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Abstract—Proportional fairness has been shown to maximize
the aggregate utility of rate control for elastic traffic in a
resource sharing communication network, and has been applied
to a broad range of resource allocation problems. For a refined
analysis, however, the representation of proportional fairness
as a relation between vectors with positive components will
often not provide the level of detail that is needed. Therefore,
we study the representation as a fuzzy relation, and propose
several ways to specify a measure function to allocate a degree
of (proportional) relatedness. The approaches are based on
combinatorial aspects, especially size and number of related
subvectors, and geometric aspects, especially the minimum
effort to change a vector to become related. A case study
demonstrates that the introduced fuzzy fairness relations can
be used to numerically evaluate the suitability of the maxmin
fair state to represent the proportional fair state in a resource
sharing network problem with maximum link capacities.
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I. INTRODUCTION

Fuzzy relations have been studied within the framework
of fuzzy sets for a long time. The formal proposal was
given by Zadeh in his seminal paper [1], but today, each
fundamental textbook on fuzzy theory will contain a special
chapter on fuzzy relations (for example [2]). The goal
of introducing fuzzy relations is to numerically evaluate
linguistic statements like “A is much larger than B” or “A is
a little bit larger than B” in a rigid and consistent manner.
Within a pure set theoretic context (where it is often called
a crisp relation), such terms would equally appear as “A
is larger than B” and a further refinement is not possible.
More formally, a fuzzy relation is defined as a mapping
µ : X×Y → [0, 1], where X and Y are arbitrary sets, X×Y
is the direct product of these sets, i.e. the set of all pairs
(x, y) with x ∈ X and y ∈ Y . The membership function
µ assigns to each pair (x, y) from X × Y a membership
value µ[(x, y)], i.e. a real number from the interval [0, 1]. A
membership value 1 is the counterpart of the classic crisp
relation between x and y. Remember that a (crisp) relation
is defined as a subset R of X×Y , where (x, y) ∈ R means
that x and y are in relation R to each other, or xRy. Other
possible notations are x >R y if we focus on ordering,
x ∼R y if we focus on similarity, or x =R y if we focus
on equality. For example, “A is much larger than B” could
be indicated by µlarger[(A,B)] = 0.9 and “A is a little bit

larger than B” by µlarger[(A,B)] = 0.02. If the sets X and
Y are the same, we also speak about a binary fuzzy relation.

Fuzzy relations found numerous applications in many
fields. However, under given circumstances, the question is
often how to specify the mapping µ. From its definition
alone, there are no further requirements, and any possible
mapping into [0, 1] is feasible. Then, practical aspects have
to be weighted, as well as the integration of a fuzzy relation
in a superposed evaluation framework.

Proportional fairness has been shown to maximize the
aggregate utility of rate control for elastic traffic in a
resource sharing communication network [3] and has been
applied to a broad range of resource allocation problems.
The proportional fair state is characterized as a state vector
x of n positive-valued traffic rates such that for any other
feasible state y ∈ R+

n the inequality

n∑
i=1

yi − xi
xi

≤ 0 (1)

holds. This gives rise to the definition of a proportional
fair dominance relation between two n-dimensional vectors
x and y with positive components. It is said that x propor-
tional fair dominates y (x >pf y) if and only if the indicator
expression

∑
i(yi − xi)/xi is not positive, or alternatively,

if
∑
i yi/xi ≤ n.

In this work, we want to introduce and study various
ways of providing the fuzzy counterpart of this relation. We
can consider various network resource allocation problems,
where the availability of a fuzzy version of proportional
fairness is of advantage. Later on in the paper, we will exem-
plify how fuzzy proportional fairness allows for numerically
establishing claims like “the maxmin fair state is nearly
as much proportional fair as the proportional fair state”
for a specific routing in a resource sharing communication
network. For fuzzification of a relation, tractability has to be
taken into account as well. Often, a simple formulation of
a “measure” for fulfilling a relation can guide to intractable
problems, either due to combinatorial explosion of the
number of choices, or appearance of analytic expressions
that cannot be solved in a closed form. It is also of
importance to paraphrase a fuzzy relation in such a way
that the computation of the membership degree is tractable.
This will be the topic of section II of the paper, where we



are introducing a combinatorial approach, and alternatively
a geometric approach to fuzzy proportional fairness. The
example study for using fuzzy proportional fairness in a
resource sharing communication network will be provided
in section III. The paper ends with a short conclusion.

II. FUZZY PROPORTIONAL FAIRNESS

In the following, we are considering fuzzy measures for a
numerical representation of the degree, by which a positive
vector x ∈ R+

n proportional fair dominates another positive
vector y. For convenience, we will write µ(x, y) instead of
µ[(x, y)] while keeping in mind that the order of arguments
is relevant. Then, µ(y, x) describes the opposite situation,
the degree by which y dominates x.

A. Combinatorial approaches

In a combinatorial approach, we consider corresponding
subsets of the components of x and y. The measures are
based on counts on these subsets. More formally, we define
corresponding subvectors.

Given are two vectors x and y, each with n positive com-
ponents, and a subset I ⊆ {1, . . . , n} of indizes (index set).
Obviously, there are 2n such index sets. Then, xI denotes
the subvector of x, which is composed from components
xi of x with i ∈ I . For example, if x = (2, 3, 5, 8) and
I = {1, 3} then xI is the vector containing only the first
and third component of x, i.e xI = (2, 5). The size of a
subvector is the number of its components, or |I|.

1) Definitions: We introduce three ways of counting
subvector dominance (SVD), which will be called total,
internal, and external SVD. For evaluating total SVD (written
as µt−SV D), we take the size of the largest subvector of x
proportional fair dominating the corresponding subvector of
y and divide by n. Thus, if x >pf y then µt−SV D(x, y) = 1
since there is a subvector of x of size n that dominates y:
x itself.

For the internal and external SVD, we consider propor-
tional fair dominance between the subvectors themself. For
the internal SVD, we count the number of index sets I
for which

∑
i∈I yi/xi ≤ |I|, i.e. where the subvectors of

x proportional fair dominate the corresponding subvectors
of y according to their length. For also taking the “true”
dimension of the problem into account, the external SVD
counts the number of index sets, for which

∑
i∈I yi/xi ≤ n.

In both cases, we divide the count by 2n, the total number
of index sets, in order to yield a value between 0 and 1.

2) Tractability and suitability of SVD: The computation
of the total SVD is rather simple. We denote the values
yi/xi as ai and the set of all ai as a. Assume the ratios of
ai to be sorted in non-decreasing order, and the subscript
a(i) indicates the i-th smallest element of the ai according
to this sorting. Then, for the existence of a subvector with k
elements that proportional fair dominates the corresponding
subvector of y, it is necessary and sufficient that the sum

of the first k a(i)-ratios is smaller or equal to k. It is
sufficient since we can use the subvector for the index set
I = {(1), (2), . . . , (n)} which fulfills the condition. It is
also necessary, since the sum of any k yi/xi-ratios is larger
or equal to the sum of the k smallest ratios, and from the
former sum being smaller or equal to k it also follows that∑k
i=1 a(i) ≤ k.
Thus, for computing the total SVD, we just have to find

the largest k with this property:

µt−SV D(x, y) =
1
n

max
k=1,...,n

{k |
k∑
i=1

y(i)/x(i) ≤ k} (2)

If no k fulfills the condition, the measure is 0. The com-
putation of total SVD is tractable, the computational effort
grows linearly with n.

The total SVD can take values between 0 and 1. If all
yi > xi then there is even no single-element subvector of x
dominating the corresponding y-subvector, and the measure
is 0. If x >pf y then the largest k equals n and the measure
is 1. However, the main disadvantage of this measure is
the small number of levels. For n-dimensional vectors, the
measure will only have (n+ 1) different values.

The computation of the external SVD measure appears
to be a hard counting problem (#P-complexity) [4], [5].
The task is to count all possible subsets of a such that the
sum of its elements is smaller or equal to n. For smaller
n an exhaustive search could be made over all possible 2n

subvectors to compute this number. However, for larger n it
is better to consider an approximative method.

One approach is based on the so-called Markov Chain
Monte Carlo method [4]. First we define a Markov process
on a state vector s, which is initialized with s = {0, . . . , 0}
with n components, and some number b. Then, this vector
repeatedly changes into a new state according to the follow-
ing rules:

1) With probability 0.5 do not change state.
2) Otherwise, select a random element sj of s and change

it to 1− sj to get another state s∗.
3) If for the resulting state

∑n
i=1 s

∗
i ai ≤ b then set s =

s∗, otherwise keep former s.
The state vector will describe an index set (selecting all

indices i where si = 1). To use this as an estimate for the
number of subsets is based on the following approach. First,
the ai are sorted in increasing order, such that a(1) ≤ a(2) ≤
· · · ≤ a(n). Then, (n+ 1) values bi are defined as follows:
• b0 = 0
• bi = min{n,

∑i
j=1 a(j)} for 1 ≤ i ≤ n.

For some b, Nb denotes the number of subsets of a with
element sum smaller or equal to b (omitting a in the notion
for simplicity). Then one can rewrite

Nn =
Nbn

Nbn−1

×
Nbn−1

Nbn−2

× · · · × Nb1
Nb0
×Nb0 (3)



At first note that Nb0 = 1 (the only choice is to set all si to
0). But the other factors could be sampled by above Markov
process: to estimate Nbi/Nbi−1 one uses bi as b-value in the
process, and after r repetitions of the state change, it is
checked if the final state is also in the set of subsets with
element sum less or equal to bi−1 (note that this is a smaller
value).

This method was tested on random cases for values of n
from {5, 10, 15, 20}. The number of iterations of the Markov
process has been set to 100. For each case of n, 30 pairs of
vectors x and y were generated, and the estimate according
to Eq. (3), where each factor was sampled 100 times, was
computed 10 times and averaged. The ratio of the exact value
to the average estimate then was averaged over the 30 runs.
The results are shown in Table I.

Table I
RESULTS FOR APPROXIMATING THE NUMBER OF SUBSETS.

dimension average ratio sdev
5 0.95 0.05
10 1.0 0.13
15 1.07 0.14
20 1.38 0.2

It can be seen that the method in this setting is becoming
less acceptable for n = 20, while for lower n, the exact
solution might be evaluated much faster. However, the value
of r has a strong influence. If we increase r to 500 for the
case n = 20, the computation time is still much below the
time needed for the exact computation, but the average ratio
becomes 0.98± 0.16. The number of samples for the single
factors has lower influence. For example, changing to 1000
for n = 20 gives a similar result (1.38 ± 0.18). Table II
lists a few randomly picked up results for the case of 20
dimensions, in order to provide a visual impression of the
quality of the approximation.

Table II
SOME NUMERICAL EXAMPLES FOR APPROXIMATING THE NUMBER OF

SUBSETS.

Exact value Estimated value
247561 224006
812056 805207
437689 465182
517380 381953
260550 226550
256368 303769
539113 436566
134078 104157
524016 509931

1048576 888308
1042919 884490

This setting (r = 500 state changes of Markov chain, 100
samples per factor in Eq. (3), averaging over 10 estimates)

seems to be reasonable in case of 20 or more dimensions,
including consideration of a corresponding increase of r for
larger n.

Thus, the external SVD is not tractable, but can be approx-
imated. If for all i yi > nxi, then there is no subvector of x
proportionally fair dominating the corresponding subvector
of y and the measure becomes 0. If on the other hand all
xi > yi, then each subvector dominates, and the measure
becomes 1. However, x >pf y alone is not sufficient to
have a measure of 1.

The internal SVD is similar to the external SVD. The
number of subvectors to test grows exponentially, but an
approximation similar to the one given for the external
SVD might be devised. Also here, values can range from
0 to 1, while the measure is not necessarily 1 for the
case of proportional fairness. The external SVD will usually
be much larger than the internal SVD, due to the relaxed
condition for the indicator expression.

B. ε-Dominance measure: a geometrical approach

In a situation where a vector x does not proportional
fair dominate y we might consider the least effort to either
modify x to x∗ or y to y∗, or both, in order to achieve
x∗ >pf y

∗. The relation of the needed strength of change
to the magnitude of the vectors themself then gives another
fuzzy measure. For reasons of analytic tractability, we con-
sider here only a change of y and keep x fixed. We introduce
the fuzzy measure µε(x, y) as follows. If x >pf y then
µε(x, y) = 1. Otherwise, each component yi of y is modified
by subtracting δi (note that in theory, δi < 0 is possible).
The choice of δi has to fulfill:

n∑
i=1

yi − δi
xi

= n (4)

and the goal can be formulated as:

Minimize
n∑
i=1

δ2i , s.t. Eq. (4) (5)

Using the method of LAGRANGE multipliers, we intro-
duce the function

F (δi;λ) =
n∑
i=1

δ2i + λ

(
n∑
i=1

yi
xi
−

n∑
i=1

δi
xi
− n

)
(6)

and we have to solve the set of equations

∂F

∂δi
= 2δi −

λ

xi
= 0

δi =
λ

2xi



Introducing these δi in the condition that is given by Eq. (4)
gives λ:

n∑
i=1

yi
xi
−

n∑
i=1

λ

2x2
i

= n

λ =
∑
i yi/xi − n∑
i 1/2x

2
i

and so we achieve

δk =
∑n
i=1(yi/xi)− n

xk
∑n
i=1(1/x

2
i )

(7)
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Figure 1. Example for eps-dominance measure. The point y = (3, 3)
needs to be shifted by δ = (−28/4 · 17,−28/1 · 17) in order to become
proportional fair dominated by x = (4, 1). The shifted point corresponds to
the perpendicular of the point y onto the line (8−x)/4 that bounds the set
of points proportional fair dominated by x. The measure is 1− |δ|/|y| ≈
0.6.

Figure 1 shows an example for the case of 2 dimensions.
The point x = (4, 1) does not proportional fair dominate
y = (3, 3). However, after shifting y to y − δ, x >pf y − δ
holds. The shortest δ with this property corresponds to the
length of the perpendicular onto the line that bounds the
points proportional fair dominated by x. In this case, it is
computed to δ = (28/4 · 17, 28/17). We define the ratio of
the length of the shortest δ to the length of y, subtracted
from 1, as the ε-dominance measure.

µε(x, y) =

1 if x >pf y

1−
√Pn

k=1 δ
2
kPn

i=1 y
2
i

otherwise
(8)

where δk is given by Eq. (7).

III. CASE STUDY

We demonstrate the use of fuzzy proportional fairness for
fair traffic allocation in a resource sharing communication

network. The network is represented as a graph, and end-to-
end traffic between nodes of the graph has to be routed via
links through the network. In this model, it is assumed that
links between nodes have maximum capacities. The routing
of traffic along paths in the network can result in shared
links, thus causing congestion if traffic becomes too high.
For more details of this model, see e.g. [6].

A traffic allocation is called maxmin fair, if for every
increase of one traffic rate there is another traffic rate, of
same amount or smaller, that has to be decreased in order
to avoid congestion at some link. It is known that for this
model there is exactly one maxmin fair allocation, and it can
be found by the Bottleneck Flow Control (BFC) algorithm
[7]. On the other hand, in such a resource sharing network
there is also the proportional fair state, which is also unique
and characterized by maximizing total logarithmic utility of
traffic rates.

Often, both fair states do not coincide, especially if there
is much link sharing in the network due to high load of
end-to-end user traffic. However, for the maxmin fair state,
we can use the rather simple BFC algorithm, which has
linear complexity and serves exact solutions. If we want to
find the proportional fair state, we usually need to solve
a non-linear optimization problem with linear inequality
constraints and are obtaining only numerical approximations
to the solutions. The question then is if the higher effort to
find the proportional fair state is really needed, and if the
maxmin fair state cannot serve as “proxy” of proportional
fairness as well.

Using fuzzy proportional fairness, we can study the va-
lidity of such claims. Consider a fully connected graph with
6 nodes, and two routings with 10 paths: routing 1 is given
by the 10 node sequences

(4 6 5 2), (3 4 6 5), (1 2 3), (4 6 5 2 3), (3 4 6),
(2 3), (5 2 6 1), (5 2), (3 4 6 5 2), (5 4)

noindent and routing 2 is given by
(2 4 5), (2 4), (2 6), (1 5), (3 4),
(5 4 6), (5 4 6 2), (4 6), (3 1 2), (4 3).

Routing 1 has longer paths and thus higher link sharing
then routing 2. All maximum capacities in the network have
been set to 100 (rate units).

The maxmin fair states for routing 1 and
2 can be found by the BFC algorithm as
mmf1 = (20, 20, 40, 20, 20, 40, 20, 20, 20, 100) and
mmf2 = (33, 66, 66, 100, 50, 33, 33, 33, 100, 50). The
proportional fair states can be found by using a numerical
optimizer1: pf1 = (15, 30, 44, 11, 30, 44, 30, 30, 15, 100)
and pf2 = (43, 57, 76, 100, 50, 34, 24, 43, 100, 50). The
values here have been rounded. It can be seen, as it should
be, that pf1,2 >pf mmf1,2 and mmf1,2 >mmf pf1,2
(>mmf is the maxmin fair dominance relation). This is all
information that we can get if using crisp relations alone.

1Here, we used the NOptimize[]-function of Wolfram Mathematica R©8.



Table III
FUZZY FAIRNESS VALUES FOR THE EXAMPLE PROBLEMS, WHERE mmf

IS THE MAXMIN FAIR STATE, AND pf IS THE PROPORTIONAL FAIR
STATE.

Measure Routing 1 Routing 2
µt−SVD(mmf, pf) 0.7 0.8
µi−SVD(mmf, pf) 0.158203 0.234375
µi−SVD(pf,mmf) 0.529297 0.578125
µe−SVD(mmf, pf) 0.993164 0.999023

µε(pf,mmf) 1.0 1.0
µε(mmf, pf) 0.93222 0.973381

µmmfsvd (pf,mmf) 0.125 0.46875
µmmfsvd (mmf, pf) 0.876953125 0.546875

Table III list some fuzzy fairness measures. It also in-
cludes the fuzzy maxmin fairness relation that was intro-
duced in [8], and which corresponds to the internal SVD.
We can see that the internal SVD for both, proportional
fairness and maxmin fairness, has rather low values, but the
values are lower for the proportional fair state pretending a
maxmin fair state than for the maxmin fair state pretending
a proportional fair state in case of routing 1 (higher link
sharing) and larger for routing 2. Moreover, the geometric
measures are very close to 1.

To consider this point in more detail, we also sampled
probability distributions of the measures for routing 1. Fig-
ure 2 shows the distribution of the fairness degree measures
including random vectors. For both plots, 100,000 feasible
random vectors have been sampled, and the frequencies of
fuzzy fairness measures have been sorted into bins of size
0.01. It can be seen that the ε-dominance fuzzy proportional
fairness for pairs of random vectors follows a normal distri-
bution. The increase at the end for the measure 1 corresponds
to the fact that the degree is set to 1 if one sample vector
proportional fair dominates the other, and there is no need
to shift the second vector anymore. In case that one vector
is the proportional fair state, the fuzzy measure for the
second vector for proportional fair dominating pf1 is clearly
becoming smaller, the standard deviation is nearly same, and
the sharp peak for measure 1 vanishes.

We consider the same situation, but now sample the
distribution of the eps-dominance measure between the
maxmin fair state mmf1 and a random vector. Since the
numerical values do not fit with the scale of Fig. 2, the only
non-zero values are listed in Table IV.

Note that the same evaluation for proportional fairness
would always give the value 1. The high similarity of
the distribution for proportional and maxmin fairness is
notable. In more than 90% of the cases, the maxmin fair
state proportional fair dominates feasible traffic allocations,
and then the distributions falls very sharply for even small
differences to 1.

We can conclude and provide a number of arguments
that maxmin fairness can be used as proportional fairness
“proxy,” if the focus is on the geometric distance to the
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με(rand,pf)
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Figure 2. Distribution of eps-dominance measures between two random
traffics for the example problem (red curve) and between a random point
and the proportional fair state (blue curve).

Table IV
DISTRIBUTION OF THE eps-DOMINANCE MEASURE BETWEEN THE
MAXMIN FAIR STATE AND A RANDOM TRAFFIC FOR THE EXAMPLE

PROBLEM.

Measure Probability
0.0 ∼ 0.86 0.0

0.87 0.0001
0.88 0.0003
0.89 0.0007
0.90 0.00125
0.91 0.00174
0.92 0.00301
0.93 0.00375
0.94 0.00634
0.95 0.00908
0.96 0.01104
0.97 0.01429
0.98 0.01839
0.99 0.02039
1.0 0.90944

proportional fair state, in comparison to distances to other
feasible traffic allocations. From a grouping point of view
(expressed by subvector dominance), the choice is also
possible, but less favourable.

IV. CONCLUSION

In order to provide a fuzzy relation for proportional
fairness, we have to specify a measure for the degree
of one vector proportional fair dominating another vector.
We have proposed several ways to accomplish this goal,
based on combinatorial and geometric aspects. Combinato-
rial approaches refer to the number and size of subvectors
dominating corresponding subvectors of the other vector.
Geometric approaches refer to the spatial location of the
two vectors. Here, we focused on the minimal effort to
modify one vector in order to become proportional fair
dominated. The tractability and suitability of such measures
has been discussed, and it was shown that either all proposed
measures are computationally tractable, or at least a suitable
approximation procedure is available. To demonstrate the
use of such fuzzy fairness relations, we have compared the



maxmin fair state and proportional fair state in a resource
sharing communication network. For two examples it could
be evaluated that the maxmin fair state (which can be easily
found by the Bottleneck Flow Control algorithm) can serve
as fairly good representation of the proportional fair state as
well (which can only be numerically approximated).
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