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Abstract

The theory of Autopoiesis attempts to give an integrated characterization of the nature
of the living systems. This article explores the use of autopoietic concepts in the field of
Image Processing. Two different approaches are used. The first approach assumes that
the organization of an image is represented only by its grayvalue distribution. In order to
identify autopoietic organization inside an images’ pixel distribution, thesteady state Xor–
operationis identified as the only valid approach for an autopoietic processing of images.
The effect of its application on images is explored. The second approach, presented in
the related articleAutopoiesis and Image Processing II: Autopoietic–agents for Texture
Analysis, makes use of a second space, theA–space, as the autopoietic processing domain.
This allows for the formulation of adaptable recognition tasks. Based on this second
approach, the concept of autopoiesis as a tool for the analysis of textures is explored.

1 Introduction

The theory ofAutopoiesis, developed by the Chilean biologists Humberto Maturana
and Francisco Varela, attempts to give an integrated characterization of the nature of a
living system, which is framed purely with respect to the system in and of itself. The
term autopoiesis was coined some twenty five years ago by combining the Greekauto
(self-) andpoiesis(creation; production). The concept of autopoiesis is defined as ([1],
p. 13):

’An autopoietic system is organized (defined as a unity) as a network of
processes of production (transformation and destruction) of components
that produce the components that:

1. through their interactions and transformations continuously regen-
erate and realize the network of processes (relations) that produced them;
and
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2. constitute it (the machine) as a concrete unity in the space in which
they (the components) exist by specifying the topological domain of its
realization as such a network.’

In other words an autopoietic system produces its own components in addition to con-
serving its organization. A network of local transformations produce elements, which
maintain a boundary. This boundary captures the domain, in which the local trans-
formations take place. In this context,life can be defined as autopoietic organization
realized in a physical space. The autopoietic theory describes what the living systems
are and not what they do. Instead of investigating the behaviour of systems exhibiting
autonomy and the concrete implementation of this autonomy (i.e. the system struc-
ture), the study addresses the reason why such behaviour is exhibited (i.e. the abstract
system organization). A complete material concerning the autopoietic theory (tuto-
rials, study plan, bibliography, internet links, etc.) can be found in the Internet site
Autopoiesis and Enaction: The Observer Web[2].

The autopoietic theory has been applied in diverse fields such as biology, sociol-
ogy, psychology, epistemology, software engineering, artificial intelligence and artifi-
cial life. In this context, this article tries to explore the use of autopoietic concepts in
the field of Image Processing.

Two different approaches will be used. These approaches differ in their inter-
pretation of the domain of the processes. The first approach, presented in this article,
assumes that the organization of an image is represented only by its grayvalue distribu-
tion. In order to identify autopoietic organization inside an images’ pixel distribution,
thesteady state Xor-operationis identified as the only valid approach for an autopoi-
etic processing of images. The effect of its application on images will be explored. The
second approach, presented in the related articleAutopoiesis and Image Processing II:
Autopoietic-agents for Texture Analysis, makes use of a second space, theA-space, as
an autopoietic processing domain. This allows the formulation of adaptable recogni-
tion tasks. Based on this second approach, the concept of autopoiesis as a tool for the
analysis of textures is explored.

2 Recognition of image structures by using auto-projective
perators

2.1 Autopoiesis and the Steady State Xor-Operator

At first, the question arises whether images by themselves preserve some kind of au-
topoietic organization. Because images generally are considered as static represen-
tations of real-world objects, but autopoiesis is constituted by a network of dynamic
transformations, the image must be processed by suitable operators in order to reveal
possible organizational principles. Thereby, the original image appears to be like a
”frozen” state of its intrinsic dynamical processes. Two approaches are possible: the
first approach assumes no relation between these dynamics and the real-world objects
pictured in the image, in contrary to the second approach, which refers to the kind of
features of real-world objects from which the dynamics are driven. As an example,
textures are identified as such features for the second approach, which will be detailed
in the related articleAutopoiesis and Image Processing II.
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This section is concerned with the first approach, i.e. image dynamics are restricted
to the distribution of colors or grayvalues in the image. No reference is given to the
pictured real-world objects. In order to ”melt” the image due to a possible intrinsic
dynamic, an operator is searched with the following two essential properties:

1. The operator should be applied pointwise. Normally, image operators like the
LAPLACE-Operator, the SOBEL-Operator or the median operator are applied to all
image pixels, at once. But, as it was mentioned in the introduction, autopoietic systems
constitute the domain of its realization. For an effective search of these domains, the
size of them can not be predicted. Hence, the application domain of the operator must
be balanced between pure local analysis (a pixel and its neighbourhood) and global
analysis (all image pixels). Pre-defined image operators do not offer such a choice.
By applying the local operation of the operator pointwise and repeating this, the effect
of a local operation is spread out over the image, and more complicated patterns of
interaction are possible. As a reminder for a similar procedure in genetic algorithms,
we refer to this manner of image operator application assteady state image processing.

2. The requirements of autopoietic organization detection include the requirements
for rejecting this hypothesis as well. The operators we are interested in, must be able
to recover the original image, at least to some degree, or with a probability remarkable
greater than zero. If the image dynamics appears to be not autopoietic, the process
must be able to fail, i.e. to leave the image as it was at the beginning of the processing.

Speaking more formally, let� be the image operation, which is applied pointwise.
A sequence of pointsp(T) is generated randomly, wherep(T) is the point choosen
at timestepT . Also, g(p) is the grayvalue of pointp in the image. In this article, all
points are equally possible in the random sequence. Non-adjacent points in the se-
quence could be neighbours in the image. Assumep(T1) andp(T2) are such a pair of
points withT1 < T2. Then, while applying the operator� to the pointp(T1) and its
neighbours,p(T2) is also affected. But later, at stepT2, the application of the operator
onto the modifiedp(T2) also affectsp(T1). Our demand is to have a non-zero prob-
ability of reproducingp(T1)’s original value by this procedure. This demand can be
fulfilled by using the Xor-operation. This can be verified by considering the following
three properties of the Xor-operation, if it is used as such an operation�:

Commutativity: a�b= b�a
Associativity: (a�b)�c= a� (b�c)
Auto-projectivity: (a�b)�b= a

The third property explains the fundamental role of the Xor-operation in data coding,
as well as for sprite algorithms in computer animations. It can be easily shown that
the Xor-operation and its negate (Not-Xor) are the only binary operations fulfilling all
of these three properties1. Hence, for detecting autopoietic organized structures in an
images’ grayvalue distribution, it is necessary to apply the Xor-operation in a steady

1From group theory, each finite ABEL-ian group is the product of cyclic groupsZri , hence its order
the product of theri . For the group given by�, all ri are 2, what refers to the Xor operation. But consider
the appendix for a more elementary proof.
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(a) (b) (c)

Figure 1: A face image (a), the result of the repetitive application of the above algo-
rithm after 1000 ”generations” (b), and a dilated version of the second image (c).

state manner. The resulting algorithm is as simple as follows:

Repeat for a given number of times:
1. Take an arbitrary pixelp1 and choose one of its neighboursp2.
2. Replaceg(p2) with g(p1)�g(p2).

2.2 Discussion

For a further understanding of the effect of this operation consider figure 1. There, a
face image (a), the result of the repetitive application of the above algorithm after 1000
”generations” (b), and a dilated version of the second image (c), are shown. A white
circular contour around the phong on the forehead can be seen2. This phong is a result
of the lighting conditions during image acquisition. Phongs are a major problem for
facial recognition tasks. By using the Xor-operator, they can be easily detected. But
where does this circle around the phong come from?

To understand this, consider the effect of the same procedure onto a gradient image
(figure 2). Also, the original image, the image after 1000 steps and its dilated version
are shown. A white line appears in the middle of the image, around the grayvalue
128, but not exactly in this position. The explanation of this effect reminds one of
another famous role of the Xor-operation as a benchmark for neural networks. The
Xor-operation is not linearly separable. A neural network needs a hidden layer to learn
the Xor-operation. The gradient image helps to illustrate this fact. Ifp1 has a gray-
value of 0, theng(p1)�g(p2) equalsg(p2), i.e. for low grayvalues, the Xor-operator
tends to be the identity transformation. Ifg(p1) is the maximum grayvalue (255 in
our case),g(p1)�g(p2) equals the inverse ofg(p2), i.e. for high grayvalues it tends
to be the inverting transformation. But it is not possible to go linearily from the iden-
tical transformation to the inverse transformation! Hence, we must have a non-linear
anomaly between these two extremes. This anomaly is represented by the white line.
Grayvalues around 128 tend to complete each other to the maximum grayvalue 255.
The white line appears to be a boundary between a gradual descent from the maximum
to the minimum grayvalue. Even boundary exchange processes can be identified this
way, i.e. the boundary must be a closed one to prevent the Xor-operations from pocket-
ing it. Hence, the Xor-operation is able to detect the gradient-descending organization

2For another “face example”, an animated QuickTime movie can be downloaded at http://visi-
on.fhg.de/ipk/koeppen/xor.mov.
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of grayvalue distributions in an image, no matter how this descent is structured (line-
likely, circularily, linearily ascending or faster). But also, the white line is a boundary
separating interior from outside.

To summarize the foregoing discussion: For the detection of the autopoietic or-
ganization of a grayvalue distribution, or better, the actual grayvalue distribution as a
”frozen” state of a possible autopoietic organization, the Xor-operator must be applied
in a steady state manner, i.e. on a sequence of randomly chosen image points. Only the
Xor-operator has the property of auto-projectivity, which ensures a non-zero probabil-
ity of regenerating the original image. This is true as long as grayvalues are represented
by binary numbers. The application of the Xor-operator onto images yields phong-like
structures, which prove to be the only organizational issues of intensity ordering in an
autopoietic manner.

(a)

(b)

(c)

Figure 2: A gradient image (a), the result of the repetitive application of the above
algorithm after 1000 ”generations” (b), and a dilated version of the second image (c).

3 Conclusions

The use of autopoietic concepts in the field of Image Processing was explored. The
approach, which is presented in this article, assumes that the organization of an image
is represented only by its grayvalue distribution. In order to identify autopoietic orga-
nization inside an images’ pixel distribution, the steady state Xor-operation was named
as the only valid approach for an autopoietic processing of images. The application
of the Xor-operator onto images yields phong-like structures, which prove to be the
only organizational issues of intensity ordering in an autopoietic manner. These first
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results are encouraging enough to continue this work. It was shown, that the search
for autopoietic organization in grayvalue distributions of images reveals new structural
properties of them, which are hardly to find by means of other image processing oper-
ations. Further research on the Xor-operator should explore the role of the probability
distribution for the random sequence of pixel positions. Also, other ordering relations
in the image than the conventional intensityordering should offer new application tasks
for the Xor-operator.
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Appendix

Proof for Xor being the only auto–projective operation

Be A a finite set withn elements, and� an operation:� : A�A! A with the following properties (a;b
andc2 A):

1. Commutativity:a�b= b�a.

2. Associativity:(a�b)�c= a� (b�c) = a�b�c.

3. Auto–projectivity:(a�b)�b= a.

Theorem.The numbern of elements ofA is a power of 2.

Proof. The properties of� immediately imply the following two (simple) lemmas.

Lemma 1.There is a unique neutral element 0 inA, i.e. a�b= a iff b= 0. For alla2 A, a�a= 0. In
particular,(A;�) is a group.

Lemma 2.a�b= c impliesb�c= a andc�a= b.

We assumeM to be a subset ofA closed under�, with jMj < jAj. An example for such a closed subset is
the setf0;bgwith b an arbitrary element ofA.
Be a an element ofA, which is not inM. Then, we construct the setN by

N= fni j ni = mi �a; mi 2 Mg:

Note, thata2N because each closed subsetM must contain the neutral element.
First, it follows M\N = 0. If there would be ani = mk, then it would followni = mi �a=mk, and, by
Lemma 2,mi �mk = a, i.e. a2M, becauseM is closed under�. This is a contradiction, fora =2 M was
assumed.
Also, jMj = jNj, because fromni = nj it easily follows thatmi =mj and vice versa.
Now, as essential part of the proof, we show, that the new setM[N is closed under�, i.e.

For any elementsu;v in M[N we haveu�v2M[N:

There are four cases to consider (ml assigns an element ofM, nl an element ofN):

1. u;v2M: Then,mi �mj 2M by M being closed under�.

2. u;v2 N: Then,ni �nj = (mi �a)� (mj �a) = (mi �mj )� (a�a) =mi �mj 2 M by property
1, 2, Lemma 1 andM being closed under�.

3. u2 M;v 2 N: Then,mi �nj = mi � (mj �a) = (mi �mj )�a= mk�a2 N by definition ofN,
property 2 andM being closed under�.

4. u2N;v2 M: This equals case 3 by commutativity.

If there is a subset ofA closed under� of sizem, there is a closed subset of size 2m, too. Because there
is such a subset of size 2, there is also a maximum closed subset of size 2k with k� log2 jAj < k+1.
If k< log2 jAj, then, there is ana2 A, which is not in the maximum closed subset of size 2k. Hence, a
closed subset ofA can be constructed, with 2k+1 > jAj elements. Clearly, this is a contradiction, hence
k= log2 jAj. The size ofA has to be a power of 2.
The “bit–wise” Xor operation is an example for such an operation. By renumbering the elements ofA,
each other� can be identically mapped onto this variant of the Xor operation.

Hence, Xor and this variants are the only auto-projective operations.
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