
Scout Algorithms and Genetic Algorithms: A
Comparative Study

Fabio Abbattista1, Valeria Caro�glio1, Mario K�oppen2

1 Dipartimento di Informatica
Universita' di Bari

Via E. Orabona 4, 70126 Bari, Italy
email: fabio@di.uniba.it

2 Department Pattern Recognition
Fraunhofer IPK-Berlin

Pascalstr. 8{9, 10587 Berlin, Germany
email: mario.koeppen@ipk.fhg.de

Abstract. This paper gives a comparative study of the recently pro-
posed Scout algorithm and the standard genetic algorithm (SGA). Al-
though these evolutionary algorithms are di�erently con�gurated and use
di�erent evolutionary operators, essential similarities of both algorithms
can be pointed out. These similarities can be found at three levels, theo-
retically and empirically: it is discussed that the Scout algorithm ful�lls
Holland's paradigm of admissible detector con�guration; from the def-
inition of the Scout algorithm and its variants, the Schemata theorem
for Scout algorithms is justi�ed; and experimental evidence is given, that
Scout algorithm's performance re
ects SGA's performance for SGA hard
problems (Tanese functions) and SGA deceptive problems (Royal Road
Functions). Thus, Scout algorithms and SGA are both unique instances
of a broader, yet unknown class of evolutionary algorithms. The most im-
portant advantage of Scout algorithms is the fashioning of their update
rules. This update rule has no counterpart in the SGA.

1 Introduction

In a study on goal-directed pattern recognition [4], Holland discussed the ap-
proach to feature detection of Samuel's famous checkerplayer program. Then,
Holland derived the basic concepts for a new class of search algorithms, the class
which became later on popular as \genetic algorithms" [5]. The basic idea of the
study can be summarized in the admissible detector con�guration paradigm:
whenever a goal attaining procedure makes use of a set of feature detectors,
this procedure should be able to recon�gure the set of feature detectors as well.
From this, two objectives of such procedures can be ful�lled: \relevance of the
detectors and consistency of the model and the value-estimator [nowadays called
�tness function { M.K.]." ([4], p. 292). Also, the goal attaining procedure can be
considered as a sampling plan in a \new and distinct sample space, the space of
all admissible detectors. . . " (idem., p. 294).

Assuming a procedure, which has access to the set of all admissible feature
detectors at once, and denoting the actual use of one of these feature detectors



by a binary value, the bitstring notation was born, which later gave the rep-
resentation of an individual of the evolving population of the standard genetic
algorithm (SGA).

The basic problem for �nding such a sampling plan was formulated as the
facilitation of a measure for the apportionation of credit for errors. Holland
quali�es measures of \average excesses" as useful. Later, implicit parallelism and
the schemata theorem will give the theoretical foundation of those measures. But
note that usually those measures are not directly used in a genetic algorithm.

What seldom had been considered in subsequent works was the question, if
there exist other algorithms, which ful�ll the admissible detector con�guration
paradigm as well. Since all properties of genetic algorithms can be derived from
this paradigm, other algorithms based on it should resemble genetic algorithms,
too.

One of the most important aspects of genetic algorithms is their versatility.
By modifying the selection, crossover or mutation scheme of the standard genetic
algorithm, or by maintaining other generation control schemes (as e.g. for the
steady-state approach or the inclusion of ancestry), completely new algorithms
can be derived. These algorithms can be applied in certain circumstances, when
standard genetic algorithms perform poorly.

However, all of these variations base directly on the standard genetic algo-
rithm. Other procedures, di�erent from genetic algorithms, but following the
detector con�guration paradigm, are expected to provide new insights into the
theoretical background of evolutionary algorithms, and to allow the crafting of
new, versatile algorithms as well.

This paper presents such an algorithm, the recently proposed Scout algo-
rithm [1]. The Scout algorithm maintains a set of so-called probability vectors.
The name \Scout" refers to an exploring entity, which reminds one of a scout
that pioneers a pathway in an unknown territory. In the language of the admis-
sible detector paradigm: a Scout, which is represented as a vector of probability
values (instead of binary values, as for genetic algorithms), con�gures a subset
of the feature detectors (a bitstring) by means of the probabilities for each single
detector. The higher the component i of the probability vector of a Scout, the
higher the probability of setting the corresponding bitvalue to 1 (means: using
detector i in the plan for that algorithm step). The Scout algorithm apportion-
ates credit for success to the probabilities by the so-called update rule, thus
employing a direct measure of average excess.

The Scout algorithm itself operates on a set of such Scouts. Using a multitude
of Scouts does not directly improve the \implicit parallelism" of the sampling
plan, but makes the value-estimators more robust.

From this general approach of the Scout algorithm, its ful�llment of the
con�gurable detector paradigm is obvious. It di�ers from the genetic algorithm
in just two points: instead of specifying the chosen detectors directly (by bit-
strings), it maintains a \pre-instance," from which detector-specifying bitstrings
are instantiated whenever they are needed; and the \average excess" of a Scout's
bitstring �tness is directly used for modifying its probabilities.



Section 2 recalls the Scout algorithm and gives two new update rules, which
were designed in order to reveal the similarity to genetic algorithms. Then, in
section 3, the Schemata theorem for Scout algorithms is justi�ed. Section 4 then
gives an experimental validation of the same fact, using test problems, which
have been intensively studied for standard genetic algorithms in the past: the
Royal Road Functions as an example for a deceptive problem, and the Tanese
functions, for which the poor performance of genetic algorithms has puzzled the
scienti�c community some years ago. The paper is followed by a discussion of
the results and concludes with the reference.

2 The Scout Algorithm

The Scout algorithm, in its original implementation [1], explores binary search
spaces, represented by all the possible binary strings S = (Si), i = 1; 2; : : : ; l (l is
a feature of the problem). The basic element of the algorithm is represented by
the probability vector P = (Pi), in which each element Pi gives the probability
that the i-th element Si will be 1. The main goal of the Scout is to identify
a vector P opt = (P opt

i ) in such a way that, applying the P opt
i it is possible to

generate an optimal solution, Sopt = (Sopti ), for the problem at hand. The vector
P opt is produced by iterating the Scout algorithm for a pre�xed number of cycles,
denoted by Max Cycles. For each cycle c, the vector P is left unchanged (it will
be denoted with P (c)); at the beginning of a run, the values of Pi(0) are all
set equal to 0.5. The algorithm is iterative and, in each cycle, it performs the
following operations:

1. Generation. Generation of K solutions S using P (c). The value of K is
constant in all cycles.

2. Selection. Evaluation of each S by using a function f(S). De�nition of the
set fSp(c)g (its cardinality is denoted by Num S) composed by all the positive
solutions, that is all the solutions for which f(Sp(c)) > fmax(c � 1) (where
fmax(c � 1) represents the maximum value of f in the preceding cycle).

3. Updating of P (c). To compute all the new Pi(c + 1) the subsets fSpi (c)gj
has to be considered, whose cardinalities are denoted by Ni;j(c). They are
composed of all the solutions in fSp(c)g in which the i-th element is equal
to j (j = 0 or 1). Next, it is necessary to compute �ffSp(c)g and �ffSp

i
(c)gj

representing the average function value on the sets fSp(c)g and fSpi (c)gj,
respectively. Let

�ji =
�ffSp

i
(c)gj

fSp(c)g ;

then it follows:

Pi(c+ 1) =
Pi(c) + �1i
1 + �0i + �1i

These three steps are iterated until the stop condition occurs; in our experi-
ments we used a �xed number of cycles (Max Cycles).



A few words are needed about the choice for each Si in step 1. Following the
above{mentioned step 1, Scout generates solutions corresponding to the binary
con�guration with higher bit probability value. On the basis of the performance
of these solutions, the vector P is updated. The updating, in this situation, will
increase Pi's having high values and it will decrease Pi's with low values. After
a very few cycles, Pi's will have only values 1 or 0 and the solutions will tend
to be equal to each other (each solution will correspond to the bit con�guration
with the highest probability value), leading to the stagnation of the algorithm.
To overcome this situation, the step 1 is also driven by a factor E measuring
the tendency to explore alternative paths, similar to the mutation operator in
evolutionary algorithms. When the probabilistic choosing has been performed,
for each Si, the algorithm generates a random number r. If this number r is
less than the parameter value E (what signals the event \To explore alternative
path") the chosen Si value is inverted. In such a way, the algorithm has the
possibility to take unlikely decisions, and to explore new solutions.

A review of this algorithm gives, that it o�ers a degree of 
exibility according
to the update rule used in step 3. Reasonably modi�ed forms of the update
rule give new variants of the standard Scout algorithm. It was tried to �nd a
modi�cation such that the progress of the Scout algorithmmostly resembles the
evolutionary progress of a standard genetic algorithm (SGA).

For doing so, the SGA was run on some optimization tasks, and a \Scout"
was derived from the population at each step. The value of Pi of this Scout is
computed by the relative amount of occurrences of bit 1 at position k within all
individuals of the population with respect to the total number of individuals.
Then, the modi�cation of each Pi during a generation step was observed, and
it was tried to model it by an appropriate update rule. From this, two possible
variations of the Scout algorithm were justi�ed empirically.

The �rst new version, which relates second{order statistics of the average
function value gain of the Scouts (consider [3] for a study of the role of second{
order statistics in genetic algorithms) and is denoted Scout M di�ers from the
original version in the following phases:

1. Generation'. No change.
2. Selection'. Evaluation of each S by using a function f(S). All the generated

solutions S of the cycle c (denoted by fS(c)g) participate in the updating of
vector P .

3. Updating'. To compute the new Pi(c + 1) the subsets fSpi (c)gj has to
be considered as for the standard Scout algorithm. Next, it is necessary to
compute �ffSp(c)g and �ffSp

i
(c)gj representing the average function value on

the sets fSp(c)g and fSpi (c)gj, respectively, and p�fS(c)g representing the
square root of the standard deviation of the function value on the set fS(c)g.
Then, it follows:

Pi(c + 1) = Pi(c) + �

q
�ffSp

i
(c)g1

�ffSp(c)g

p
�fS(c)g



where � represents an algorithm parameter (a real number belonging to
the range [0,1]), which can be considered as a \learning rate" for a similar
parameter use in the delta rule of neural network learning.

The second new version (denoted Scout F), which combines the Scout M
approach with the original Scout algorithm, di�ers from the original version in
the following phases:

1. Generation". No change.
2. Selection". Evaluation of each S by using a function f(S). All the generated

solutions S of the cycle c (denoted by fS(c)g) participate in the updating of
vector P .

3. Updating". To compute the new Pi(c + 1) the subsets fSpi (c)gj has to
be considered as for the standard Scout algorithm. Next, it is necessary to
compute �ffSp(c)g and �ffSp

i
(c)gj representing the average function value on

the sets fSp(c)g and fSpi (c)gj, respectively, and p�fS(c)g representing the
square root of the standard deviation of the function value on the set fS(c)g.
Let


ji =

q
�ffSp

i
(c)gj

�ffSp(c)g

p
�fS(c)g

;

then it follows:

Pi(c+ 1) =
Pi(c) + 
1i
1 + 
0i + 
1i

:

3 Scout Algorithm and Schemata Theorem

In this section, the question is considered, if Scout algorithms (in standard or
modi�ed form) perform a search based on schematas. For the application of the
Scout algorithm, a probability vector (PV) P = (P1; P2; : : : ; Pn) with Pi 2 [0; 1]
is used. For each algorithm step, a number m of bitstrings is constructed, using
the Pi as partial probabilities. After judging the �tness values of the generated
bitstrings, P is modi�ed accordingly.

The question is, if this search strategy could be considered as a schematic
one. In order to show this, a possible way would be to con�rm two properties:

{ Intrinsic parallelism, i.e. the algorithm searches within multiple subspaces
at once.

{ As the algorithm proceeds, the subspaces become smaller, and the rate of
trials allocated to above-average subspaces increases proportionally to this
above-averageness, if problem dimension increases.

The following model will be used (see �gure 1 for an illustration of the twodi-
mensional case): a PV equals a point P within the n-dimensional unit cube. By
drawing the parallel surfaces to the cube surfaces, which cut P , the unit cube
is divided into subcubes. The essential property of these subcubes is, that their
volumina correspond to the probabilities of a certain bitstring generated by a



PV. To give an example, the lower left area (A11) in �gure 1 is the probability
for obtaining the bitstring (1; 1). Thus, the generation of m bitstrings could be
considered as a Monte Carlo measurement of the volumina of the subcubes.
This measurement is done by equally distributing points within the unit cube
and counting, how often each subcube was hit.

p1

p2

0

1

1

P

(1,1) (0,1)

(0,0)(1,0)

Fig. 1. Probability vector (PV) within the unit square.

From this, the schemata are obvious. They are comprised by the subcubes
and by its composites (e.g. the schema (1?) corresponds to the left half of the
unit square, i.e. A11 [A10, in �gure 1). Hence, property 1 is veri�ed.

For property 2, the case of displacing P has to be considered. For simpli-
�cation, we restrict our consideration of the n-dimensional case by assuming
P1 = P2 = : : : = Pn = p and p > 1=2. P should be displaced by the positive
amount �. Now we ask for given dimension n what size of � is needed for doubling
the ratio r of A11:::1 to A00:::0. The old and the new ratios are given by:

rold =

�
p

1� p

�n

rnew =

�
p + �

1� (p+ �)

�n

If solving rnew=rold = 2, we obtain:

� =
p(1� p)

1� p+ n
p
2| {z }

term1

(
n
p
2� 1)| {z }

term2

The essential property of this result is that n
p
2 ! 1 decreases exponentially,

if n ! 1 (consider �gure 2). For large n, the term 1 becomes constant, and



20 40 60 80 100
n

0.1

0.2

0.3

0.4

0.5

f[n]

Fig. 2. Plot of f(n) = n
p
2� 1.

term 2 quickly approaches Zero. Also, for large n, the decay of term 2 starts to
dominate term 1.

The necessary replacement of P in order to double the relative ratio of two
subcubes becomes smaller and smaller, as problem dimension increases. The
decay is according to an exponential rate. Of course, the same holds for other
ratios than 2 as well.

If a schema has order l < n, i.e. l positions of the bitstring are clamped, the
decay of relative subcube volumina is dominated by a term proportionally to
n�l
p
2.
Because the rate of allocations to a certain schema equals the volume of the

corresponding subcube, moving P towards subcubes with above-average �tness
(this is, what the modi�cation law of the Scout algorithm for P actually does)
is all what is necessary to ful�ll the schemata theorem. Hence, property 2 is also
veri�ed.

The Scout algorithm performs a schemata based search.

4 Experimental Validation

In [1], the standard Scout algorithm was tested on the maximumclique problem.
In order to relate the performance of the proposed Scout algorithms to the SGA,
they were further tested on two well-known problems: the Royal Road Functions
(RRF) [7] in the special form presented in [6] as an example of a deceptive
problem for SGA, and the Tanese functions [8], which are constructed from
Walsh Polynomials (WP), intensively discussed in [2] and which are hard to solve
for SGA. To point out similarities of Scout algorithms and SGA, it is expected
that the Scout algorithms also give a good performance on the RRF and a poor
performance on the Tanese functions (despite of the fact that a modi�ed update
rule may improve performance).



4.1 Royal Road Functions Results

In all the experiments on the Royal Road Functions we used the default values,
as stated by Holland, for all the input parameters to the RRF.

The parameters used for the three versions of the Scout algorithm were:

{ Number of Scouts K = 10 for all the versions, K = 50, 100 for the original
version of the Scout algorithm;

{ Exploration parameter E in the range [0.0, 0.06];
{ Number of cycles Max Cycles = 10000;
{ Learning rate � = 1:0;
{ Number of di�erent runs for each parameter con�guration was set to 10;
each run started with a di�erent initial situation. The best value found in
ten runs is denoted by fmax, the average of the best values over ten runs
by fav, their standard deviation by �f and the cycle of the best value with
cmax.

The results of the experiments for the standard Scout algorithm are given in
table 1. Table 2 gives the results for the Scout M algorithm and table 3 the
results for the Scout F algorithm.

Table 1. Result of the standard Scout algorithm for the RRF.

K E fav �f fmax cmax

10 0.0000 2.204 0.355253 2.620 233

10 0.0500 4.534 0.533837 5.300 4843
10 0.0510 4.636 0.545266 5.500 7744
10 0.0520 4.562 0.539831 5.300 5978

10 0.0530 4.872 0.494970 5.580 4776
10 0.0540 4.662 0.631362 5.660 8107
10 0.0600 4.618 0.587231 5.600 2798

50 0.0000 2.734 0.638335 4.380 46
50 0.0410 6.860 0.450876 7.600 4764
50 0.0430 6.868 0.616672 7.720 6440

50 0.0450 7.200 0.885990 8.540 1783
50 0.0460 6.680 0.518030 8.020 8347
50 0.0480 6.774 0.355159 7.740 4656

50 0.0490 6.468 0.522575 7.600 5044
100 0.0000 2.804 0.613971 3.860 35
100 0.0410 7.872 0.923529 9.620 6972

100 0.0440 7.858 0.755451 9.060 7886
100 0.0450 7.412 0.621196 8.800 6934
100 0.0460 7.802 0.656486 8.860 9624

100 0.0470 7.870 0.841705 8.880 6646
100 0.0490 7.620 0.798109 8.820 7935



Table 2. Result of the Scout M algorithm for the RRF.

K E fav �f fmax cmax

10 0.0000 8.262 5.863806 12.800 24
10 0.0001 12.800 0.000000 12.800 23
10 0.0002 12.800 0.000000 12.800 56

10 0.0003 12.800 0.000000 12.800 59
10 0.0004 12.800 0.000000 12.800 48
10 0.0005 12.800 0.000000 12.800 34

10 0.0010 10.600 4.641839 12.800 34
10 0.0020 10.508 4.832043 12.800 601
10 0.0030 12.800 0.000000 12.800 2790
10 0.0040 4.006 4.655358 12.800 2955

10 0.0050 1.792 0.518391 2.420 3849

Table 3. Result of the Scout F algorithm for the RRF.

K E fav �f fmax cmax

10 0.0000 12.800 0.000000 12.800 19

10 0.0001 12.800 0.000000 12.800 17
10 0.0002 12.800 0.000000 12.800 32
10 0.0003 12.800 0.000000 12.800 18

10 0.0004 12.800 0.000000 12.800 20
10 0.0005 12.800 0.000000 12.800 19
10 0.0010 12.800 0.000000 12.800 34

10 0.0030 12.800 0.000000 12.800 1311
10 0.0050 2.188 0.265865 2.940 2702

4.2 Walsh Polynomials Results

We used the same parameters as Tanese [8] for all the experiments on Walsh
Polynomials. We run the three versions of the Scout algorithm on �ve di�erent
randomly generated Walsh polynomials.

The parameters, which were used for the three versions of the Scout algo-
rithm, were:

{ Number of Scouts K = 10 for all the versions
{ Exploration parameter E in the range [0.0, 0.1];
{ Number of cycles Max Cycles = 50000;



{ Learning rate � = 1:0;
{ The number of di�erent runs for each parameter con�guration was set to 10;
each run started with a di�erent initial situation.

The results of the experiments are given in table 4; E denotes the exploration
parameter, fav the averaged best value on the ten runs, �f their standard de-
viation, fmax the best maximum value over the ten runs and cmax the number
of the cycle where it occurred. The standard Scout algorithm is denoted by SO ,
the �rst modi�cation by SM and the second modi�cation by SF .

Table 4. Comparison of the three di�erent update rules of the Scout algorithm on �ve
Walsh polynomials.

E fav �f fmax cmax

Walsh Polynomial 1: maximum value 86.11
SO 0.098 75.562 3.307707 81.900 37828
SM 0.021 76.472 3.978143 83.380 43375

SF 0.015 75.038 3.680018 84.020 11693
Walsh Polynomial 2: maximum value 66.79
SO 0.090 59.800 2.261076 64.950 46419

SM 0.015 60.214 2.635582 66.470 15584
SF 0.034 60.538 2.648760 66.110 24816
Walsh Polynomial 3: maximum value 79.81

SO 0.099 67.252 3.336.351 74.950 18976
SM 0.014 68.868 3.994012 76.370 6704
SF 0.024 70.614 3.790395 78.750 35437

Walsh Polynomial 4: maximum value 79.96
SO 0.097 70.350 3.222.770 76.180 47809
SM 0.018 69.884 3.983274 79.960 40006

SF 0.034 71.318 3.429279 78.300 1622
Walsh Polynomial 5: maximum value 67.33
SO 0.098 60.578 2.689939 66.360 24721

SM 0.020 60.050 2.557903 65.580 7183
SF 0.029 60.332 2.428684 66.360 45338

5 Discussion

As can be seen from the tables, the new versions of the Scout algorithm, namely
Scout M and Scout F, outperform the original algorithm. In the experiments on
RRF, the new versions approach the global optimum value (12.8) in a few cycles
and they require a very small number of evaluations (number of scouts times
cycles needed to reach the absolute best value). The original Scout algorithm is



not able to reach the global optimum value, even if the number of evaluations
is increased by a factor of 10. In the case of Walsh polynomials, all the three
algorithms do not �nd the global optimum value for the 5 polynomials, but the
two modi�ed versions aproach better values than the original Scout algorithm.
This second problem is a hard to solve problem for SGA and it comes out to be
di�cult for the Scout algorithms, too.

What can be seen from the test results is that the Scout algorithms (in ei-
ther version) perform in a similar manner as SGA. For the Walsh Polynomials,
Tanese reported a poor performance. SGA was not able to �nd the maximum
of the 8th order WP, and rarely found an optimum for the 4th order WP. On
the other hand, the RRF of Jones [6] supply building-blocks, and deceives hill-
climbing algorithms at the same time. The performance of SGA was reported
to be good. For the \SGA-like" update rules of the Scout algorithm, the perfor-
mance increases dramatically, too.

The discussions in sections 1 and 3 and the results in section 4 support the
hypothesis of a similarity of Scout algorithms and SGA. Evidence has been given
on three levels:

1. The Scout algorithms ful�ll basic requirements of procedures, which are ca-
pable of admissible detector con�guaration and goal attainement. Thus, they
have to be quali�ed as algorithms of the same algorithm familiy, to which
SGA belongs.

2. The Schemata theorem applies to Scout algorithms. This was shown in sec-
tion 3.

3. The Scout algorithms were tested on functions, for which the performance
of SGA is well known (RRF for a deceptive problem, which favours SGA;
Tanese function as a hard to solve problem for SGA). The more the update
rule resembles the \hidden" SGA update rule, the more the Scout algorithm
performs like a SGA.

But nevertheless, the Scout algorithm is in some points di�erent from SGA.
There are no direct manipulations of bitstrings possible in the algorithm. But
there is an update rule, which has no counterpart for the SGA. As it is not
possible to directly modify the SGA's inherent \hidden Scout," this is possible
for the Scout algorithm. By using a modi�ed update rule, the performance of a
Scout algorithm can become better than the performance of the SGA for certain
optimization problems (as it was demonstrated on the Tanese functions in section
4).

From this discussion, the essential role of Scout algorithms for algorithm de-
sign and for obtaining theoretical insights into evolutionary algorithms becomes
more clear.

Future work will concentrate on the mathematical issues raised in the fore-
going discussion (e.g. relating update rule and schematas more precisely) and
will study algorithms, which combines SGA and Scout algorithms by a manner
of \recruiting" Scouts by bitstring individuals (i.e. a mixed population).



References

1. Abbattista, F., Dalbis, D., The Scout Algorithm to Explore Unknown Spaces, Proc.
of the Int. Conference on Evolutionary Computation, ICEC'98, 1998.

2. Forrest, S., Mitchell, M., The Performance of Genetic Algorithms on Walsh Poly-

nomials: Some Anomalous Results and Their Explanation, Proc. of the 4th Int.
Conference on Genetic Algorithms, San Diego, CA, Morgan Kaufmann Publish-
ers, San Mateo, CA, 1991.

3. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learn-

ing, Addison{Wesley, 1989.
4. Holland, J.H., Goal{Directed Pattern Recognition, Proc. of the Int. Conference on

Methodologies of Pattern Recognition, Honolulu, Hawaii, pp. 287{296, 1969.
5. Holland, J.H.,Adaptation in Natural and Arti�cial Systems, University of Michigan

Press, 1975.
6. Jones, T., A Description of Holland's Royal Road Function, Evolutionary Compu-

tation, 2(3) pp. 409-415, 1995.
7. Mitchell, M., Forrest, S., Holland, J.H., The Royal Road for Genetic Algorithms:

Fitness Landscapes and GA Performance, Proc. of the 1st European Conference
on Arti�cial Life, Cambridge, MA, MIT Press, 1991.

8. Tanese, R., Distributed Genetic Algorithms for Function Optimization, PhD thesis,
The University of Michigan, Ann Arbor, MI, 1989.

This article was processed using the LATEX macro package with LLNCS style


