-Vision Image and Signal Processing, 150(6):351–
359, December 2003.

[33] F. Samadzadegan, A. Azizi, M. Hahn, and C. Lucas. Automatic 3d object recognition and
reconstruction based on neuro-fuzzy modelling. ISPRS Journal of Photogrammetry and Remote
Sensing, 59(5):255–277, August 2005.

[34] L. Luo, D. Clewer, N. Canagarajah, and D.R. Bull. Genetic stereo matching using complex
conjugate wavelet pyramids. In Proc. ICIP01, pages II: 153–156, 2001.

[35] M. Gong and Y.H. Yang. Genetic-based stereo algorithm and disparity map evaluation. In-
ternational Journal of Computer Vision, 47(1-3):63–77, April 2002.

[36] S.M. Bhandarkar, Y.Q. Zhang, and W.D. Potter. An edge-detection technique using genetic
algorithm-based optimization. Pattern Recognition, 27(9):1159–1180, September 1994.

[37] M. Gudmundsson, E.A. Elkwae, and M.R. Kabuka. Edge-detection in medical images using a
genetic algorithm. IEEE Trans. Medical Imaging, 17(3):469–474, June 1998.

[38] Q. Ji and Y. Zhang. Camera calibration with genetic algorithms. IEEE Transactions on
Systems, Man and Cybernetics A, 31(2):120–130, March 2001.

[39] S. Hati and S. Sengupta. Robust camera parameter estimation using genetic algorithm. Pattern
Recognition Letters, 22(3-4):289–298, March 2001.

[40] A.D.J. Cross and E.R. Hancock. Recognizing building patterns using matched-filters and
genetic search. ISPRS Journal of Photogrammetry and Remote Sensing, 53(2):95–107, April
1998.

[41] J. Bala, K. DeJong, J. Huang, H. Vafaie, and H. Wechsler. Visual routine for eye detection
using hybrid genetic architectures. In Proc. ICPR96, volume C, pages 606–610, 1996.

[42] C.S. Shieh, H.C. Huang, F.H. Wang, and J.S. Pan. Genetic watermarking based on transform-
domain techniques. Pattern Recognition, 37(3):555–565, March 2004.

[43] R.Z. Wang, C.F. Lin, and J.C. Lin. Image hiding by optimal LSB substitution and genetic
algorithm. Pattern Recognition, 34(3):671–683, March 2001.

[44] Y. Wang and N. Funakubo. Detection of geometric shapes by the combination of genetic
algorithm and subpixel accuracy. In Proc. ICPR96, volume D, pages 535–539, 1996.

[45] H.C. Shyu and J.J. Leou. Detection and concealment of transmission errors in mpeg-2 images–a
genetic algorithm approach. IEEE Trans. Circuits and Systems for Video Technology, 9(6):937,
September 1999.

[46] J.D. Knowles, D.W. Corne, and M. Fleischer. Bounded archiving using the Lebesgue measure.
In Evolutionary Computation 2003. CEC03. The 2003 Congress on Evolutionary Computation,
pages 2490–2497, 2003.

[47] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons,
2001.

17



[48] C.A. Coello Coello, D.A. Van Veldhuizen, and G.B. Lamont. Evolutionary Algorithms for
Solving Multi-Objective Problems. Springer, 2002.

[49] C.A. Coello Coello. Evolutionary multi-objective optimization: A historical view of the field.
IEEE Computational Intelligence Magazine, 1(1), 2006.
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[51] M. Köppen, D. Waldöstl, and B. Nickolay. A system for the automated evaluation of invoices.
In Jonathan H. Hull and Suzanne L. Taylor, editors, Document Analysis Systems II, pages
223–241. World Scientific, Singapore a.o., 1997.
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