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Abstract

The extension of the set operation mink (maxk)
of selection of the k-th smallest (largest) ele-
ment to fuzzy sets is considered. The exten-
sion is based on the provision of set operators
purely based on subset selection, and maximum
and minimum operators. Then, all or part of
all maximum and minimum operators can be
replaced by corresponding pairs of T- and S-
norms. There are only a few cases where such
an approach is still preserving sufficient math-
ematical properties, including recursiveness of
the mink operation. The approach based on
min2 = max(min(aj |j 6= i)|1 ≤ i ≤ n) for a
set (ai) of n real values from [0, 1] is considered
in more detail, and applied in an example man-
ner to the definition of an image operator. The
fact that Tk-norms provide larger values than
the (often very small values of) T-norms, from
which they are derived, offers a lot of practical
applications for Tk-norms, e.g. in fuzzy con-
trol, neuro-fuzzy systems, and computing-with-
words.

1 Introduction

Triangular norms, or T-norms for short, and
their corresponding S-norms (or T-conorms)
play an important role in the formal specifi-
cation of fuzzy concepts, be it to compute the
section of fuzzy membership functions, the log-
ical And operation in computing-with-words,
the output of neuro-fuzzy networks [4], the de-
fuzzification value in fuzzy control [1], the spec-

ification of fuzzy morphology operations in im-
age processing or the fuzzy fusion of data [3]
[6]. While the totality of all functions compris-
ing T-norms is mathematically yet unknown,
several basis definitions and representation the-
orems are already known (see [2] for a com-
prehensive study on triangular norms). How-
ever, a major drawback in the application of
T-norms are their low numerical values, when
they are computed from a larger number of
data. To give an easy example: the algebraic
(or product norm) of n data with values 0.1
is 10−n, while the standard T-norm minimum
still computes to 0.1. T-norms are related to
the mimimum operation in many ways, as well
as S-norms are related to the maximum op-
eration. To overcome this problem, and fol-
lowing [5], we propose to consider counterparts
to the n-th smallest (or n-th largest) element
of a set of data in a similar manner as T-
norms are considered counterparts of the mim-
imum operation (e.g. by preserving relations
like T (a, 1) = a). It comes out that there are
several ways to provide appropriate definitions
of Tk-norms, but only a few of them preserve
a sufficient number of mathematical properties
that make them applicable in a similar fashion
like T- and S-norms. Such definitions are dis-
cussed in section 2 of this paper, while section
3 solicits a particular definition and gives some
of their properties. The advantage of provid-
ing higher numerical values is demonstrated in
section 4, when image processing operators are
based on the Tk-norm.



2 Algebraic Approaches to Set
Ranking

In this section, we are considering approaches
to set ranking functions based on non-fuzzy
concepts, and are discussing their possible
fuzzification. Given a finite set A of real num-
bers, the set function min(A) assigns the min-
imum value of all elements of A to A itself. In
order to get the second smallest value of A, de-
noted by min2(A), it seems to be sufficient to
consider an expression like

min2(A) = min(A \ {min(A)}). (1)

The problem with the defuzzification here is
that we do not have a unique means for fuzzi-
fying the set min(A) as well as the set difference
A\B, once A and B are fuzzy sets. It will later
come out that the approach presented in this
paper actually gives such an extension, but the
starting point is different.

In any case, the recursive nature of such rank-
ing operators has to be taken into account. So,
considering the third smallest element of a set
A, it can be defined as the second smallest el-
ement of a set without the smallest or second
smallest, or as smallest of a set without the
smallest and second smallest element as well.

In [5] a different expression is considered to ob-
tain the so-called fuzzy OR-2 operator. The
expression serving the second largest element
max2(A) of a set A = (a1, a2, . . . , an) of n real
values is purely based on using subsets, maxi-
mum and minimum operators:

max2(A) =
max
1≤i≤n

[min(ai, max
1≤j≤n,j 6=i

(aj))] (2)

where a corresponding definition for the second
smallest element can be provided as well:

min2(A) =
min

1≤i≤n
[max(ai, min

1≤j≤n,j 6=i
(aj))] (3)

Then, in [5] it is proposed to replace any oc-
currence of the minimum and maximum oper-
ator by a T-norm and its corresponding S-norm

(in particular, the Hamacher T-norm is con-
sidered, and the application is to base feature
selection on it).

The approach offers two major drawbacks: one
is that the resulting expression is rather com-
plex, and it becomes very hard to establish any
mathematical properties of such expressions.
The other drawback is the potential extension
to the following ranking cases, i.e. when estab-
lishing corresponding definitions for the third,
fourth a.s.f. smallest element of a set. In the
given approach, the recursive property of set
ranking is not preserved.

To see this in more detail, consider the corre-
sponding extension of eq. 3 to the case of com-
puting the k-th smallest element mink(A) of A
(with 1 ≤ k ≤ n) of real numbers from [0, 1]n.
With

Il = {ij | 1 ≤ j ≤ (k − 1),
1 ≤ i1 < . . . < ik−1 ≤ n}

and the index l running over all choices of
(k− 1) elements from the set (1, 2, . . . , n) with
values from 1 to

( n
k−1

)
, and:

Sl = {ai | i ∈ Il} (4)

we can define

mink(A) =
min

Il

( max [ max(Sl), min
m6∈Il

(am)]) (5)

This (rather complex) expression yields the k-
th smallest element of the set A. However, the
expression in eq. 3 can be recursively extended
as well:

For k = 1:

min1(A) = min(a1, . . . , an) (6)

For 1 < k ≤ n:

mink(A) = min
i=1,...,n

( max [ai,

min(k − 1){aj | 1 ≤ j ≤ n, j 6= i}])(7)

and mink(A) = 1 for k > n.



The point is that both definitons do not match
when the minimum and maximum operators
are replaced by corresponding T- and S-norms.
With a little effort, this can be seen when using
e.g. the product norm as T- and S-norms, but
the evaluation will be omitted here.

In this paper, we propose the usage of a simpler
version of eq. 3 and the formal replacement of
T-norms in a manner preserving recursiveness.
Instead of eq. 3 we consider the expression

min2(A) = max
i

( min
j 6=i

(aj)) (8)

with 1 ≤ i, j ≤ n. This (simpler) expression
also yields the second smallest element of the
set A, and it can be recursively extended to the
case of the k-th smallest element by

min1(A) = min(a1, a2, . . . , an) (9)

for k = 1,

min(k + 1)(A) = max
i

(mink{aj | j 6= i}) (10)

with 1 ≤ i, j ≤ n for 1 ≤ k < n and, as before,
mink(A) = 1 for k > n.

We may also consider a non-recursive exten-
sion. With an index set of size k − 1

Il = {ij | 1 ≤ j ≤ (k − 1),
1 ≤ i1 < . . . < ik−1 ≤ n}

and the index l running over all choices of
(k− 1) elements from the set (1, 2, . . . , n) with
values from 1 to

( n
k−1

)
and:

Sl = {ai | i ∈ Il} (11)

we can define

mink(A) = max
Il

( min
m6∈Il

(am)) (12)

If we were going to use a pair of corresponding
T- and S-norms for both, the maximum and
minimum operator, the definitions of eqns. 10
and 12 would not match. To see this, consider
four values a, b, c and d from [0, 1] and the ex-
tended recursive definition of eq. 12, with Tk

denoting the extended definition, for the case
k = 3 (1 ≤ i, j, k ≤ n):

T3(a, b, c, d) = Si,j(T{ak | k 6= i, j})

= S
(
T (a, b), T (a, c), T (a, d),

, T (b, c), T (b, d), T (c, d)
)

while the definition of eq. 10 would give:

T3(a, b, c, d) = S(T2(b, c, d), T2(a, c, d),
, T2(a, b, d), T2(a, b, c))

Expanding this in all terms yields

T3 = S(S(T (b, c), T (c, d), T (b, d)), . . . )

and using associativity of the S-norm gives
that the expansion contains terms like
S(T (b, c), T (b, c)). However, only for the stan-
dard S-norm maximum we have S(a, a) = a for
any a ∈ [0, 1], so there are values a, b, c and d
for which both definitions will not match.

As a result from this discussion, we propose to
consider the following definition for a Tk-norm,
by not replacing the maximum operator with
the S-norm:

Definition 1 Given is a set A of n values ai

(i = 1, . . . , n) from [0, 1], and a T-norm T . For
k = 1 the T1-norm is given by

T1(a1,, . . . , an) = min(a1, . . . , an),

for 1 < k ≤ n the Tk-norm is given by

Tk(A) = max
i

(T (k − 1){aj | j 6= i})

with 1 ≤ i, j ≤ n, and Tk(A) = 1 for k > n.

There is a corresponding definition for the Sk-
norm:

Definition 2 Given is a set A of n values ai

(i = 1, . . . , n) from [0, 1], and a S-norm S. For
k = 1 the S1-norm is given by

S1(a1,, . . . , an) = max(a1, . . . , an),

for 1 < k ≤ n the Sk-norm is given by

Sk(A) = min
i

(S(k − 1){aj | j 6= i})

with 1 ≤ i, j ≤ n, and Sk(A) = 0 for k > n.



Replacing the Tk- or Sk-norms in these defini-
tions by T(k-1)- and S(k-1)-norms, and by us-
ing the associativity of the maximum and min-
imum operator, the recursive definitions trans-
form into the corresponding non-recursive def-
initions.

3 Properties of the Tk-Norm

In this section, we will consider some properties
of the Tk-norm of def. 1. The corresponding
properties of the Sk-norm can be shown as well.

At first, we start to simplify the definition 1 by
using the following theorem:

Theorem 1 Given is a set A = (a1, . . . , an) of
real numbers from [0, 1] with a1 ≤ a2 ≤ . . . ≤
an and 1 ≤ k ≤ n. Then for any choice B of
n− k + 1 values from A it holds

T (B) ≤ T (ak, ak+1, . . . , an).

This can be easily seen by using monotonicity
of the T-norm: any other subset B of (n−k+1)
elements from A than the one excluding the
first (k− 1) smallest elements of A will contain
only smaller (or equal) elements, thus having a
smaller (or equal) T-norm as well. From this,
the evaluation of the maximum of all such sub-
sets, as given by def. 1, can be reduced to the
evaluation of the T-norm of the subset exclud-
ing the first (k − 1) smallest elements:

Theorem 2 For any set A = (a1, a2, . . . , an)
with 0 ≤ a1 ≤ . . . ≤ an ≤ 1, and any T-norm
T it holds:

Tk(A) = T (ak, ak+1, . . . , an).

As remarked above, this also gives the corre-
sponding extension of eq. 1 to the fuzzy case.

Using theorem 2, we can show further prop-
erties of the Tk-norm easily. Without loss of
generality, here we assume the values of A al-
ready sorted in increasing order.

Property 1 The Tk-norm is bounded by 1:

Tk(a1, . . . , an, 1) = Tk(a1, . . . , an)

This follows from

Tk(a1, . . . , an, 1) = T (ak, . . . , an, 1)
= T (ak, . . . , an)
= Tk(a1, . . . , an)

Property 2 The Tk-norm is monotone in
each argument: For any al ≤ a∗l it holds

Tk(a1, . . . , al, . . . , an) ≤
Tk(a1, . . . , a

∗
l , . . . , an).

To see this, three cases have to be considered,
depending on the relations of al and a∗l to the
k-th smallest element. The easy proof will be
omitted here.

A remark has to be done on associativity. Usu-
ally, set ranking operations are not associative.
As an example, consider the sets

A = (1, 2, 3, 4, 5, 6, 7, 8, 9)

and

B = ((1, 2, 3), (4, 5, 6), (7, 8, 9))

We can see that min2(A) = 2 while

min2(min2(1, 2, 3),min2(4, 5, 6),
min2(7, 8, 9))

computes to min2(2, 5, 8) = 5, thus brackets
can not be generally removed for the min2-
operator. So, it is no surprise that the Tk-norm
is not associative as well.

It should be remarked that the Tk-norm is ob-
viously commutative.

Another question of interest is how the Tk-
norms for different values of k are elated to each
other. This will be established by the following
theorem.



Theorem 3 For any Tk-norm and T-norm it
holds

T = T1 ≤ T2 ≤ . . . ≤ Tn = max

as well as
Tk ≤ mink

for any 1 ≤ k ≤ n.

The proof of the first part of this theorem is as
follows:

Tk(A) = T (ak, ak+1, . . . , an)
= T (ak, T (k + 1)(A))
≤ T (k + 1)(A)

since in general T (a, b) ≤ b, and again assuming
the values of A to be sorted. To see that the
Tn-norm equals the maximum, theorem 2 gives

Tn(A) = T (an) = an = max(A)

and to see the second part of the theorem, it
suffices to consider

Tk(A) = T (mink(A), ak+1, . . . , an)
≤ mink(A)

This means that Tk-norm values are numeri-
cally distributed in the range of the data itself,
no matter how many data there are. Therefore,
instead of using a T-norm e.g. to compute the
intersection of a larger number of fuzzy sets, an
appropriate Tk-norm can be selected and used
as well.

4 Application of Tk-Norm

As an example, we will consider the application
of Tk-norms to define fuzzy morphology oper-
ators in image processing, where the direct use
of T-norms is restricted to small sizes of the
structuring element and can now be increased
to any size.

More formally, be an image given by its
grayscale image function:

I : [0, . . . , w−1]× [0, . . . , h−1] → [0, . . . , gmax]

with w the width of the image, h the height
and gmax the maximum intensity value (255
is a common value). A tupel (x, y, I(x, y)) is
called a pixel. A set of offsets U = {(i, j)} as-
signs a local neighborhood to each pixel (x, y)
by IU = {(I(x + i, y + j))}. If for all i and
j holds i, j ∈ {−1, 0, 1} this gives the so-called
8-neighborhood. Then, we define the image op-
erator Tk-norm by the new image function:

Tk ◦ I(x, y) = Tk

(
IU (x, y)

gmax

)
· gmax. (13)

Figs. 1 and 2 give some results of such an op-
eration. In fig. 1, the brightness increment of

(a) (b) (c)

(d) (e) (f)

Figure 1: T-norms (upper row) compared
to T5-norms (lower row): (a)+(d) Minimum;
(b)+(e) Product norm; (c)+(f) Frank norm
(λ = 100). The norms were computed in a
local 3× 3 neighborhood.

using Tk-norms instead of T-norms is demon-
strated. Using T-norms like the Frank-norm
in such a context (subfigure 1(c)) seems useless,
since the result image is nearly black. Once
using Tk-norms with higher values, the oper-
ator starts to provide brighter values. Fig-
ure 2 shows the sequence of all Tk-norms for
k = 1, 2, . . . , 9.

5 Conclusion

The advantage of using Tk-norms instead of T-
norms has been demonstrated by the provision
of a simple image processing operator. How-
ever, other tasks like providing training rules
for neuro-fuzzy networks, specification of fuzzy
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Figure 2: Tk-norms computed for Lena image,
using Dubois-Prade T-norm with α = 0.9. The
norms were computed in a local 3×3 neighbor-
hood.

fusion operations, fuzzy selection schemes or
defuzzification rules in fuzzy control are among
the potential applications of the proposed Tk-
and Sk-norm approach as well.
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