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Abstract Proportional fairness is a concept from re-
source sharing tasks among n users, where each user
receives at least 1/n of her or his total value of the
infinitely divisible resource. Here we provide an ap-
proach to proportional fairness that allows its exten-
sion to discrete domains, as well as for the direct ap-
plication of evolutionary computation to approximate
proportional fair states. We employ the concept of re-
lational optimization, where the optimization task be-
comes the finding of extreme elements of a binary rela-
tion, and define a proportional fairness relation corre-
spondingly. By using a rank-ordered version of propor-
tional fairness, the so-called ordered proportional fair-
ness, we can improve the active finding of maximal pro-
portional fair elements by evolutionary meta-heuristic
algorithms. This is demonstrated by using modified ver-
sions of the Strength Pareto Evolutionary Algorithm
(version 2, SPEA2) and Multi-Objective Particle Swarm
Optimization (MOPSO). In comparison between pro-
portional and ordered proportional fairness, and by us-
ing relational SPEA2, the evolved maximum sets of
ordered proportional fairness achieve 10% more dom-
inance cases against a set of random vectors than pro-
portional fairness.

1 Introduction

Optimality in resource sharing tasks is a problem that
appears in many application fields. One characteristic
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of such problems is that efficiency alone, expressed for
example by maximality of a real-valued objective func-
tion, often not suffices to establish a suitable set of so-
lutions. In addition to the inherent multi-objective na-
ture of such problems, there is also a requirement of
a fair usage policy for the resource utilization. While
a solution where all resources are allocated to a sin-
gle agent are still belonging to the Pareto optimal set,
such allocations would exclude all other agents from
the resource access. Therefore there is also the need
for a formal concept of fairness that helps to effectively
exclude such solutions. This problem might first have
become apparent in the design and control of data com-
munication networks. Maxmin fairness for routing and
rate control in wired networks with link capacity con-
straints was introduced in [1]. It might be one of the
first prominent approaches to fairness in a specific re-
source sharing task and extends the concept of maxi-
mization of the smallest allocation. A number of prob-
lems with maxmin fairness, especially problems caused
by the rather strict focus on small allocations, led to
the consideration of proportionality in the allocation as
an alternative means for expressing fairness. Kelly et
al. proposed proportional fairness in [2] as a state that
maximizes the total utility of rate control for elastic
traffic in a resource sharing communication network.
This has become the most prominent approach to fair-
ness so far.

However, there are still two problems with propor-
tional fairness. One is a lack of an exact algorithm to
generally find the proportional fair state within a set of
feasible states. As will be detailed in the next section,
attempts to provide an algorithmic approach to propor-
tional fairness are usually accompanied by a redefinition
of proportional fairness. The most common approach is
the replacement of proportional fairness with the sum



2 Mario Köppen et al.

of utilities and thus specifying a convex optimization
problem. The other problem is the extension of propor-
tional fairness to a discrete domain (i.e. sharing of indi-
visible resources). When wired communication evolved
into wireless communication, problems of sharing indi-
visible resources prevailed. A main aspect of this prob-
lem is the appearance of discrete feasible spaces where
no proportional fair state exists.

Here we are going to approach both target prob-
lems, by way of specifying proportional fairness as a
set-theoretic relation between any pair of feasible allo-
cations x and y, written as x > y and literally read
as “with regard to fairness, y appears (proportionally)
unfair compared to x,” and specifying a correspond-
ing concept of maximality of proportional fair states.
Maximality is understood as a state to which no other
state is in proportional fair dominance relation. This
allows to employ the concept of proportional fairness
to any feasible domain as subset of an n-dimensional
real space, including finite sets.

It comes out that by considering proportional fair-
ness as a relation (and not primarily a stable state)
then also the algorithmic problem can be handled. Re-
cent developments in the field of evolutionary multi-
objective optimization (EMO) provide a rich resource
of algorithms to approximate Pareto fronts. But seen
from relational algebra point of view, Pareto fronts are
maximum sets of the Pareto dominance relation. Once
proportional fairness is defined as a set-theoretic rela-
tion, the task of maximality corresponds with the search
for Pareto fronts, after substituting Pareto-dominance
relation with the proportional fairness relation (as well
as any other relation). By such a substitution, standard
EMO algorithms can be modified to make them capable
of searching maximum sets of the proportional fairness
dominance relation.

For further improving the meta-heuristic search, we
also propose ordered proportional fairness as a mod-
ification of proportional fairness by ordering the ele-
ments of the comparison vectors by their numerical val-
ues before comparing. As will be seen, this relation is
implied by proportional fairness. This means that max-
imum sets of ordered proportional fairness are subsets
of maximum sets of proportional fairness. Then, EMO
algorithms can gain performance from the fact that or-
dered proportional fairness is more prevalent than pro-
portional fairness. With regard to Pareto dominance,
such a method has already been applied in [3] by def-
inition of so-called L-optimality, which is implied by
Pareto dominance.

The experiments in this paper are focusing on the
wireless communication as application domain. How-
ever, these days, we find fairness concepts in many other

disciplines, for example in the design of voting systems
or the so-called “cake cutting problems” [4] as a general
metaphor for a class of problems from social choice the-
ory. It has numerous applications, for example in traf-
fic logistics [5], processor scheduling [6], queue manage-
ment, multi-class classifier training, and even for har-
monics in a musical score [7], and further applications
can be envisaged.

The following Section 2 will provide the comments
made so far in more detail. Then, Section 3 provides
the basic definitions of relations, and a number of their
properties are discussed. In Section 4, Monte Carlo sim-
ulation results for the proposed relation will be pre-
sented. Section 5 presents a comparative study of meta-
heuristic approaches to ordered proportional fairness
for a problem with a discrete domain. Some conclusions
will be drawn in Section 6.

2 Background

2.1 Proportional Fairness

Proportional fairness maximizes the total utility of rate
control for elastic traffic in a resource sharing communi-
cation network [2]. The proportional fair state is char-
acterized as a state vector x of n positive-valued traffic
rates such that for any other state y ∈ Rn

+ the inequal-
ity holds:

n∑
i=1

yi − xi

xi
≤ 0 (1)

In its original version, proportional fairness was es-
tablished to model the allocation of traffic rates under
a cost model. It reflects the existence of a pricing model
that balances the user’s willingness to pay differently for
different traffic rate allocations and the network’s “Best
Effort” (BE) promise to optimally allocate the traffic
rates weighted by such user payments. This is in con-
trary to the common “Quality of Service” (QoS) model,
where users express minimal traffic rate demands that
they wish to be guaranteed. In the latter case, network
management needs to set up a “Call Admission Con-
trol” for deciding on the possible fulfillment of the QoS.
Then, prices usually appear in the boundary conditions
of a global optimization task. In BE traffic, the assump-
tion is that users have their own utility functions, cov-
ering a range of different demands, while the network is
using logarithmic utility. At the end, in [2] it is shown
that under some mild conditions it suffices to handle
a payment-independent problem, and leave the price
negotiation task separated from the network through
a network-user interface. It means the network can al-
ways operate in a “fixed” BE manner to maximize the
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network utility without knowing about user payment
incentives, as it can be ensured that there is always a
fitting price model. This separated task is to achieve
proportional fairness.

Kelly’s seminal work [2] gave a big stimulus to the
network control research and found numerous applica-
tions. But also, researcher started to expand the con-
cept to more complex network models. We will list a
few examples:

In [8], authors study a mixed traffic scenario, where
two kinds of price models for traffic rate allocations
appear: according to “Best Effort” (BE, proportional
fairness applies) and according to “Guaranteed Perfor-
mance” (GP, a model case for QoS). They study differ-
ent advanced price models and their mutual influence
on BE and GP traffic rates, and from this derive rea-
sonable bounds on prices.

In [9] and subsequent works, authors study a steady-
state aspect of resource allocations. In a scenario where
users receive a lower bandwidth by some fairness con-
sideration, these users will also tend to stay longer in
the system, thus establishing a steady-state of lower
bandwidth allocations. The authors consider the gen-
eral concept of balanced allocations under network uti-
lization, where stochastic processes model user activ-
ity. The goal is to make the steady-state not depending
on specific traffic characteristics. Conditions are identi-
fied where maxmin fairness and proportional fairness
are balanced. Since these conditions are usually not
fulfilled, an alternative notion of balanced fairness is
introduced. For any flow state, balanced fairness en-
sures allocation on the boundary of the feasible domain
(there given by capacity constraints on traffic flows for
a queuing network of processors). The state can be ap-
proximated by an iterative procedure.

Ongoing studies in this direction take up the theme
of steady-states and cover specific aspects of the net-
work architecture, other networking domains, or im-
proved algorithms to approximate fair states. In [10]
the networking domain is file distribution in a file shar-
ing network, and for the same model assumptions as
in [9] an algorithm is provided that finds unbounded
proportionally fair allocations for the model case of a
three-link star network.

Recently, so-called utility fairness has gained some
attention. Utility fairness was initially proposed in [11].
In this approach, the fairness conditions are (numer-
ically) based on utility of the traffic rates instead of
using traffic rate values directly, along with some nec-
essary adjustments of the formal expressions. With re-
gard to proportional fairness, on first glance the ap-
proach seems strange: wasn’t it a main contribution of
proportional fairness to separate the price model (repre-

senting user utility) from the network control? However,
the approach seems to have some benefits with regard
to congestion control, valuating further explorations of
the concept.

For wireless networking, the task often becomes of
discrete nature. In [12] authors study cooperative pro-
portional fairness with regard to scheduling of (sev-
eral) base stations to mobile stations. The utility now
becomes dependent on the scheduling, i.e. assignment
of base stations to mobile stations. The authors study
the utility maximization task and provide a gradient-
descent based approximation algorithm to the fair state.
The same model can be applied to a wireless network
with relays instead of the multiple base stations.

In [13] the strong relation between Nash bargain-
ing and proportional fairness for convex domains is ex-
ploited to transfer results from game theory to fairness
theory, including a concept for proportional fairness in
special non-convex domains.

An information theoretic approach to α-fairness (an-
other formal generalization of proportional fairness) is
provided in [14], which is also one of the few works to
seek an alternative characterization of proportional fair
states.

Many of these works share a common aspect: the
goal to express proportional fairness or its expansion in
a “computable” fashion, and then to expose a unique
state of the network by way of some kind of “compu-
tational optimization.” Often, we find this reflected as
maximizing the product of traffic rates (or other corre-
sponding magnitudes) or the equivalent maximization
of the sum of logarithms. This is somehow different from
the condition given in Eq. (1).

The examples shown in Fig. 1 may help to explain
the reasoning here. With regard to the fair state x, the
condition of Eq. (1) for x corresponds to all points y
below the tangent to the curve

∏
i xi = C, with C be-

ing a constant. If the feasible space F is a convex subset
of the positive quadrant, Fig.1(a) shows that the point
with maximal product of components, in this example
case the point (4,3), coincides with a point where for all
other x ∈ F the condition (x1 − 4)/4 + (x2 − 3)/3 ≤ 0,
i.e. the proportional fairness condition holds. Thus, for
convex feasible spaces it is equivalent to say that the
product of states is maximized, or that the whole fea-
sible space is located below the tangent on the product
function isoline at the product maximizing state.

However, the situation changes if the feasible space
becomes a finite set of points. A related example is
shown in Fig. 1(b). Now, the product maximizing state
is not necessarily the same as the set of all points on
or below that tangent. The location marked as point A
gives an example where the product of components is
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Fig. 1 Proportional fairness for different feasible spaces.

smaller than the maximum value 4 ·3 among all feasible
points, but the point is above the tangent. The reason
is that only in a convex feasible space, all points on a
line connecting A and (4, 3) would belong to the feasible
space as well. On this line, there would be points with a
larger product than 4 ·3 – but in the discrete case, they
do not belong to the feasible space. Thus, blindly fol-
lowing the requirement of proportional fairness given by
Eq. (1) for a discrete domain, there would not always be
such a proportional fair state. However, there is always
a state with maximum product of components. This is
one fact that explains the preference for product maxi-
mization as proper definition of a proportional fairness
state in expanded application domains (note that the
same problem appears for non-convex feasible spaces).

Two other can be shortly mentioned as well. One
is that the maximum product is reached for the same
state as the maximum sum of logarithms, and this is
directly reflecting the total utility, since utility is com-
monly modeled by the logarithm function (a way to
make utility “currency-independent”). So it seems nat-
ural to focus on maximizing total utility. The other fact
is related to computability. While the product maxi-
mization gives a clear objective what to compute and
how to compare different states and solutions, the same
can’t be said about the proportional fair state condi-
tion. How can the fulfillment of a condition be used to
efficiently compute something other than checking its
truth value?

Nevertheless, in [2] and subsequent works we find
proportional fairness stated by the tangential condition
and not as product maximization. We are not aware of
any clear statement made in these works about the rea-
son to make this choice, but at least two arguments can
be easily imagined: one is about the bounded trade-off -
a condition that seems natural with regard to any model
of fairness. If using product maximization, the maximal
point can still decide about “un-fairness” of points with
infinite components, and the relation would be too far-
reaching. On the other hand, the set below the tangent
is bounded. The other argument is to allow a more di-
rect comparison with the concept of maxmin fairness
[1], where the focus is on maximizing the smallest state.
Thus, maxmin fairness tends to ignore improvements
of states that are not minimal to any degree, while the
proportional fairness condition is to some degree toler-
ating a decrease of the smallest state, as long as the
sum of all relative changes of states remains positive
(expressed by the terms (yi − xi)/xi).

So, there is some reasoning to prefer the propor-
tional fairness condition as provided by [2], and in the
following, we want to recall how the “dilemma” of non-
convex feasible spaces can be handled. For doing so, we
refer to the specification of proportional fairness as a
(set-theoretic, binary) relation.
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2.2 Relations and Maximum Sets

Given a feasible space X, a (binary) relation R is a sub-
set of X×X. Thus, for two points x1 and x2 from X it
is said that x1 is in relation R to x2 if the ordered pair
(x1, x2) belongs to this subset. Relations may repre-
sent various things like equality, similarity, dependency
etc. depending on the nature of X, and they can be
represented in various equivalent forms (list of ordered
pairs, tabular form, binary matrix, directed graph, log-
ical property etc.). Here, we are focusing on the inter-
pretation of a relation as a “betterness” relation, and
will write >R to represent that x1 is of better quality,
or preferred to x2 in some sense.

For each relation (no matter if it represents better-
ness or not) we may assign two characteristic subsets
of X [15].

Definition 1 Given a relation >R then the best set
is defined as the set of all x′ such that for any other
x ∈ X x′ >R x holds.

Definition 2 Given a relation>R then the maximum
set is defined as the set of all x′ such that for no other
x ∈ X x >R x′ holds.

The best set is sometimes called set of greatest ele-
ments, and the maximum set is also called set of max-
imal elements or non-dominated set. Both are extreme
elements of the relation within X.

Now we can adopt a popular notion in social choice
theory, as a sub-discipline of mathematical economics.
A social choice is called rationalizable if there is a rela-
tion such that the choice always corresponds with best
set, or maximum set of that relation [16]. With regard
to the proportional fairness problem in discrete feasi-
ble domains, we can use a similar concept when un-
derstanding the proportional fairness condition as a re-
lation between points x and y. Then, the definition of
the proportional fair state corresponds to the statement
that x is a greatest element of this relation. The prob-
lem in a discrete domain is that the best set of great-
est elements can be empty. The solution is to focus on
the maximum set instead. This is the same approach
as studied in multi-objective optimization, where the
Pareto dominance takes the role of the binary relation,
and the goal is specified as finding its Pareto front of
non-dominated elements, i.e. its maximum set.

The approach allows for a general expansion of pro-
portional fairness to any feasible domain, and coincides
with proportional fairness in case of convex domains.
But there is one relevant aspect (some might consider
it a drawback) that has to be taken into account: there
can be more than one maximal element. The example

in Fig. 1(b) demonstrates that (4, 3) as well as the point
A both are maximal. The other aspect is the question
how to find such maximum sets efficiently.

Only few works so far consider a strict relational
framework to study fairness. With regard to majorities
as fairness relation, several approaches have been pre-
sented by Ogryczak [17][18][5] as well as Kleinberg [19].
However, consideration of proportional fairness within
such a framework has not been undertaken so far.

2.3 Meta-Heuristic Approaches

The other question is about appropriate search algo-
rithms (as long as exact methods are not known, or
are not tractable). We want to remind here that for
more than a decade, there is already experience to use
evolutionary computation for a specific case of such “re-
lational optimization” - it is the use of the Pareto dom-
inance relation in Evolutionary Multi-Objective Opti-
mization (EMO). A large number of fundamental al-
gorithms have already been provided to approximate
maximal elements of this relation, each of them embed-
ding the Pareto dominance relation into a specific way.
Here we want to do the same but using other “better-
ness” relations, like proportional fairness. More specif-
ically, we are going to compare corresponding versions
of the Strength Pareto Evolutionary Algorithm (“ver-
sion 2”, SPEA2) [20] and the multi-objective version
of Particle Swarm Optimization (MOPSO) [21]. It will
come out that the embedding of ordered proportional
fairness along with its bounded trade-off also allows
to better handle a common problem of multi-objective
optimization in the case of a larger number of objec-
tives: the rapid decay of the probability of occurrence
of the Pareto dominance relation, which often limits
the application of EMO algorithms to problems with
a smaller number of objectives (usually less than 10).
In [22] it was already pointed out that therefore the
search should focus on finding at least a few elements
of the Pareto front in case of many-objective optimiza-
tion. The maximum set of ordered proportional fairness
will be shown to be a subset of the Pareto front, while
the chance of random occurrence is much larger. Thus,
ordered proportional fairness also appears as a means
to assist the “decision maker” in general multi-objective
optimization.

3 Ordered Proportional Fairness

Here, we recall definitions and concepts from [23] for
the introduction of ordered proportional fairness and
its main properties.
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3.1 Definitions

We represent proportional fairness as a proportional fair
dominance relation defined as follows:

Definition 3 A point x ∈ Rn
+ is proportional fair dom-

inating another point y ∈ Rn
+, written as x >pf y, if and

only if
n∑

i=1

yi

xi
≤ n (2)

Then, the best state of this relation, i.e. the state x
such that x >pf y for any other y of the feasible space, is
generally considered as the proportional fairness state.

We will study a modification of the proportional
fairness relation, where the elements of x and y are
sorted before the condition given by Eq. (2) (also called
indicator expression in the following) is tested. In the
following, a subscript a(i) indicates the i-th smallest
element of a set A of real numbers ai.

Definition 4 A point x ∈ Rn
+ is ordered proportional

fair dominating another point y ∈ Rn
+, written as x >opf

y, if and only if
n∑

i=1

y(i)

x(i)
≤ n (3)

There are several reasons to consider this alternative
relation. As we will see later on, maximum sets of or-
dered proportional fairness are much smaller than max-
imum sets of proportional fairness, while at the same
time they only contain maximal elements of the pro-
portional fairness relation. This simplifies the selection,
but also promotes convergence of meta-heuristic algo-
rithms. A second reason is that this relation is symmet-
ric with regard to permutations of elements of the com-
parison vectors. Thus, it better reflects fairness among
the users (to which the components of a vector refer).
Another fact that will be demonstrated later on is that
for states where one or more components become ex-
treme (sometimes called the “corners” of the objective
space) this relation behaves more like maxmin fairness,
while in a part of the feasible space where all vector
components are very similar (and thus the sorting has
not much influence), it strongly corresponds with pro-
portional fairness. Thus, as a third reason, ordered pro-
portional fairness can be expected to mediate between
proportional and maxmin fairness.

3.2 Basic properties

At first, we will clarify the relations between propor-
tional fairness and ordered proportional fairness. This

can be summarized in the following theorem (see [23]
for a proof).

Theorem 1 For any x and y from Rn
+, x >pf y im-

plies x >opf y.

The theorem can also be summarized by the in-
equality:

n∑
i=1

y(i)

x(i)
≤

n∑
i=1

yi

xi
(4)

These relations can be used to better understand
the part of space dominated by a point. We recall that
the part of Rn

+ that is proportional fair dominated by a
point x∗ can be seen as the part of Rn

+ below the tan-
gential hyperplane on the hypersurface given by

∏
xi =∏

x∗i . Figure 2 shows the areas dominated by the point
(4, 1) in the case n = 2.
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y

Fig. 2 Set of points ordered proportional fair dominated by the
point (4, 1). It can be seen as the set of points proportional
fair dominated by the point (4, 1) (black dot in the figure) or
proportional fair dominated by its mirror point (1, 4) (yellow
dot in the figure). Note that the blue dashed line shows the
curve x · y = 1 · 4, and the dominated parts are bounded by
tangents to this curve [23].

In this example, it can be seen that a point y is or-
dered proportional fair dominated by (4, 1) iff (4, 1) >pf

y or (1, 4) >pf y. From Theorem 1 it can be understood
that this is a general characterization of the dominated
space.

For given points x and y from Rn
+, we fix y and

consider the set Xp of all points that are generated by
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permutations of the elements of x. Then, if for at least
one x∗ ∈ Xp the relation x∗ >pf y holds, by Theorem
1 x∗ >opf y follows, and then x >opf y, since x has the
same components like x∗, only sorted in non-increasing
order. Therefore, the value of the indicator expression
for ordered proportional fairness does not change. On
the other hand, if x >opf y while the components of
x are not sorted, must correspond to x∗ >pf y for the
x∗ ∈ Xp where for all i x∗i = y(i). In summary, the
fact that at least one element of Xp proportional fair
dominates y is a necessary and sufficient condition for
x >opf y.

We remark that both relations are not complete, i.e.
there are pairs (x, y) where neither x >r y nor y >r x

holds. However, as will be demonstrated below, ordered
proportional fairness can be seen as a “nearly complete”
relation.

Like proportional fairness, also ordered proportional
fairness is not transitive. It suffices to provide coun-
terexamples: for ordered proportional fairness, consider
the three points x = (47, 43), y = (36, 53) and z =
(5, 91). Then we have for the values of the indicator
functions Ixy = 53/47+36/43 = 1.96 ≤ 2, Iyz = 1.86 ≤
2 but Ixz = 2.05 > 2. So this is a case where x >opf y

and y >opf z but not x >opf z.
However, both relations are cycle-free, which means

that there is no sequence of m points xi such that
xi >pf |opf xi+1 for i = 1, . . . , (m − 1) and xm >pf |opf

x1. For proportional fairness, this can be verified by the
fact that x >pf y implies that x has also a larger prod-
uct of components1,

∏
i xi >

∏
i yi and thus a point

with a smaller product of components than
∏

i xi can
never dominate x. This implies that for x >pf y and
y >pf z the products of components of z is smaller
than

∏
i xi, and z cannot dominate x. The same fact

can be seen for sequences of any length in a similar
manner.

For the case of ordered proportional fairness, it needs
to consider the specific sorting of the components in the
indicator expressions. Since in all cases the components
are ordered in a non-increasing manner, the singular
terms in the indicator expressions are all ordered in the
same way. It means if we compare x and y we have an
order for the terms y(i)/x(i) which is the same order as
for the terms z(i)/y(i) in the comparison of y and z and
z(i)/x(i) in the comparison of x to z. Thus, the indica-
tor expressions are formally identical to the expression
for proportional fairness, just with all components of
all points sorted by size. Then also here, cycle-freeness
of proportional fairness implies cycle-freeness of the or-
dered proportional fairness.

1 Note that two different points with the same product of
components can never dominate each other.

3.3 Links to other relations

As a preparation, we provide a number of related defi-
nitions.

Definition 5 For any x and y from Rn it is said that
x (strictly) Pareto dominates y, written as x >p y, if
and only if

∀ixi ≥ yi ∧ ∃jxj > yj (5)

(note that there can be a corresponding definition using
< and ≤). A stronger version of this definition:

Definition 6 For any x and y from Rn it is said that
x totally Pareto dominates y, written as x >tp y, if and
only if

min[xi] > max[yi] (6)

We also consider the definition for lexicographic min-
imum relation.

Definition 7 The leximin relation is defined as a rela-
tion between two different vectors from Rn. Given two
vectors x and y from Rn, first the coordinates of both
vectors are sorted in nondecreasing order, giving vec-
tors x∗ and y∗. It is said that x >leximin y if and only
if the first coordinate of x∗ that is different from y∗ is
larger than the corresponding coordinate of y∗.

Now we can make some additional statements:

1. If the components of x vary strongly, the ordered
proportional fair dominance relation resembles the
leximin relation.

2. If the components of x are becoming more similar,
the ordered proportional fair dominance relation re-
semble the proportional fair dominance relation.

3. Pareto dominance implies ordered proportional fair
dominance, since Pareto dominance implies propor-
tional fair dominance.

The given arguments also show that ordered pro-
portional fairness can be seen as extension of propor-
tional fairness “up to a permutation”. This is formally
the same “transformation” of a relation that leads from
maxmin fairness to the leximin relation. Thus, we have
also achieved a formal way to expand any relation r as
a subset of the direct product of two sets An and B by
a procedure of un-sorting: x >u(r) y holds iff there is
at least one permutation of the elements of x such that
x >r y holds. We can do similarly for the processing
of over-sorting and requiring x >r y for all permuta-
tions. Applied to other relations, over-sorting applied
to Pareto-dominance, as well as maxmin fairness, gives
total Pareto dominance, and un-sorting gives a relation
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that has up to our knowledge not been studied so far,
based on the comparison x(i) ≥ y(i). In summary, we
have to acknowledge the fact that fairness relations like
proportional fairness are probably not sparse among
all relations of practical importance, but establish a
rich category with numerous mutual relationships. By
following a strict relational framework, we can expand
concepts like proportional fairness to various new do-
mains, as long as we can define “set,” “subset” and
“direct product.” This can also be seen as an expan-
sion to the approach presented in [11] as well as [24],
where a general utility function was used in order to
specify further fairness states (with proportional fair-
ness being the special case for the logarithmic utility
function). In all these cases, “unsorting” is applicable
to further define new relations.

4 Monte Carlo Simulations

In addition to basic mathematical properties, the im-
portant additional practical application aspect is the
tractability of the accompanying search problem: given
a feasible set of vectors from a specific problem domain,
how can we find the maximum sets (also called set of
maximal, efficient, or non-dominated elements) for a
given relation? In a recent work [25], we have already
investigated the options to use meta-heuristic search
algorithms, and demonstrated their efficiency. But the
study also illustrated the important aspects of the rela-
tions itself, in order to pose a tractable search problem,
and with regard to the chance of random occurrence of
a relation between two random points. It can be easily
seen that a sparse relation inhibits the initial explo-
rative stage of such algorithms. Therefore, we want to
focus on this aspect when evaluating the presented re-
lations, and provide a number of related Monte Carlo
simulations to estimate corresponding probabilities and
probability distributions.

4.1 Probability of occurrence

In this part, we want to study the probability of oc-
currence of relations between random vectors with in-
creasing dimension n. It is known to fall exponentially
for the Pareto dominance relation, and can be expected
to be 0.5 for complete relations like leximin. Other esti-
mates might be harder to find analytically, so we sam-
pled 100,000 pairs x and y of random points from (0, 1)n

and counted the number of occurrences of the relation
x >R y for various relations. Table 1, partially taken
from [23] gives an overview of the results for dimen-
sions up to 100.

Table 1 Frequency of occurrence of various relations with
increasing dimension n among 100,000 random samples from
(0, 1)n.

n >p >pf >opf

2 25032 40344 46784

3 12523 33203 45101

5 3067 23305 43117

10 117 11219 41512

20 0 3103 40853

30 0 994 40628

50 0 217 40744

100 0 0 41720

The exponential decay of the Pareto dominance re-
lation >p can be confirmed, for dimensions 20 onwards
it is virtually not present anymore (a large hindrance for
meta-heuristic approaches to multi-objective optimiza-
tion with larger number of objectives). Proportional
fairness >pf also decreases, but at least for less than
100 dimensions not exponentially (the exact decay rule
is currently unknown). Then, ordered proportional fair-
ness stays nearly constant at a value around 40%. This
means that ordered proportional fairness is close to a
complete relation having 50%, and it is even possible
that the probability is converging (at least, it seems
to decay very slowly). This can be related to the fact
that this relation has a much larger space dominated
by a point x than for example proportional fairness. In
fact, it is fusing an exponentially increasing number of
proportionally fair dominated spaces (one for each per-
mutation of the components of x), and this can “com-
pensate” the (conjectured) exponential decrease of the
volume of spaces proportionally fair dominated by a
point with increasing dimension.

4.2 Conditional Relations

We also studied conditional probabilities, to indicate
the relation between ordered proportional fairness, the
maximization of product of components, and the maxi-
mization of the smallest component. The reason is that
in case of convex feasible spaces, the proportional fair-
ness has a best element, which is also maximizing the
product of its components. This cannot be expected
from the ordered proportional fairness as well, as the
subspace dominated by a point is not always convex,
but a relation to component product maximization might
still exist.

This is confirmed by the result shown in Fig. 3.
There, a number of conditional probabilities p(>1 | >2)
have been sampled from random vectors from (0, 1)n
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Fig. 3 Sampled conditional probabilities that a random vec-
tor x from (0, 1)n >1-dominates another random vector y

given that x >2 y, where the relations >1 and >2 are among
the relation of having larger product of components(>prod),
leximin, and ordered proportional fairness (100,000 samples
for each dimension n). The case p(>prod | >opf ) is not shown,
since this is always 1.

(100,000 samples in each case). The used relations were
ordered proportional fairness >opf , leximin >lm and
a further relation >prod which holds between x and
y iff

∏
i xi >

∏
i yi. The case p(>prod | >opf ) is not

shown, since ordered proportional fairness always im-
plies a larger product of components (this is the case for
proportional fairness, and ordered proportional fairness
always corresponds to a particular case of proportional
fairness). So, this value is always 1.

A few things can be seen from the result of the
simulation: the first is that the probabilities seem to
converge, or at least decay very slowly with increasing
dimension. Which of these is truly the case might be
subject of further investigation. We also can confirm
that ordered proportional fairness strongly relates to
product maximization. But we can also see the differ-
ence between p(>opf | >lm) and p(>lm | >opf ), with
the former being notably larger than the latter. Thus,
we can also see that the chance of having ordered pro-
portional fairness among states with larger minimum is
rather high, especially higher than the same for states
with a larger product of components. This was one goal
mentioned in the introduction: for states with small
components, select stronger in the sense of maximiz-
ing the minimum state, otherwise more in the sense of
proportional fairness.

5 Comparison of Meta-Heuristic Algorithms

5.1 Wireless Channel Allocation

We want to consider the problem of finding the maxi-
mum set of ordered proportional fairness in a discrete

domain, for a task of distribution of indivisible goods.
A typical problem here is the allocation of channels of a
base station to mobile users in wireless communication.
The problem has been studied in [26]. For each time
slot, one channel can be given to at most one user. The
abstraction of the problem is as follows.

In Wireless Channel Allocation, a blank matrix B

of channel-timeslot pairs with a total of M cells bi, a
set U = (ui) of N users and an M × N matrix C of
channel coefficients of real values from [0, 1] are given.
The task is to enter at most one user into each blank
cell in B, i.e. to provide an allocation a : B → U of
cells to users with |{u ∈ U | a(b) = u}| ≤ 1 for all cells
b ∈ B. Each entry cij of the matrix C represents the
utility for user ui in case of assignment of cell bj , as
a model abstraction of all the physical and logistic cir-
cumstances of the wireless access. For a given allocation
a, the performance for each user is given by

p(ui) =
∑

j,a(bj)=ui

cij (7)

i.e. the sum of channel coefficients for all channels al-
located to the user. Channel allocation has to be per-
formed such that, in some sense, all users are “satisfied”
with their individual performances as much as possible.
The actual problem is to specify the meaning of “satis-
fied” in an efficient way. For example, considering max-
imization of the sum of all performances is not a good
way to satisfy all users: the optimization problem could
be easily solved by selecting for each cell one of the
users with maximum channel coefficient. But this way
it can happen that then some users will never get any
channel allocated, and these users will have no wire-
less access. Therefore, the economics of WCA becomes
relevant, especially aspects of fairness.

5.2 Relational Meta-Heuristics

In a recent study [25] several meta-heuristic algorithms
derived from Evolutionary Multi-Objective Optimiza-
tion (EMO) algorithms have already been investigated
for the task of finding the maxmin fair state of traffic
rate allocation in a wired network with link-capacity
constraints. For this problem, an exact algorithm is
known (the so-called Bottleneck Flow Control [27]) and
this gave the opportunity for a direct performance com-
parison of these algorithms. Two algorithms, one de-
rived from SPEA2 [20] and one derived from MOPSO
[21] demonstrated the best performance, so we will con-
sider these algorithms here as well. On the other hand,
in [28] a comparative study with regard to different
relations but same algorithm (relational SPEA2) was
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provided, already demonstrating the suitability of or-
dered proportional fairness (or “good performance”)
compared to other fairness relations, also for the WCA
problem. We will adopt the evaluation method to com-
pare with “same effort” (SE) random search and mutual
dominance. While the rapid expansion of search space
sizes forbids an exhaustive search for problem dimen-
sions beyond 10 (cells or users) we can get at least a
measure for the progress of the algorithm towards the
maximum set, and also have a base for direct compari-
son of algorithms with each other.

At first, we use a modification of the Strength Pareto
Evolutionary Algorithm SPEA2 [20], where internal pro-
cessing using Pareto dominance relation is replaced by
a general relation.

Relational SPEA2

1. Given is a relation R by a set of pairs (a, b), where
(a, b) ∈ R means that a is in relation to b.

2. Initialize the population with random allocation vec-
tors ai.

3. Repeat the following steps for a fixed number of
generations:

4. Compute the performance vectors pi for all individ-
uals (allocations) ai.

5. For each individual i, compute the R-value Ri, i.e.
the number of other individuals j, for which pi is in
relation to pj (i.e. (pi, pj) ∈ R).

6. For each individual i, compute the S-value Si, i.e.
the sum of the R-values of all individuals j such that
pj is in relation to pi (i.e. (pj .pi) ∈ R).

7. Tournament selection: randomly select two individ-
uals and keep the one with the smaller S-value. If
the S-values are equal, take any one of the two. Re-
peat by selecting again a pair and keeping the one
with the smaller S-value. This gives a “mating pair”
of individuals.

8. Cross-over: generate a new allocation by randomly
selecting assignments from either the first or from
the second individual’s allocation vector.

9. Mutation: with some probability µm, modify each
component according to a given distribution.

10. The foregoing three steps establish the children for
the next generation. Put children and former pop-
ulation (parents) together into a new intermediate
population. Compute all performance vectors and
R and then S-values and select the individuals with
the smallest S-values to establish the new genera-
tion.

The other algorithm is derived from a multi-objective
version of Particle Swarm Optimization, where the se-

lection of the global best particle is replaced from a
random selection from an archive set, called “leader.”

Generally, a PSO maintains a set of particles with
position, velocity, and a “memory” of a local best posi-
tion. In each step, a positional update is performed: the
velocities are updated by terms directing along former
velocity, partially into the direction of the local best,
and partially into the direction of a global best (here a
random selection from a set of “leading particles”). The
algorithm needs to specify the weights for the update
terms. The steps in detail:

Relational MOPSO

1. Given is a relation R by a set of pairs (a, b), where
(a, b) ∈ R or a >R b mans that a is in relation to b.

2. Initialize the swarm S with particles with random
allocation vectors ai (positions) and random veloci-
ties vi from [0, 1]. Set the “local best” position li of
each particle equal to its current position. Initialize
the leader set L with all particles, whose perfor-
mances belong to the maximum set of the relation.

3. Repeat the following steps for a fixed number of
positional updates:

4. For each particle i, compute the inertia term T1 =
w · vi where w is the inertia weight and the multi-
plication is component-wise; the local update term
T2 = wlocal · rand · [li − ai]; and the global update
term: select a random element gi from the leader
set, then T3 = wglobal · rand · [gi−ai]. rand is a ran-
dom vector with uniform random components from
[0, 1].

5. Compute particle velocities as vi := T1 + T2 + T3.
6. Update particle position as ai := ai + vi.
7. (Optionally) if rand < θmutation then mutate half

of the particle positions by adding uniform random
numbers from [−0.5, 0.5].

8. Adjust each component aij of particle positions:
aij := max[U · Round(aij/maxj [aij ]), 1]. U is an
upper bound for each particle component (here the
number of users) and the step ensures integer com-
ponents of a corresponding to user numbers.

9. Compute the performance vectors pi for all particles
(i.e. allocations) ai.

10. For each particle, if pi >R p(li) replace li by ai (p(li)
denotes the performance of local best position li).

11. Update the leader set L as the maximum set of
L∪S with regard to relation R among particle per-
formance vectors.

Two comments are in place: at first we have to note
that neither proportional fairness nor ordered propor-
tional fairness are transitive relations. They are “weakly
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transitive” in the sense of being cycle-free, and this is a
natural consequence of the bounded trade-off of these
relations. But this makes the popular use of an archive
(in order to keep the best solutions found ever during
the whole processing of the algorithm) in EMO algo-
rithms complicated. Since the maximum set of the stud-
ied fairness relations will be part of the Pareto front,
an archive could be used in the common way, but since
we are studying problems with larger scales, the archive
size would heavily increase due to the exponential de-
cay of Pareto dominance relation occurrence, and we
would also have to study countermeasures to keep their
size within reasonable bounds. This would somehow in-
terfere with the primary goal of comparing the selec-
tion techniques of the various algorithms, and there-
fore, we are not employing an archive here directly (in
some sense we do while using a leader set in relational
MOPSO).

Second comment is about the handling of infeasi-
ble solutions, i.e. solutions where there are users with-
out a channel allocation. This is a problem since we
would have user performance vectors with 0 entries,
while the definition of (ordered) proportional fairness
is restricted to vectors with positive components. In
[28] the “penalty” here was to declare a vector with 0-
valued components to not be in relation to any other
vector. However, it appeared to lower performance in a
few cases where the comparison was made between two
vectors, both having 0 components, and thus becoming
mutually non-dominating. Especially in case of propor-
tional fairness and a small difference between number
of users and number of cells (where such allocations
are more likely), solutions with missing user allocations
could happen to stay in the maximum set as well, but
are easily dominated by random elements. Here, we
have replaced 0-valued elements in the indicator ex-
pressions by small values (0.0001 specifically). Results
confirm that by this small change, allocations where one
or more users are excluded are directly removed from
the maximum sets, and we achieve a smaller gain in
performance.

For evaluating and comparing the performance of
relational SPEA2 and MOPSO for the two fairness re-
lations, a suitable measure is the direct comparison with
random search. In this paper, we are focusing on three
related evaluations: after operating the algorithm for
a particular relation, we also sampled 10,000 random
vectors. So far, the algorithms would have processed 10
solutions times 1000 generations, thus 10,000 vectors in
the searchspace. Then, we compute two measures. Mea-
sure M1 is the number of random vectors that dominate
at least one maximal element of the evolved population
(or progressed swarm) according to the current rela-

tion. Measure M2(k) has a parameter k. For k = 1 we
compute the relative number of random vectors that
are dominated by at least one vector of the evolved
population (or swarm). For k = 2 we also compute the
relative number of random vectors either dominated by
a maximal element of the population, or by at least one
random vector that is dominated by at least one ele-
ment of the maximum set of the population (and which
was counted in the measure for k = 1). The definition
continues in a recursive manner: for larger k we would
compute the relative number of random vectors domi-
nated by at least one random vector that was counted
in the computation of the measure for k − 1. However,
we only use k = 1 and k = 2. Measure M2(2) is not ex-
pected to show a much different statistical distribution
than measure M2(1) but can help to see the “spread” of
the dominance relation among random vectors. These
measures allow for a quantification of the success of the
algorithm to approximate the maximum set of the par-
ticular relation.

In all experiments, the relational SPEA2 popula-
tion had 10 individuals, and the algorithm run for 1000
generations. Before continuous cross-over, tournament
selection was used according to the S-value of randomly
chosen individuals. Polynomial mutation was used with
mutation distribution index 3 and probability 0.3. This
basically follows the settings used in [28]. The relational
MOPSO also used 10 particles and 1000 update steps,
but we have used two parameter sets, as we noted a
rather strong sensitivity of this algorithm on parameter
choices (somehow in contrary to often made claims in
the literature about general simple parameterization of
PSO). Parameter set 1 used the inertia weight w = 0.99,
wlocal = 0.5 and wglobal = 0.9 (this setting seems to
achieve best results), parameter set 2 used the same in-
ertia weight, but wlocal = 0.8 and wglobal = 0.3 (this
is the same setting as in [25] where relational MOPSO
was used for a wired network problem). Mutation prob-
ability was 0.1 in both cases.

Table 2 presents a number of average results for
different settings of the WCA problem, comparing re-
lational SPEA2 and MOPSO for proportional fairness
and ordered proportional fairness. All problem dimen-
sions are between 5 and 15 users, which is a realistic
scale for wireless access problems. But the analysis of
larger problems is also limited by the growing incapa-
bility of random search to find dominating solutions
at all. Also we want to remark that a corresponding
multi-objective optimization problem with 10 or more
objectives already tends to be intractable, and when
doing the same but based on a different relation, up
to 15 users - thus also 15 objectives - seems to be al-
ready a challenging problem. Each average value in the
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Fig. 4 Box plots of the M1 and M2(1) measure for relational SPEA and MOPSO algorithm for proportional (PF) and
ordered-proportional (OPF) fairness relation (R(n,m) indicates relation R for n users and m cell WCA problem).

table was computed from 30 random instances of the
WCA problem. Figures 4(a) to 4(d) also show the box
plots of the statistical distribution of these results (with
common elements minimum, 1/4 quantile, median, 3/4
quantile, maximum). Note that small values of M1 and
values of M2(1) and M2(2) close to 100% are favorable.

We can make a number of observations (we abbre-
viate proportional fairness by PF and ordered propor-
tional fairness by OPF, and we will also consider the
three measures to represent “performance of a rela-
tion”):

– In general, most of the M1 measure values are below
1% and often are nearly 0 or equal to 0. The largest
values appear for smaller problem scales. This can
be understood by the fact that in this case (5 users,
6 cells) 10,000 samples come close to exhaustive
search (the number of possible mappings is 56 =
15, 625, while for the additional requirement that
each user appears at least once it would correspond
to the number of surjective mappings of m cells to
n users, known to be n!S(m,n) with S(m,n) the
Stirling number of second kind - the value then is
much smaller, 1800).

– For relational SPEA2, the measure valuesM1 for PF
and OPF are nearly equal, and the general perfor-
mance for both relations is very good. Figure 4(a)
shows a little bit more peaked distribution of the
OPF measure values.

– With regard to measure M2(1), OPF values are no-
tably better than PF values, and the difference grows
with increasing problem scale. Figure 4(b) also shows
that the fluctuations for OPF are much smaller and
tend to stabilize for larger problem scales. The ten-
dency is confirmed by measure M2(2).

– The results are generally very different for the two
parameter settings of the relational MOPSO, indi-
cating a strong sensitivity of relational MOPSO. Re-
sults for parameter set 2 are worse - we provide this
result here only for illustration of parameter influ-
ence on performance, and will not discuss these re-
sults any further.

– For relational MOPSO (parameter setting 1), mea-
sure values M1 do not much differ for PF and OPF.
This can also be seen in Fig. 4(c), where also other
statistical measures appear rather similar. Altogether,
the values are all below 1%.
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Table 2 Results for relational SPEA2 and MOPSO competing with random search. For each setting of the number of users
and cells, and for each relation >r, the three cells indicate (1): the share of random samples among 10,000 samples dominating
at least one element of the maximum set of the population according to >r (measure M1), (2): the share of random samples
dominated by this maximum set (measure M2(1)), in percent of 100, and (3): the share of random samples either dominated
by the maximum set, or by a random sample that is dominated by the maximum set (measure M2(2)), in percent of 100.

Relational SPEA2

WCA >pf >opf

M1 M2(1) M2(2) M1 M2(1) M2(2)

5 users 6 cells 0.1677 97.64 99.56 0.1573 99.5 99.73

10 users 12 cells 0.002333 91.71 93.44 0.002333 99.93 99.94

15 users 20 cells 0.0 90.63 92.09 0.0 100.0 100.0

Relational MOPSO Parameter Setting 1

WCA >pf >opf

M1 M2(1) M2(2) M1 M2(1) M2(2)

5 users 6 cells 0.7373 80.65 84.93 0.5887 98.07 98.78

10 users 12 cells 0.543 28.51 30.91 0.763 95.97 96.36

15 users 20 cells 0.454 0.5117 0.5283 0.948 92.61 92.97

Relational MOPSO Parameter Setting 2

WCA >pf >opf

M1 M2(1) M2(2) M1 M2(1) M2(2)

5 users 6 cells 3.44 36.73 43.78 2.732 90.52 92.05

10 users 12 cells 2.355 1.968 2.368 3.979 91.03 91.88

15 users 20 cells 0.8173 0.08133 0.08233 10.437 77.765 78.252

– The situation is different for measure M2(1): OPF
measures are all above 90% while PF values are low,
and fall rapidly with increasing problem dimension.
Figure 4(d) is another confirmation for this fact, and
also measure M2(1) confirms this trend.

– Nevertheless, with regard to measure M2(1), the use
of relational MOPSO and OPF, there is a scaling
effect as the distribution gradually broadens with
increasing problem scale (see 2nd, 4th and 6th box-
plot in Fig. 4(d)).

The general evaluation gives a clear advantage for
the use of ordered proportional fairness (which also al-
lows to find maximal proportional fair solutions), and
in combination with the relational SPEA2 algorithm.

We want to add the comment that the choice for
the number 10,000 of random samples is basically mo-
tivated by the fair comparison of search efforts. Using
a larger number of random vectors might be consid-
ered to get more stable sample values, but figs. 4(a) to
4(d) already indicate, with the exception of MOPSO
performance for measure M2(1), that the spread of the
distribution is small enough to allow for significant con-
clusions.

We will end this section with a small discussion
about the different performances. One question might
be about the, on first glance “paradoxical” performance

improvement for larger problem scales. In fact, for the
problems with 15 users and 20 cells and OPF, there was
not a single case that a random allocation dominated
the algorithm result, and also allocations from the al-
gorithm result were all dominating each of the 10,000
random points. This is the meaning of M1 = 0 and
M2(1) = 100. However, from this we cannot conclude
that the algorithm has already arrived at the maxi-
mum set, we only see maturing against random search
and that it is getting rapidly unlikely to achieve valu-
able solutions for such problems by pure random search.
Beyond this problem scales, our random measure might
become infeasible to expose performance differences be-
tween algorithms, at least for the WCA problem.

The second question is about the lower performance
of MOPSO. The main reason can be seen in the dis-
crete encoding of particle positions. Generally, PSOs (in
“single-objective” version) are known to operate better
in continuous problem domains. The crucial point is the
update of the leaders and the pre-order given between
allocations by the relation between the corresponding
performances. If we would allow for real-valued compo-
nents in the allocation, and only round before evaluat-
ing a particle, the number of redundant maximum set
elements would rapidly increase. We are not aware of
any better way to keep the leader set growth bounded
than to use integer representation of particles and so
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avoid duplicates in the leader set (with regard to perfor-
mance). However, integer representation is not well fit-
ting to the real-valued velocity update terms. In sight of
these problems, the performance of relational MOPSO
might still be seen surprisingly good.

As a third point, the obvious better performance of
ordered proportional fairness has to be relativized by
the larger computational effort to compare two vectors.
In addition to proportional fairness, this comparison
also includes the sorting of the components of vectors
before comparison. On the other hand, comparing the
computational effort for proportional fairness with e.g.
Pareto dominance depends much on the differences in
effort to perform a comparison and to perform a divi-
sion, and no general claims can be made here.

6 Conclusion

In this paper, we have presented an approach to propor-
tional fairness fulfilling two goals: (1) the extension of
proportional fairness to discrete problems and to formu-
late corresponding optimization problems as the prob-
lem of finding maximal elements with regard to a pro-
portional fairness relation, and (2) the design of meta-
heuristic search algorithms to approximate these sets
of maximal elements. The experimental results demon-
strate the feasibility of both approaches. Furthermore,
the performance of the approximation can be improved
by using a sorted version of proportional fairness, in-
troduced here as ordered proportional fairness. Monte
Carlo simulation have also demonstrated that ordered
proportional fairness can mediate between proportional
fairness (in case of less varying vector components) and
maxmin fairness (in case of strongly varying vector com-
ponents).

The application domain here was restricted to wire-
less access networks. However, there are at least two
aspects of the presented approach that are more gen-
eral: (1) the representation of fairness as a set-theoretic
binary relation, and (2) for relations with a subset of
Rn as domain (i.e. vector relations) the procedure to
define a new relation from a given one by relational
sorting and consider the use of the ordered relations to
find maximal elements of the original relation.

As future work, we consider the extension of this
relational sorting to other relations, esp. the Pareto
dominance and the option to improve finding of non-
dominated solutions for problems with a larger number
of objectives, as well as α-fairness. In addition, there are
a number of other allocation problems in wireless access
that need further refinements of this concept: mapping
of demand vectors to feasible channel allocations, choice
of relays, concurrent virtualizations of networks.
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