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Abstract. Many-objective optimization refers to optimization problems
with a number of objectives considerably larger than two or three. In this
paper, a study on the performance of the Fast Elitist Non-dominated
Sorting Genetic Algorithm (NSGA-II) for handling such many-objective
optimization problems is presented. In its basic form, the algorithm is not
well suited for the handling of a larger number of objectives. The main
reason for this is the decreasing probability of having Pareto-dominated
solutions in the initial external population. To overcome this problem,
substitute distance assignment schemes are proposed that can replace the
crowding distance assignment, which is normally used in NSGA-II. These
distances are based on measurement procedures for the highest degree,
to which a solution is nearly Pareto-dominated by any other solution:
like the number of smaller objectives, the magnitude of all smaller or
larger objectives, or a multi-criterion derived from the former ones. For a
number of many-objective test problems, all proposed substitute distance
assignments resulted into a strongly improved performance of the NSGA-
II.

1 Introduction

Recently, there has been increasing awareness for the specific application of evo-
lutionary multi-objective optimization algorithms to problems with a number of
objectives considerably larger than two or three. Fleming et al. [8] note the com-
mon appearance of such problems in design optimization, and suggested the use
of the term many-objective optimization. Most evolutionary multi-objective op-
timization algorithms (EMOs) show a rather decreasing performance, or rapidly
increasing search effort for an increasing number of objectives. Other problems
with the handling of many objectives are related to the missing means for perfor-
mance assessment, to difficulties in visualizing results, and to the low number of
existing, well-studied test problems. The DTLZ suite of test problems [6, 7] de-
fines most of their problems for an arbitrary number of objectives. Results here
have been reported for up to 8 objectives [10]. The Pareto-Box problem [12] was
also defined for an arbitrary number of objectives, and results were given for up
to 15 objectives.

The reason for the decreasing algorithm performance is strongly related to the
(often even exponentially) growing problem complexity. This growing complexity



2 M. Köppen and K. Yoshida

can be measured by several means. One example for this is, if considering a
randomly initialized population, the rapidly decreasing probability of having
a pair of solutions, where one solution Pareto-dominates the other. Within the
unit hypercube, the expectation value for the number of non-dominated solutions
among m randomly selected solutions can be computed by [12]:

em(n) = m−
m∑

k=1

(−1)k+1

kn−1

(
m

k

)
(1)

where m stands for the number of individuals, and n for the number of objectives.
For example, for 15 objectives and 10 individuals, the expectation value for the
number of dominated solutions is already as low as 0.0027.

Among the most successful and most often applied EMOs we find the Fast
Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) [3, 5]. But the poor
performance of the NSGA-II algorithm for a large number of objectives has al-
ready been reported as well, see e.g. [10, 9]. This can be considered a kind of
misfortune, as otherwise, the NSGA-II is one of the most attractive EMOs today,
due to its simple structure, its availability, the elaborated design of its opera-
tions [1], the existence of experience in practical applications, and its excellent
performance on the majority of test problems.

This paper attempts to overcome this drawback by analyzing the reasons for
NSGA-II’s failure in the many-objective optimization domain, and by providing
corresponding countermeasures. The main approach, as will be more detailed
in section 2, is to replace the crowding distance assignment that is used for
secondary ranking among individuals of the same rank. Four methods will be
considered here, which all suit better to a larger number of objectives. Section
3 will present results for the convergence metric and Pareto front coverage for a
number of many-objective test problems, and section 4 will render conclusions
from these results.

2 Substitute distance assignments in NSGA-II

2.1 Structure of NSGA-II algorithm

The outline of the NSGA-II algorithm can be seen in the following listing. Here,
we are focussing on a multi-objective minimization problems.

NSGA-II:
Rt = Pt ∪Qt combine parent and children population
F = fast nondominated sort(Rt) F = (F1, F2, · · · )

all non-dominated fronts of Rt

Pt+1 = ∅, i = 1 init next parent population
while |Pt+1| < N do until the parent population is filled
secondary ranking assignment(Fi) calculate ranking values in Fi

Pt+1 = Pt+1 ∪ Fi, i = i + 1 include i-th non-dominated front in the



Substitute Distance Assignments in NSGA-II . . . 3

end parent population
Sort(Pt+1,≥n) sort in descending order using ≥n

Pt+1 = Pt+1[0 : N ] choose the first N elements of Pt+1

Qt+1 = make new population(Pt+1) use selection, crossover and mutation
t = t + 1 to create a new population Qt+1

For each generation t, the algorithm maintains an external population of N par-
ent individuals Pt and creates a child population Qt from the parents. Both
populations, fused together, are lexicographically sorted by two different global
ranking measures. The first is the non-dominated sorting, as result of the pro-
cedure fast nondominated sort. For details of its implementation, see [3]. The
main outcome of this procedure is the assignment of a rank to each solution in
the set Rt. Two solutions of the same rank do not dominate each other, but
for each solution of rank r > 1, there exists at least one dominating individual
of lower rank. The rank 1 is assigned to all solutions that are in the Pareto
set. Thus, the rank value implies a total ordering of the set of solutions in the
algorithm for each generation.

To yield a more competitive ordering, NSGA-II also assigns a secondary rank-
ing measure to each solution. So far, only the crowding-distance-assignment
has been considered, as given in the following listing:

CROW-DIST: crowding-distance-assignment(I)
l = |I| number of solutions in I
for each i, set I[i].dist = 0 initialize distance
for each objective m do
I = sort(I,m) sort using each objective value
I[1].dist = I[l].dist = ∞ so that boundary points are always

selected
for i = 2 to (l − 1) do for all other points
I[i].dist = I[i].dist + (I[i + 1].m− I[i− 1].m)

end
end larger dist count better

This distance measure is well suited for a later stage of the algorithms’ appli-
cation, where the population is already close to the true Pareto front of the
problem (hopefully). It forces the solutions to keep distance to their neighboring
solutions in objective space. Using this distance in addition to the ranking, the
comparison of two solutions is based on the ordering relation ≥n:

i ≥n j if (irank < jrank) or ((irank = jrank) and (idist > jdist)) (2)
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2.2 NSGA-II and many objectives

In the case of a larger number of objectives, the performance of NSGA-II is
notably dropping, down to a level, where its behavior resembles more or less a
random search [12]. Considering the plot in fig. 1, some insight into this phe-
nomenon can be yielded. For an initial parent population of 100 individuals,
ranks have been computed. The plot shows the average number of rank 1 solu-
tions over 100 such random initializations and with increasing number of objec-
tives for the DTLZ2 and DTLZ6 problems. For more than 2 or 3 objectives, the
amount of rank 1 solutions sharply increases. For the (also known to be more
complex) DTLZ6 problem, the rank 1 rapidly accounts for more than 90 percent
of the population. For the partial ordering used in the NSGA-II, this means that
most of the ranking now is delegated to the secondary ranking assignment, i.e.
the crowding distance comparison. However, measuring crowding in an initial
population is randomized as well, and as a result, the algorithm gets stuck right
from the beginning.
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Fig. 1. Average number of rank 1 individuals in an initial random parent population
of 100 individuals for the DTLZ2 and DTLZ6 problems with 2 to 30 objectives.

It seems suitable to consider a different way for secondary ranking assignment
in the first (explorative) generations of the algorithm, in order to avoid the
algorithm getting stuck. This will be discussed in the next subsection.

2.3 Secondary ranking assignment by Pareto dominance degrees

As it was already pointed out in the introduction, with increasing number of
objectives the appearance of Pareto-dominance among the solutions becomes
more and more unlikely. However, two solutions can be close to the situation
where one solution Pareto-dominates the other. As a basic idea, we are going
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to measure this kind of closeness and use such measurements instead of the
crowding distance for the secondary ranking in the NSGA-II algorithm.

The degree, by which a solution A is nearly-dominated by a solution B, can
be related to more than one criterion. Basically, the following independent cases
can be considered:

– the number of smaller or larger objectives;
– the magnitude of all smaller or larger objectives; or
– a multi-criterion based on the former ones.

In the following, we are going to consider measurements for all these cases.
The measurements take advantage of the fact that in NSGA-II, due to the non-
dominated sorting, the secondary ranking is only applied to solution sets I where
no solution Pareto-dominates any other solution of the same set: pareto set(I) =
I.

Subvector dominance (SV-DOM): given two solutions A and B, the proce-
dure svd(A,B) directly counts the number of objectives of B that are smaller
than the corresponding objectives in A. For each solution I[i] in a set I of so-
lutions, the largest such value among all other solutions is assigned as distance
value to I[i]. The smaller this value, the smaller is the number of lower objectives
that appear among all other members of the set I. Such a solution is more close
to being not Pareto-dominated by any other solution. For a strongly Pareto-
dominated solution, its distance equals the number of objectives. In [2], such a
measure was used for the so-called efficiency of order k -selection among Pareto
optimal solutions. The pseudo-code for computing SV-DOM is as follows:

SV-DOM: subvector-dominance-assignment(I)
def svd(i, j) comparing solution i with j
cnt = 0 initialize counter
for each objective m do
cnt = cnt + 1 if I[j].m < I[i].m count number of smaller objectives

return cnt
end
for each i = 1, · · · , |I| do for all solutions I[i]
set I[i].dist = 0 initialize distance
for each j 6= i do among all other solutions j
v = svd(i, j) find the one with the largest
if I[i].dist < v then I[i].dist = v number of smaller objectives;

end this j gives the distance value for i
end smaller dist count better

-eps-dominance (−ε-DOM): for two solutions A and B of the solution set,
the procedure mepsd(A,B) considers all objectives of B that are larger than



6 M. Köppen and K. Yoshida

the corresponding objectives of A (i.e. worse). It computes the smallest value
ε, which, if subtracted from all objectives of B, makes B Pareto-dominating A.
This corresponds to the concept of additive ε-dominance. For each solution I[i] in
a set I of solutions, the smallest such value among all other solutions is assigned
as distance value to I[i]. The larger this distance for a solution, the higher the
“effort” that would be needed to make the other solutions Pareto-dominating the
former. For a Pareto-dominated solution, the distance is 0. The ε-DOM distance
can also be computed as follows:

-eps-DOM: meps-dominance-assignment(I)
def mepsd(i, j) comparing solution i with j
max = 0 initialize maximum variable
for each objective m do
if I[j].m > I[i].m then for all larger objectives
max = max [I[j].m− I[i].m,max] get largest differing objective

end
return max

end
for each i = 1, · · · , |I| do for all solutions I[i]
set I[i].dist = ∞ initialize distance
for each j 6= i do among all other solutions j
v = mepsd(i, j) find the one with the smallest
if I[i].dist > v then I[i].dist = v maximal differing larger objective;

end this j gives the distance value for i
end larger dist count better

Fuzzy Pareto dominance (FPD): Given two solutions A and B, this proce-
dure accounts for all objectives of B that are also larger than the corresponding
objectives of A (i.e. worse). Instead of seeking the maximum difference (as we
did for ε-DOM), and thus basing the comparison onto a single objective only, we
are going to fuse all the magnitudes of larger objectives into a single value. The
procedure equals the Fuzzy-Pareto-Dominance relation as presented in [11]. It
uses the notion of bounded division of two reals x and y from [0, 1]:[

x

y

]
=

{
1, if y ≤ x

x/y, if x < y
(3)

All bounded quotients of corresponding objectives in A and B are multiplied. For
a smaller objective in B, this gives a factor of 1. Thus, if A is Pareto-dominated
by B, the measure becomes 1. For each solution I[i] in a set I of solutions, the
largest product value from all other solutions is assigned as distance value to I[i].
The smaller this value, the lower the degree by which a solution is dominated by
any other solution in I. The pseudo-code for FPD distance measure is as follows:
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FPD: fuzzy-pareto-dominance-assignment(I)
def fpd(i, j) comparing solution i with j
cv = 1 initialize comparison value
for each objective m do
cv = cv · [I[i].m/I[j].m] multiply bounded quotient

end
return cv

end
for each i = 1, · · · , |I| do for all solutions I[i]
set I[i].dist = 0 initialize distance
for each j 6= i do among all other solutions j
v = fpd(i, j) find the one with the largest
if I[i].dist < v then I[i].dist = v comparison value to i;

end this j gives the distance value for i
end smaller dist count better

Sub-objective dominance count (SOD-CNT): None of the methods intro-
duced so far regards for all aspects of the ranking relation between two solu-
tions. If the comparison is based on all larger objectives, the information about
smaller objectives is neglected, and vice versa. If the number of larger objectives
is considered, nothing is known about the difference in the magnitudes of these
objectives. Thus, we are also considering a multi-criterion here, and provide a
distance assignment procedure for such a multi-criterion ranking.

Taking any solution A of a (non-dominated) solution set I, we derive a set
SA of all pairs of two single-criterion distance measures to all other solutions B
of the set. In this study, we take the pair M − svd(A,B) (M is the number of
objectives) from SV-DOM distance and mepsd(A,B) from −ε-DOM distance.
This set SA has a Pareto set, which is composed of all solutions that “perform
well” against A. Each solution in I gets the number of occurrences in all the
possible Pareto sets PSOA assigned. The higher this number, the more often
the corresponding solution “performs well” against some other solution in I. In
pseudo-code:

SOD-CNT: subobjective-dominance-count-assignment(I)
for each i, set I[i].dist = 0 initialize distance
for each i = 1, · · · , |I| do for all solutions I[i]
Si = {(M − svd(i, j),mepsd(i, j)) | j 6= i}

all pairs of subvector dominance
and -eps-dominance distances

POSi = pareto set(Si) get the Pareto set of Si

for each j ∈ PSOi do for each solution j in that Pareto set
I[j].dist = I[j].dist + 1 increment counter of solution j;
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end larger dist count better

For better understanding, we will provide an example for the computation of
SOD-CNT. Consider the four vectors A = (2, 1, 3), B = (1, 2, 4), C = (3, 3, 1)
and D = (1, 4, 1). The values for M−svd(row, column) and meps(row, column)
are given in the following tables:

(2,1,3) (1,2,4) (3,3,1) (1,4,1)
(2,1,3) - 2 2 1
(1,2,4) 1 - 2 2
(3,3,1) 1 1 - 2
(1,4,1) 2 2 2 -

M − svd(row, column)

(2,1,3) (1,2,4) (3,3,1) (1,4,1)
(2,1,3) - 1 2 3
(1,2,4) 1 - 2 2
(3,3,1) 2 3 - 1
(1,4,1) 2 3 2 -

mepsd(row, column)

For example, the entry “2” in the second column of the first row in the left-hand
table indicates that the solution (1, 2, 4) has one smaller objective than (2, 1, 3).
Thus, the entry is 3 − 1 = 2. The corresponding entry in the right-hand table
indicates that at least 1 has to be subtracted from all objectives in (1, 2, 4) to
make it Pareto-dominating (2, 1, 3).
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Fig. 2. Example for the computation of the sub-objective dominance count (SOD-
CNT) secondary ranking measure.
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Figure 2 shows the following evaluation for each solution. For example, for
solution A, we read the three pairs (2, 1) for comparing with B, (2, 2) for compar-
ing with C, and (1, 3) for comparing with D from the tables above. The Pareto
set of these three pairs is the set {(2, 1), (1, 3)}, which refers to the solutions B
and D (black circles in the figure). Doing this for all four solutions, A appears
three times in such a Pareto set, B one time, C one time and D two times. This
equals the distance assignment to the four solutions, and gives A to be of higher
value for the secondary ranking, followed by D, and B,C having lowest ranking
value.

2.4 Using the substitute distance assignments

In the NSGA-II algorithm, the four proposed distance assignment procedures are
used the same way as the crowding distance, as given by eq. (2). For SV-DOM
and FPD, the “>” has to be replaced by “<”, as for these procedures, smaller
values count better.

3 Results

3.1 Convergence metric

In this subsection, we present some results that were obtained using the newly
introduced substitute distance assignments. As test problems, DTLZ2, DTLZ3
and DTLZ6 for 2, 8 and 15 objectives have been used. Since these test problems
are well covered in literature, and also for limited space reason, we are not going
to provide details of the definitions of these test problems here. For details,
the reader is kindly referenced to the literature [6, 7]. Also, the genuine many-
objective Pareto-Box test problem, as introduced in [12], was studied. Here, to
any point x ∈ [0, 1]M , the M objectives |xi − 0.5| were assigned.

As performance measure, the convergence metric [4] was used. In case of
DTLZ2, DTLZ3 and DTLZ6, this measure simplifies to |I|−1, where I is a solu-
tion (vector of objectives). In case of the Pareto-Box problem, the convergence
metric can be also simply computed by |I|, as the task here is to come close to
the mid-point of the unit hypercube.

The settings for the NSGA-II algorithm were the same as used in [10]:
crossover probability 0.7, distribution index for SBX 15, mutation probability
1/M , and distribution index for polynomial mutation 20. However, due to a bet-
ter fit to the many-objective optimization domain, search effort was kept small.
In all cases, a population of 20 individuals was used, and each experiment went
over 300 generations. This is equal to the smallest settings that were used in
[10].

The results listed in table 1 were achieved by averaging the minimal con-
vergence metric of a population over the 300 generations for 30 runs each. The
reason that no archive was used is as follows: for a larger number of objectives,
any solution tends to be included in the archive, as Pareto dominance is be-
coming more unlikely. Thus, the procedure for reducing archive size equals more
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or less the procedure of elitist selection in the population itself, and it is easily
observed that the values of the convergence metric for both sets do not differen-
tiate much. The presented substitute distance assignments could be considered
for adding to an archive in a many-objective optimization problem as well. This
is the topic of an on-going study of the authors. The ±-values in table 1 refer to
the corresponding standard deviation from the sample average.

Table 1. Results of the application of the substitute distance assignments to common
test problems with increasing complexity.

Obj. CROW-DIST SV-DOM -ε -DOM FPD SOD-CNT

Convergence Metric for Pareto-Box

2 (3 ± 3) · 10−5 (5 ± 7) · 10−5 (3 ± 4) · 10−5 (7 ± 9) · 10−5 (8 ± 10) · 10−5

8 0.49 ± 0.04 (16 ± 18) · 10−4 0.028 ± 0.006 (6 ± 15) · 10−4 (8 ± 5) · 10−4

15 0.98 ± 0.07 0.02 ± 0.01 0.066 ± 0.008 0.09 ± 0.08 0.005 ± 0.001

Convergence Metric for DTLZ2

2 (9 ± 2) · 10−4 (3 ± 2) · 10−4 (8 ± 2) · 10−4 (5 ± 2) · 10−4 (7 ± 4) · 10−5

8 0.80 ± 0.07 (3 ± 2) · 10−4 0.029 ± 0.007 0.15 ± 0.06 (11 ± 10) · 10−5

15 0.81 ± 0.06 0.002 ± 0.002 0.06 ± 0.01 0.3 ± 0.1 (14 ± 17) · 10−5

Convergence Metric for DTLZ3

2 22 ± 9 20 ± 10 15 ± 9 16 ± 10 16 ± 6

8 890 ± 60 50 ± 20 40 ± 20 230 ± 50 30 ± 10

15 990 ± 80 80 ± 30 60 ± 20 400 ± 100 30 ± 10

Convergence Metric for DTLZ6

2 0.7 ± 0.2 0.7 ± 0.2 0.51 ± 0.06 0.8 ± 0.3 0.6 ± 0.1

8 9.05 ± 0.09 7.4 ± 0.6 6.6 ± 0.9 8.7 ± 0.3 3.8 ± 0.9

15 9.05 ± 0.08 8.1 ± 0.4 8.2 ± 0.5 8.9 ± 0.1 4.8 ± 0.8

The results clearly demonstrate the better performance of all substitute dis-
tance assignments, even in the case of two objectives. Between the substitutes,
SOD-CNT achieves the best results, and FPD the worst (but generally still better
than CROW-DIST). Table 2 gives a comparison to results from literature. This
shows the modified NSGA-II also to be highly competitive, especially regard-
ing the comparable low effort that was needed to achieve the given convergence
metric values.

3.2 Pareto front coverage

Having found substantially better convergence metric values in the former sub-
section, the question about Pareto front coverage has to be considered as well.
However, the quantitative assessment of the coverage is not simple. So far, sev-
eral ad hoc approaches for certain test problems, with a focus on visualization
have been presented (as e.g. in [10]). For doing similarly for many objectives, we
propose a class of test problems that allows for easy visualization and evaluation
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Table 2. Comparison of results with the results reported in [10]. Column 2 also lists
average convergence metric values for 1000 randomly initialized vectors. The entries in
the columns entitled Effort are population size times number of generations that were
used to achieve the reported results.

Obj. Random PESA[10] NSGA-II[10] Effort SOD-CNT Effort

Convergence Metric for DTLZ2

2 0.83 0.00008 0.00180 20 · 300 0.00007 20 · 300

8 0.84 0.00689 2.30766 600 · 600 0.00011 20 · 300

15 0.83 - - - 0.00014 20 · 300

Convergence Metric for DTLZ3

2 1077.7 22.52023 21.32032 20 · 500 16.0 20 · 300

8 1082.2 7.23062 1753.41364 600 · 1000 30.0 20 · 300

15 1079.3 - - - 30.0 20 · 300

Convergence Metric for DTLZ6

2 9.10 0.79397 0.63697 20 · 500 0.6 20 · 300

8 9.08 6.32247 10.27306 600 · 1000 3.8 20 · 300

15 9.08 - - - 4.8 20 · 300

of Pareto front coverage, which is referred to as P* problem for indicating the
variable number of points from which the objectives are derived.

Given is a set P of m points Pi in the Euclidian plane (the case of two
dimensional Euclidian space is completely sufficient for the present analysis).
The feature space F equals the Euclidian plane, where the points Pi are located.
The objective space O is an m-dimensional vector space. For a given point x in
the feature space, its objective vector o(x) is the vector with the components
oi = d(x, Pi) for i = 1 to m, where d(a, b) is the Euclidian distance of two points
a, b ∈ F . Thus, the objectives to minimize are the distances to a given collection
of points, where the distance to any of these point is treated as an independent
objective.

The Pareto set of this problem, i.e. the set of feature vectors giving objective
vectors that are not dominated by any other feasible objective vector (in other
words, are closest to all points Pi), equals the convex closure of the points Pi.
Here, convex closure means the union of the volume enclosed by the convex hull
and the convex hull itself.

To see this, consider the left subfigure of fig. 3. Consider any point X in
the plane that does not belong to the convex closure of the points Pi. As-
sume that the convex hull of the points Pi is being established by the poly-line
A1A2 . . . AnAn+1=1, where each Ai ∈ P . As X is outside the enclosed area,
there must be a connection AiAi+1 such that all points of P are either on the
connecting line, or on the opposite side of the connecting line than X. Dropping
a perpendicular from X to the connecting line, one can see that any point Y
between X and the line is more close to any point on the opposite side of the
connecting line, and more close to any point on the connecting line as well. Thus,
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for any point X outside the convex closure there is a point that is more close to
all points of P , and X does not belong to the Pareto set.

Ai Ai+1

X

Y

B

A
B

A1

A2

A3

A4A5

A6

A7

A8

U V

Fig. 3. Illustrating the proof that the Pareto set of the P* problem for the points Ai

is the convex closure of these points.

To see that none of the points of the convex closure dominates any other,
consider the right subfigure of fig. 3. By connecting any two points U and V
of the convex closure and drawing the perpendiculars to this line trough U and
through V , the convex closure is segmented into three parts. There is at least one
point of the point set A (and thus of P ) located to the l.h.s. of the perpendicular
through U (indicated by encircled A in the figure), or located on this line, and
there is at least one point of A belonging to the r.h.s. of the perpendicular
through V or on it (indicated by encircled B). Otherwise, the shape would not
be convex. Now, point U is more close to any point of A than V , and point V is
more close to any point of B than U . Neither U nor V can dominate the other.

Having thus a rather simple solution structure in the feature space (not
objective space, which is high-dimensional), the problem is worth a study for a
heuristic algorithm for several reasons:

– the number of objectives can be easily scaled
– by reducing the area enclosed by the convex closure, the effort for random

search (the “Monte-Carlo Barrier”) can be easily increased
– typical performance measures (as average distance to Pareto front, number

of individuals belonging to the Pareto front) can be directly computed
– as the feature space is two-dimensional, the results can be directly visualized;

however, the extension to higher-dimensional spaces is straightforward
– the search space is not bounded
– the problem is a continuous optimization problem
– boundary conditions can be directly included
– crowding in objective space directly corresponds to crowding in feature space
– modeling of algorithm behavior seems feasible
– by using the distance to the center of gravity of the points instead, a com-

parison to the single-objective case becomes possible



Substitute Distance Assignments in NSGA-II . . . 13

We have studied the performance of the modified NSGA-II algorithms on such
a 15-objective P* problem.
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Fig. 4. Final populations using the considered secondary ranking methods on a 15-
objective P* problem after 100 generations. Population size is 20.

Figure 4 gives a result that demonstrates how differently the considered meth-
ods are behaving. Note that this figure shows the Pareto front of the algorithms
and the test problem in feature space, and not in the (15-dimensional) objec-
tive space. The best coverage of the polygon is achieved with the FPD method,
closely followed by −ε-DOM. These are the methods that employed the magni-
tudes of larger objectives of solutions directly. SVD shows a rather small coverage
of the Pareto front, and SOD-CNT, having by far the best convergence metric
values, nearly collapses into a single point. Notable also the distribution of the
“default” crowding distance measure: as the crowding distance, by construction,
keeps extreme individuals in the objective space, it favors individuals that are
near to the corners of the polygon. For the P* test problem, this feature of the
crowding distance is obviously a drawback.

4 Conclusions

We have studied a number of modifications of the NSGA-II algorithm, to make
this algorithm better capable of solving many-objective optimization problems.
The modifications were substitutes for the crowding distance assignment, based
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on closeness of solutions to the case that one solution Pareto-dominates the other.
The results and experiences, also taking non-measurable aspects into account,
can be summarized as follows:
SV-DOM. This distance measure is very easy to implement, and needs the
lowest computation time. It showed the second best results for the convergence
metric, but failed in the Pareto front coverage study.
−ε-DOM: This distance measure can also be easily implemented, and needs
a little more computational effort than SV-DOM. Convergence metric perfor-
mance was average among the considered modifications, but is accompanied by
a good Pareto front coverage. Altogether, this makes this method a good trade-
off among all the studied modifications.
FPD. This method has a rather high computational effort, and it also has some
formal weaknesses regarding issues of division by 0 etc. Among the studied mod-
ifications, the convergence metric performance was worst (however, still better
than the crowding distance), but it demonstrated the best Pareto set coverage
for the P* problem.
SOD-CNT. The convergence metric of this method is excellent. This good
result is weakened by a very poor Pareto front coverage, and also higher compu-
tational effort. Moreover, in contrary to the other methods, the processing time
is not predictable, as the size of the Pareto sets for the single solutions may vary.
During the experiments, we faced an unexpected very long processing time for
larger populations and a small number of objectives. Also, if the non-dominated
sets gets smaller, the differentiation among the individuals by this measure be-
comes low. In a few cases, we could even observe convergence of the algorithm,
despite of the use of a mutation operation. Some issues regarding this approach,
which showed a very good convergence metric, still need further investigation.
To summarize, the results of this study indicate two promising strategies for
the application of NSGA-II to many-objective optimization problems: first is to
replace the crowding distance completely by −ε-dominance distance, second is
to use the sub-objective dominance count distance SOD-CNT for the first gen-
erations of the algorithm, as long as most of the individuals get rank 1 assigned,
and switch to the crowding distance, once the SOD-CNT values tends to be
equalized over the whole population.
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