
February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

Chapter 12

Genetic Programming based Texture
Filtering Framework

Mario Köppen, Bertram Nickolay

Fraunhofer IPK Berlin
Department Pattern Recognition

Pascalstr. 8–9, 10587 Berlin, Germany

Abstract

A framework is presented, which allows for the automated generation of texture

filters by exploiting the 2D-Lookup algorithm and its optimization by evolution-
ary algorithms. To use the framework, the user has to give an original image,
containing the structural property-of-interest (e.g. a surface fault), and a binary

image (goal image), wherein each position of the structural property-of-interest
is labeled with the foreground color. Doing so, the framework becomes capable

of evolving the configuration of the 2D-Lookup algorithm towards a texture filter

for the structural property-of-interest. Genetic programming (GP) is used as
the evolutionary algorithm. For this GP approach, a filter generator derives two

operations based on formal superoperators from the tree, which represents an

individual of the evolving population. The specification of the 2D-Lookup matrix
is performed by a relaxation technique. The approach will be demonstrated on

texture fault examples.

Keywords : pattern recognition, scene analysis, image processing, texture

analysis, texture filtering, mathematical morphology, 2D-Lookup algorithm, evo-

lutionary algorithms, genetic algorithms, genetic programming, fitness function,
relaxation, convolution, ordered weighted averaging, texture numbers, ordered

weighted minimum, multilayer backpropagation neural network, crossover,
mutation, document preprocessing, visual inspection of surfaces, handwriting

extraction, image processing framework

12.1 Introduction

Textures are homogeneous visual patterns that we find in natural or syn-
thetic scenes. They are made of local micropatterns, repeated somehow,

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

producing the sensation of uniformity. Texture perception plays an impor-
tant role in human vision. It is used to detect and distinguish objects, to
infer surface orientation and perspective, and to determine shape in 3D
scenes. An interesting psychological observation is the fact that human
beings are not able to describe textures clearly and objectively, but only
subjectively by using a fuzzy characterization of them [?].

(a) (b)

(c)

Fig. 12.1 Textures: ceramic filter (a), textile fault (b) and handwriting on bankcheck

background texture (c).

Texture analysis is a subfield of image processing, which is concerned
with the exploitation of pictorial textures for various image inspection tasks
(see fig. 12.1). Such tasks, typically handled by methods of texture analysis,
are texture segmentation, texture fault detection, texture synthesis and
texture removal.

The purpose of texture filtering is to find image processing operations
based on pixel information, which assign a texture class to a subregion of
the image. Usually, the pixels, whose grayvalues or color values are used

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

Introduction

for these computations∗, are taken from the image region, which has to
be classified. Typical regions are: local neighborhoods (i.e., a pixel and
its direct neighbours); regions-of-interest (connected subsets of the set of
all pixels); windows (rectangularily bounded subsets); or the whole image.
Means for computations are based on a rich variability of mathematical or
information theoretical concepts, as, e.g., statistical approaches, structural
approaches, fractal approaches or spectral approaches [?].

A given texture filtering approach can be considered a framework. This
means, that some components of the processing chain and the relations
between them remain open for adaptation, i.e. the texture filter has to be
configured (by numerical or structural parameters, by operator selection
and so forth) in order to fulfill its task. In some cases, the configuration
might become too complex to be supplied by an user of the superposed
system, of which the framework is a part. Adaptive techniques are needed
in this case.

Since the early days of computer vision, the feature based classifica-
tion approach has become the primary texture analysis technique for the
treatment of images of textured surfaces. The key steps of the feature
classification approach are: image acquisition, image preprocessing, feature
extraction, feature selection and feature classification [?], [?]. The feature
classification approach can be employed as a texture filter as well. Its main
disadvantage is the underlying concept of a single processing chain, which
is “as strong as its weakest part.” In order to improve reliability and ro-
bustness of the texture filters, backtracking in the processing chain may
be used. However, this is impractical, since the effect of modification of a
part of the chain at its end can hardly be predicted, and since the number
of alternative settings to explore in order to find better ones grows expo-
nentially with the number of alternatives for each part. A better idea is
to decompose the processing flow into several parallel parts with a knowl-
edge of what has to be acquired by these subparts at its ends (for example
that an edge image should be the result). Finally, the subparts are fused
by a fixed algorithm. An example for this is the fusion of an edge image
and a pre-classified image by the watershed transformation [?]. If there are
exactly two subparts, the approach is referred to as 2D framework [?].

This paper presents a special 2D texture filtering framework based on
the so-called 2D-Lookup, and its configuration by means of evolutionary

∗These values are referred to as pixel values in the following.

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

algorithms. The 2D-Lookup framework allows, by its configuration, to rep-
resent a very large number of texture filters. By genetic programming (GP),
framework configurations are evolved, which meet the user-given filtering
goal as good as possible. This paper is organized as follows: in section
12.2, the framework LUCIFER2† is described. Its subsections detail the
2D-Lookup algorithm, recall evolutionary algorithms, give the fitness mea-
sure used and the relaxation procedure for deriving a 2D-Lookup matrix
from two operation images and detail the structure of a tree, which repre-
sents an individual of a GP. Then, in section ??, this framework is applied
to a set of texture fault detection tasks. The paper ends with the summary,
an acknowledgment and the reference.

12.2 The LUCIFER2 Framework

The purpose of the presented framework is to design texture filters. Trained
by user-provided examples, the adapted filters are able to separate a tex-
tured background from a foreground structure. Possible applications for
these texture filters are: texture fault detection, texture border detection or
handwriting extraction (on a bankcheck with textured background). These
problems typically arise in fields like visual surface inspection on fabrics or
optical document preprocessing.

The framework (see fig. 12.2) is composed of (user- supplied) original im-
age, filter generator, operation images 1 and 2, result image, (user-supplied)
goal image, 2D-Lookup matrix, comparing unit and filter generation signal.

The framework can be thought of as being composed of three (overlap-
ping) layers.

(1) The instruction layer, which consists of the user-supplied parts of the
framework: original image and goal image. The user may also
supply other components (operation 1, operation 2, 2D-Lookup
matrix), for maintenance purposes.

(2) The algorithm layer performs the actual 2D-Lookup, once all of its com-
ponents (original image, operation 1, operation 2 and 2D-Lookup
matrix) are given.

(3) The adaptation layer contains all adaptable components of the frame-

†This is an acronym for Lookup Compositional Inference System. Number 2 indicates

that there was a genetic algorithm based version 1 [?].

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

The LUCIFER2 Framework

Filter Generator

Filter Generation Signal Chromosome

Original Image

Operation 1 Operation 2

2D-Lookup Matrix

Goal Image Result Image

Comparison Fitness

Fig. 12.2 The Framework for 2D-Lookup based texture filter generation.

work (operation 1, operation 2, 2D-Lookup matrix) and additional
components for performing the adaptation (comparison unit, filter
generator).

For the instruction layer, the user interface has been designed as simple as
possible. The user instructs LUCIFER2 by manually drawing a (binary)
goal image from the original image (by a photo retouching program as
Photoshop). In this image, texture background is set to White and texture
foreground (e.g. the texture fault, handwriting on a textured bankcheck
background) to Black (see Fig.12.3 for an example). Rest of the approach
is data-driven. No special texture model has to be known by the user.
There are no further requirements for the goal image.

The algorithm layer performs the 2D-Lookup algorithm, which will be
described in the next subsection. The algorithm decomposes the filter op-
eration into a set of partial steps, each of which might be adapted to meet
the user’s instruction.

Adaptation is considered an optimization problem, and evolutionary
algorithms are used for performing this adaptation. The fitness function
is computed with the degree of resemblance between result image of an
individual-specified 2D-Lookup and the goal image.

12.2.1 2D-Lookup Algorithm

The 2D-Lookup algorithm stems from mathematical morphology [?], [?].
It was primarily intended for the segmentation of color images. However,

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

(a) (b)

Fig. 12.3 Example for texture image containing fault (a) and goal image, as given by

the user (b).

the algorithm can be generalized to use for grayvalue images as well.
For starting off the 2D-Lookup algorithm, the two operation images 1

and 2, which are of equal size, need to be provided. This is achieved by the
filter generation signal, which is under the control of the individuals of the
evolving population. The filter generation signal causes the filter generator
to determine two image processing operations, which are applied to the
original image. The 2D-Lookup algorithm goes over all common positions
of the two operation images. For each position, the two pixel values at this
position in operation images 1 and 2 are used as indices for looking-up the
2D-Lookup matrix. The matrix element, which is found there, is used as
pixel value for this position of the result image. If the matrix is bi-valued
(as for the goal image), the resultant image is a binary image.

Let I1 and I2 be two grayvalue images, defined by their image functions
g1 and g2 over their common domain P ⊆ N ×N :

g1 : P → {0, . . . , gmax}
g2 : P → {0, . . . , gmax} (1)

The 2D-Lookup matrix is also given as an image function l, but its domain
is not the set of all image positions but the set of tupels of possible grayvalue
pairs {0, . . . , gmax} × {0, . . . , gmax},

l : {0, . . . , gmax} × {0, . . . , gmax} → S ⊆ {0, . . . , gmax}. (2)

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

The LUCIFER2 Framework

Then, the resultant image function is given by:

r : P → S

r(x, y) = l(g1(x, y), g2(x, y)). (3)

In standard applications, every grayvalue is coded by eight bit, resulting
in a maximum grayvalue of 255. Also, the domain of the image function
is a rectangle. In this case, the 2D-Lookup is performed by the following
(object-oriented) pseudo-code:

for x=0 to img width -1 do

begin

for y=0 to img height-1 do

begin

g1 = g1(x,y)

g2 = g2(x,y)

out(x,y) = l(g1,g2)

end y

end x

To give a simple example for the 2D-Lookup procedure, gmax = 3 is as-
sumed in the following. Let

g1 :
0 1 2
0 3 3

and g2 :
2 3 1
2 3 2

be the two input images and the 2D-Lookup matrix be given by

l :

g1
g2

0 1 2 3

0 0 0 1 1
1 0 1 2 2
2 1 2 3 3
3 2 3 3 2

Then, the resultant image is

r :
l(0, 2) l(1, 3) l(2, 1)
l(0, 2) l(3, 3) l(3, 2)

=
1 3 2
1 2 3

Since the goal image is supplied as a binary one and in order to keep user
instruction as simple as possible, in the following the 2D-Lookup matrix
contains only binary entries Black (0) and White (1).

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

12.2.2 Genetic Algorithms and Genetic Programming

Evolutionary algorithms are a family of computer models based on the me-
chanics of natural selection and natural genetics. Among them are genetic
algorithms (GA) [?] and genetic programming (GP) [?]. Genetic algorithms
were introduced and investigated by John Holland [?]. Later, they became
popular by the book of David Goldberg [?]. Also, consider the GA tutorial
of David Whitley [?] as a very good introduction to the field.

GAs and GPs are typically used for optimization problems. An opti-
mization problem is given by a mapping F : X → Y . The task is to find
an element x ∈ X for which y = f(x), y ∈ Y is optimal in some sense. Ge-
netic algorithms encodes a potential solution on a simple chromosome-like
data structure, and apply genetic operators such as crossover or mutation
to these structures. Then, the potential solution is decoded to the value x

in the search space X, and y = f(x) is computed. The obtained value y

is considered as a quality measure, i.e. the fitness for this data structure.
Some genetic operators, such as the mating selection, are under control of
these fitness values, some other, like the mutation, are not related to fitness
at all.

An implementation of a GA begins with a population of “chromosomes”
(generation 1). For standard GA, each chromosome (also referred to as
individual) is represented as a bitstring of a fixed length (e.g. 0101101 as
a bitstring of length 7). Then, the genetic operators are applied onto all
bitstrings iteratively in a fixed order, going from one generation to the next
until a given goal (e.g. fitness value exceeds a given threshold or a predefined
number of generations was completed) is met. Finally, the individual (or
chromosome) with the best fitness value in the final generation is taken as
the evolved solution of the optimization problem.

Figure 12.4 illustrates the iteration of a GA from generation n to gen-
eration (n + 1). At first, 2m bitstrings are selected out of the k individuals
of generation n for mating. Usually, this is done by fitness-proportionate
selection, i.e., the relative probability for an individual to be selected is
proportional to its fitness value. The better the fitness, the better is the
chance to spread out its “genetic material” (i.e., some of its bits) over the
next generation.

Once the 2m individuals are chosen, they are paired. In the two bit-
strings of each pair, a common splitting point is randomly selected, and a
new bitstring is constructed by combining a half of the first bitstring with

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

The LUCIFER2 Framework

001010

101101

001101

001001

111000

010111

010000

010100

000001

011110

011101

011101

110001

101011

101001

101101

010100 101101

001010101101
001101
001001
111000
010111
010000
001010

001010101101
001101
001001
111000
010111
010000
101101

generation n

generation (n+1)

mating

crossover

mutation

fitness

selection

...

...

...

...

1 0 0

Fig. 12.4 General flow of a genetic algorithm: from generation n, individuals are se-

lected for mating, according to their fitness. By crossover, new individuals are generated
from the selected ones. Further, these new individuals are mutated, and its fitness func-

tion is computed. Only the individuals with the highest fitness values constitute the

next generation (n + 1).

the other half of the other bitstring. Then, the new individuals are mutated,
i.e. some of its bits are reversed with a given (usually small) probability.
This gives the so-called m children of parent generation n.

Now, the fitness values of the children are evaluated by decoding them
into x values and computing the f(x). Some of the children might have
a better fitness than its parents. From the k individuals of generation n

and the m children, the best k individuals constitute the next generation
(n + 1).

While randomized, GAs are no simple random walks. For the standard
GA, John Holland has derived the well-known Schemata Theorem, which
models a GA by means of the so-called schematas (or similarity templates).
A schema is an incomplete bitstring in the sense that it contains unspec-
ified bits. An example for a schema is 10*110, which leaves position 3
unspecified. 101110 is a realization of this schema. Generation n contains
each possible schema to some extent. It can be said, that such a schema
is tested by the GA, or that trials are allocated to it by the GA. Now,
one measure for a schema is the average fitness of all of its realizations.
A second measure is the ratio of this avarage to the “average average” of

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

all schemata present in the generation n, i.e. its above-averageness. The
Schemata Theorem relates the rate of a schema within a population with
this measure. It says, that the rate of a schema within a population grows
exponentially with its above-averageness. The most important point here
is that all schematas are tested in parallel.

Strongly related to the application of a GA is the encoding problem.
In general, GAs are applied to highly non-linear, complex problems, where
it is hard to find a model which provides an approach to the solution. In
these applications, they are the most simple approach. However, a GA is
not guaranteed to find the global optimum of a problem. It only ensures, by
the Schemata Theorem, to find better solutions than the random initialized
ones. GAs find evolved solutions.

Genetic programming, as introduced by John Koza [?], is in some es-
sential points very similar to a GA: there are generations, genetic operators
as crossover and mutation, and there is a fitness function. However, the
GP does not evolve bitstrings or other fixed data structures but it evolves
computer programs. The computer programs are represented by its gram-
matical trees (shortly: trees). Each tree is composed of the available simple
programming ingredients (nodes and terminals). The fitness of a tree is
obtained by performing the tree as a computer program. GP then pro-
ceeds with iteratively applying the standard genetic operations, selection
and crossover. For crossover, two individuals are chosen randomly, but
according to their fitness. Then, randomly chosen subtrees are swapped.
This gives two new children individuals from its two parent individuals.
Based on the fitness values of the newly created children, they may become
members of the next generation.

For applying GP, there is no encoding problem. However, the speci-
fication of suitable node and terminal functions might be as complicated
as the specification of an encoding procedure. The question, whether the
Schemata Theorem applies to GP search as well, is still discussed. The
problem here are redundancies within the trees, leading to solutions with
equal fitness, but different structure. It was shown by William Langdon and
Riccardo Poli [?], that this growth in redundancy is caused by the fitness
pressure itself (the effect is referred to as fitness-bloating). From this, there
are two hints for succesfully applying GP: don’t use simple node functions,
and keep the trees small in its depth.

Since the upcoming of Soft Computing, there has been a huge amount
of proposals about variations and modifications of GAs and GPs. Also,

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

The LUCIFER2 Framework

many hybrid systems, combining evolutionary algorithms with neural net-
works and/or fuzzy logic, has been proposed. Some new families of evolu-
tionary algorithms appeared, too (as cultural algorithms, ant algorithms,
scout algorithms, immune algorithms). Also, modified GAs were succes-
fully applied to hard-to-handle problem fields like multiobjective optimiza-
tion problems. It is far beyond the scope of this paper, to give even an
overview of these proposals. The inspiration from nature and from living
systems has helped to produce this new challenge in the design of powerful
and versatile search algorithms.

In the following, GP is just regarded as search technique for 2D-Lookup
algorithm configuration. A recently presented GA approach [?] was proven
to be outperformed by the GP approach, which is detailed here. In the
following subsections it is described, how the fitness of a binary result image
and the goal image is computed, how this fitness measure is reused for
deriving an optimal 2D-Lookup matrix from two operation images, and
how the trees of a GP population are built up.

12.2.3 Fitness Function

In order to compare the output image of the 2D- Lookup with the goal
image, a quality function has to be designed for the comparison of two
binary images. First, the definition of this fitness function will be given,
then it will be discussed.

A

B

C

pattern

reference

countBlack

matchBlack

refBlack

Fig. 12.5 Terms for fitness evaluation.

Consider figure 12.5, where two sets are shown, the reference set of the
goal image and the pattern set of the result image.

Therein, countBlack is the number of black pixels in the result image

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

(B + C), matchBlack is the number of black pixels of the result image,
which are also black in the goal image (B), and refBlack is the number of
black pixels of the goal image (A + B). Then, the following ratios can be
computed:

r1 =
matchBlack

refBlack
(4)

is the amount of reference pixels matched by the pattern,

r2 = 1.0− countBlack −matchBlack

N − refBlack
(5)

is the amount of correct white pixels set in the result image (N is the total
number of image pixels), and

r3 =
matchBlack

countBlack
(6)

is the amount of matching pixels of the result image. The multiple objec-
tive here is to increase these measures simultaneously. After performing
some experiments with the framework, it was decided to use the following
weighted sum of these three objectives as fitness measure:

f = 0.1r1 + 0.5r2 + 0.4r3 (7)

This fitness measure has the following properties:

(1) It counts better for subsets of the reference. Subsets obtain a fitness
value of at least 0.9, since r2 and r3 are 1 in this case.

(2) It counts better for subsets of the reference, which are supersets of
other subsets of the reference.

(3) A white image gives a fitness of 0.5, therewith refusing to assign a good
fitness value to the empty subset of the reference.

These properties make this fitness measure useful for genetic search. A
genetic search evolves its population towards the higher weighted objective
first. In our case this means, that measure r2, weighted with 0.5, is evolved
first. In other words, the first subgoal of the genetic search is to allocate as
many correct white positions as possible. Due to the weighting of 0.4 for
the r3-part, the search then tries to allocate correct black positions of the
reference, while the correct white allocations persist in the pattern. Once
the pattern is reduced to a subset of the reference, the only way to increase

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

The LUCIFER2 Framework

the fitness is to expand the subset towards the whole reference set. This
begins, when the fitness exceeds a value of about 0.9.

12.2.4 Deriving a 2D-Lookup matrix

In the following, it is assumed, that the two operation images and the
goal image are given. The question is how to derive a suitable 2D-Lookup
matrix, which gives the best match between goal image and result image
by the fitness measure given in the last subsection. The interesting point
here is, that this derivation can be done be reusing this fitness measure. To
prove this, assume a 2D-Lookup matrix, where all but one positions are set
to White (1), and only a single position (g1, g2) is set to Black (0). Then,
the 2D-Lookup will give a resultant image with all positions (x, y) set to
Black, for which operation 1 yielded pixel value g1 and operation 2 yielded
pixel value g2. Usually, there will be only a few black pixels within the
result image. Now, as it was remarked in the last subsection, the fitness
measure will give values above 0.9, if the set of black pixels lies completely
within the reference, no matter, how many pixels are there. So, a criterion
can be given for setting a pixel to Black or White in the 2D-Lookup matrix.

Let l(x,y) be a 2D-Lookup matrix constituted by setting only the pixel at
(x, y) to Black, and r(x,y) be the result of the 2D-Lookup with the operation
images 1 and 2 and this 2D-Lookup matrix. Then

l(x, y) =
{

Black, if f(r(x,y)) > 0.88
White otherwise.

In case there are no black pixels in r(x,y) at all, l(x, y) is set to Gray, which
stands for positions within the 2D-Lookup matrix, whose pixel value pairs
do never occur within the operation images 1 and 2 at the same location.
The value 0.88 has been chosen instead of 0.9 to give the adaptation some
tolerance.

Figure 12.6 shows the result of this derivation for two example im-
ages. This procedure, which resembles a relaxation procedure, gives a
quasi-optimal 2D-Lookup matrix for given operation images 1 and 2. The
following subsection describes the manner, by which the two operations
needed are derived by an individual of a GP.

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

g1

g2
lrelaxation(g1,g2)

result image

goal image

Fig. 12.6 The relaxation procedure for deriving the optimal 2D-Lookup matrix

lrelaxation(g1, g2), once the operation images g1 and g2 are given.

12.2.5 Building up a GP individual

In the following the structure of an individual of the GP population is de-
scribed. On its base, there are formal superoperators, acting on an input
image o(x, y) and giving the result image g(x, y). These superoperators
make use of a common parameter structure PS, which contains the follow-
ing entries:

• A mask M = {(i, j)} as a set of offset positions. The element k of
M is assigned byMk = (ik, jk). Applying a mask onto a pixel with
position (x, y) gives a set of pixel positionsM◦(x, y) = {(u, v) |u =
x + i, v = y + j, (i, j) ∈ M}, the ”neighborhood” of (x, y). The
cardinality of M is |M| = m. Masks used in a PS are restricted
to 3× 3 symmetric masks.

• A weighted mask Mw is a tupel (M, f) of a maskM and a function
f : M→R, which assigns a weight value to each mask offset (i, j)
of the mask M. For convenience, mask and its weightings are
pictured by a scheme as for a 3× 3 mask:

Mw =
w(−1,−1) w(0,−1) w(1,−1)

w(−1,0) w(0,0) w(1,0)

w(−1,1) w(0,1) w(1,1)

Weight values are restricted to the range [−5, 5]. If only Mw is
given, M can be found as set of all offset positions (i, j) with
fw(i, j) 6= 0.

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

The LUCIFER2 Framework

PS2PS1 PS3

PS4 PS5

g1=PS1(o) g2=PS2(o) g3=PS3(o)

g4=|g1-g2| g5=PS5(g3)

o o o

(op1,op2)

op1 op2

λ

Fig. 12.7 Example for an individual GP tree, representing two image processing oper-

ations (for details, see text).

• A single offset vector ~p = (δx, δy). The magnitude of the compo-
nents of the offset vector does not exceed 2.

• A Boolean operation fbit from {0, 1} × {0, 1} onto {0, 1} with
number Nfbit

‡. The notation fbit(n, m) means applying fbit bitwise,
i.e. if biti(n) extracts bit i of the number n in dual representation,
then biti(fbit(n, m)) = fbit(biti(n), biti(m)).

• A permutation Π of the first m integers with Πk the position of
number k in the permutation.

• A ranking vector ~v = (v1, v2, . . . , vm), which assigns weights to a
set of m sorted values. In the following, rankmax

i (A) is the i-th

‡There are 16 such operations, and N refers to a given ordering of them, e.g. by lexico-

graphical ordering of the two bit operands.

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

largest value of the value set A, rankmin
i (x, y) is the i-th smallest

value. The components of ~v are restricted to the set {−1, 0, 1}.
• A symbolic mode value mode, which specifies which kind of super-

operator is applied, using some of the parameters defined above.
The mode symbols and their meaning are explained below.

Hence, a PS is a 6-tupel (Mw, ~p, Nfbit
,Π, ~v,mode).

In the following, all operations are to be restricted within the given im-
age boundaries. Then, the following formal superoperators are introduced:

(1) Logical translation TRANS. It uses the vector ~p and the bit operation
number Nfbit

. The operated image at position (x, y) is given by

g(x, y) = fbit (o(x− δx, y − δy), o(x, y)) .

(2) Convolution CONVOL. It uses the weighted mask Mw. The con-
volved image is given by

g(x, y) =
∑

(i,j)∈M

f(i, j) o(x + i, y + j)

The weighted mask is zero-biased before operating with it, i.e., a
value δ is chosen so that

∑
(fw(Mk) + δ) = 0.

(3) Ordered Weighted Averaging OWA [?]. This operation is used in fuzzy
inference systems for defuzzification. It uses the ranking vector ~v.
Applying it as an image processing operation goes on as follows:
the pixel values of the image function o of the original image in
the neighborhood M ◦ (x, y) are sorted in descending order, and
the sorted value at position k is multiplied with the weight vk. All
prodcuts are summed up.

g(x, y) =
|M|∑
k=1

vk rankmax
k (o ◦ (M◦ (x, y)))

Some OWA weights represent well-known image processing opera-
tions. For example (1, 0, . . . , 0) as the dilation, (0, . . . , 0, 1) as the
erosion, (1, . . . ,−1) as the morphological gradient, (0, 0, . . . , 0,
1, 0, . . . , 0) as a ranking operator and (1/n, 1/n, . . . , 1/n) as the
averaging operation. OWA allows for formalizing these operations
within a single expression.

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

The LUCIFER2 Framework

(4) Texture Numbers TN. Here, the per Π is used. At position (x, y), the
operation derives a bit vector b with elements from {0, 1} of the
same size as M, from the input image o. The element bk of b is
obtained by

bk =
{

1 if (o ◦ (M◦ (x, y)))k ≥ o(x, y),
0 otherwise.

Now, a number n is constructed from b as follows: bit k of n is
given by the element l of the sequence b, with l being the index of
k in the permutation Π: bitk(n) = bΠk

. Then, g(x, y) = n. The
resultant values n are automatically rescaled to the grayvalue range
{0, . . . , gmax}.

(5) Ordered Weighted Minimum OWM [?]. This operation uses the weighted
mask Mw. The mask weights are sorted in descending order, the
pixel values in the neighborhood of (x, y) are sorted in ascending
order. Then, the minmax of these two value sequences is computed
as value of the result image at position (x, y):

g(x, y) =
|M|
min
k=1

[
max

[
rankmax

k (fw ◦M), rankmin
k (o ◦ (M◦ (x, y)

]]
.

From this, an image operation is fully specified by means of a PS. The GP
individual trees are constructed according to the following rules:

(1) At the root level, every tree has two branches (in order to have two
operations for the 2D-Lookup).

(2) At each level, each function node branches into a set of function nodes
and terminals of the next lower level.

(3) To each function node and terminal, a randomly initialized PS is as-
signed.

To each function node, an image operation out of the following set is as-
signed (here, g1, g2 are the operands, g is the result of the operation):

(1) Pixelwise Subtraction –. g(x, y) = |g1(x, y)− g2(x, y)|.
(2) Pixelwise Squaring sq. g(x, y) = g2

1(x, y)/gmax.
(3) Pixelwise Minimum min. g(x, y) = min{g1(x, y), g2(x, y)}.
(4) Pixelwise Maximum max. g(x, y) = max{g1(x, y), g2(x, y)}.
(5) Performing PS λ. g = PS ◦ g1.

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

A tree T generates the two operation images needed for 2D-Lookup from
the original image in the following bottom-up manner. The original image
o is given to all terminals. Each terminal applies its PS onto o. Then,
the processed images are given as operands to the nodes at the next upper
level, processed, given to the next upper level and so forth. The root node
collects its both operand images, performs the relaxation procedure, which
was described in the last subsection, and computes the fitness measure f

for the now fully specified 2D-Lookup algorithm. In this manner, a fitness
f is assigned to a tree T .

As an example, consider the six-node GP individual in Fig. 12.7. Five
random initialized PS = {Mw, ~p,Nfbit

,Π, ~v,mode) are given:

PS1 =

0 2 0
0 2 0
0 3 0

, (1, 1), 11,Π213, (1, 0, 0), TRANS

PS2 =

0 0 0
1 2 2
0 0 0

, (1, 2), 7,Π132, (1, 0, 0), OWA

PS3 =

0 1 0
1 2 1
0 1 0

, (−1, 0), 3,Π12354, (0, 0, 1), OWA

PS4 =

0 0 0
3 5 2
0 0 0

, (−1,−2), 5,Π312, (1, 0,−1), TN

PS5 =

0 1 0
1 2 1
0 1 0

, (2, 0), 5,Π51243, (1, 0, 0), OWA

Note, that PS4 is never applied onto an image, and PS3 and PS5 share
the same mask. Bit operation 7 is assumed to be the XOR operation.
From this, operation 1 of the tree is specified as absolute difference of the
original image translated and XOR-ed by the offset (1,1) (PS1), and the
original image dilated by a horizontal line-mask (PS2). Operation 2 is given

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

Results

as morphological opening of the original image by a cross-mask (PS3 and
PS5). Fig. ?? shows the intermediate and operation images of this tree
structure.

The structuring of image processing operations by the trees has been
chosen in this rather complicated manner for the following reasons:

• The operations, which are represented by such trees, resemble well-
known image processing operations. A tree is likely to represent
operations as dilation, erosion, closing, opening, morphological gra-
dients, Sobel operator, statistical operators, Gaussian filtering,
shadow images and so forth.

• The represented operations are unlikely to give unwanted operation
images, which are completely white or black.

• They preserve image locations.
• The maximum arity of a node is two. Also, maximum tree depth

was restricted to five. This was set in order to allow for the main-
tenance of the obtained trees, e.g. for manually improving the
designed filters by removing redundant branches. Processing time
is kept low, too (but processing time does not go into the fitness
function itself!).

Finally, figure ?? gives some operation images obtained from the same orig-
inal image by different randomly constructed and configured trees. These
images demonstrate the variabilty of the generated operations, each of
which enhances or surpresses different image substructures, and none of
which gives a trivial image operation.

12.3 Results

To learn about the framework’s abilities, textile images were used which
were taken from the “Textilfehler-Katalog” of the IPK Berlin (TFK). Four
examples will be given here. At first, a conventional feature classification
approach was applied. Co-occurrence features of 10 8× 8 texture windows
for each class (background texture and fault) were computed. Then, for
each type of texture a multilayer backpropagation neural network (MBPN)
with 14 input neurons (for the 14 co-occurrence features), 16 hidden neurons
and 2 output neurons (for the two classes) for each sample was trained over
1000 cycles. The trained MBPNs were recalled on the original images. The

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

λ

g1 g2 g3

g4 g5

original image

Fig. 12.8 Intermediate images, as generated by the tree in Fig. 12.7.

results are shown in Fig. ??. In general, the resolution of the method is
not very high, since it is restricted to the texture window size of 8×8. The
results for TFK 1-fr8 and TFK 1-st11 are good. The result for TFK 3-st23b
contains many errors. This is due to the varying grayvalue appearance of
the fault region. The MBPN can not generalize good in this case. The
result for TFK 3-fr1a is inacceptable. The fault is very small and of low
contrast. Too many conflicting grayvalue constellations appear within the
image. They can’t be classified by a MBPN.

Of course, these results will not prove, that the feature classification
approach in general is not able to perform better. The approach may be
adapted for each sample. But it has to be noted, that there is no other
way for improving the recall results in this case than by either supplying
more training samples, training the MBPN longer or changing the feature

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

Results

Fig. 12.9 Some operation images, as generated from the upper left image by randomly

generated trees.

TFK 1-fr8 TFK 3-st23b

TFK 1-st11 TFK 3-fr1a

Fig. 12.10 Results for applying the conventional texture classification approach to four
examples of the TFK (details see text).

calculation method.
For instructing the LUCIFER2 frameworking approach, subimages were

cut from the whole images, containing the fault and its neighboring texture.
Goal images were drawn by using a photo retouching program. Then, the
framework is started for each of the four samples. The results, including
both operation images and the relaxed 2D-Lookup matrix, are given in the
figures ?? to ??. For each problem, a population of 30 individuals, with 80

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

children in each generation, were used. The run went on until the genetic
diversity of the population vanished (all individuals have the same fitness).
Usually, this was the case after performing about ten generations.

As can be seen from the figures, the framework fulfills its task and
designs appropriate texture filters. The performance is usually good and
sometimes very good. It is to be noted, that exact resemblance will not be
possible, and it would not be of any merit. The visual appearance of the
fault border is a subjective one, and the user might give a slightly modified
goal image as well. The goal image contains virtual borders.

Also, the framework will never find the (globally) optimal texture filter,
since the searchspace is much too large to be covered by the genetic search.
The most important aspect here is that there are many good solutions for
a given task. The framework randomly evolves the initialized solutions
towards better ones.

The generalization ability of the designed texture filters was checked on
a larger test suite, also taken from the TFK. For 24 texture fault problems,
small reference images were cut out and goal images were drawn. For each
fault, the framework was run exactly once. The evolved filter was applied
to the whole image. The number of black pixels out of the reference image
part was counted, as well as the number of gray pixels. The first value
gives a measure for the error rate (”false alarms”) of the texture filter, the
second a measure for the compatibility of reference image and total image.
The results are given in Table ??. The average error rate is 1.9% and the
average incompatibility is 2.2%. These are good results, too. However, the
variations of the error rate are comparatively large (between 2 and 17278
pixels out of 262144 pixels, with one out-layer of 57774 pixels).

A consideration of the 2D-Lookup matrices helps to explain this fact.
The following can be said:

• Some matrices seems to be separable, i.e. the textured background
is represented by a group of compact white regions. The fault
appearance (the black dots) surrounds these regions. In this case,
the filter is expected to have a good generalization ability.

• There are regions, where black and white dots are hoplessly inter-
mingled. The more such regions are found within a matrix, the
more the evolutionary adaptation features random grayvalue con-
stellations within the two operation images. In this case, the filter
will perform bad on other images with the same texture and fault

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

Results

categories.

Compactness within the 2D-Lookup matrices is considered as main provi-
sion for filter’s higher generalization ability. If the matrices are manipulated
in a manner, which enhances compactness of its black and white regions,
the filter will perform better on newly presented images (possibly for the
price of a slightly lower performance on the input image, from which the
filter was designed). Future work will focus on this.

Table 12.1 Generalization ability of the LUCIFER2 framework for 24 texture fault
examples taken from ”Textilfehler-Katalog.” All images contains 262144 pixels. On an
average, there are 1.9% of the black pixels wrong, and 2.2% of the pixels gray.

TFK No. No. of Wrong Blacks No. of Grays
1-fr13a 407 12832
1-fr13b 11 33030
1-fr13c 2 2908
1-fr13d 18 1343
1-fr19 15 1322
1-st47a 1017 2276
2-i53 75 6
2-lau11b 70 2098
2-lau19 280 862
2-lau2 524 3804
2-lau6 498 495
2-lau24 614 283
3-fr4c 2325 16301
3-fr8 57774 5552
3-st18b 5717 10352
3-st20 2142 3367
3-fr19 15044 6216
3-st47a 17278 17680
4-fr1a 88 2004
4-st14 2355 3882
4-fr19 67 1854
4-st22a 536 2280
4-st27a 5 2555
4-st29 12135 6450

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

12.4 Conclusions

A framework was presented, which allows for the design of texture filters
for fault detection (two class problem). The framework is based on the
2D-Lookup algorithm, where two filter output images are used as input.

The approach was applied to four texture problems and the performance
of the framework was discussed. The results, obtained without “human
intervention,” are ready-to-use texture filters. Also, they can be tuned
in order to obtain even more better results, or combined in a superposed
inspection system. The following are our experiences during the test runs:

• The framework was able to design texture filters with good or very
good performance.

• The goal image matched the fault region quite satisfactorily.
• Bordering regions should be neglected for fitness evaluation.
• The framework was able to design filters for the detection of non-

compact fault regions and fault regions with varying appearance.
• The designed filters may be subjected to further improvements by

the user.

Current work focuses on several improvements of the whole architecture,
especially on the inclusion of rescaling and rescanning into the designed fil-
ter operations, and on an evaluation of the 2D-Lookup matrix by neural
networks in order to get a comprehensive solution for a given texture filter-
ing problem.

Acknowledgment

This research is supported by the Deutsche Forschungsgemeinschaft (DFG),
Schwerpunktprogramm “Automatische Sichtprüfung technischer Objekte”,
EPISTO, Ni 473/1-2. The authors wish to thank Dr. B. Schneider to make
the “Textilfehler-Katalog” accessible to this research (the “Textilfehler-
Katalog” is accessible via http://vision.fhg.de/ipk/tfk) and to A. Zentner
for implementing an on-line version of the LUCIFER2 framework (URL
http://vision.fhg.de/ipk/demo/lucifer2).

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

Conclusions

original image

operation 1 operation 2

goal image

2D-Lookup matrix

result image

0 255

0

255

g1

g2

Fig. 12.11 Results for example 1 (TFK 1-fr8).

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

original image

operation 1 operation 2

goal image

2D-Lookup matrix

result image

0 255

0

255

g1

g2

Fig. 12.12 Results for example 2 (TFK 3-st23b).

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

Conclusions

original image

operation 1 operation 2

goal image

2D-Lookup matrix

result image

0 255

0

255

g1

g2

Fig. 12.13 Results for example 3 (TFK 1-st11).

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

original image

operation 1 operation 2

goal image

2D-Lookup matrix

result image

0 255

0

255

g1

g2

Fig. 12.14 Results for example 4 (TFK 3-fr1a).

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

Conclusions

References

[1] Dubois, D., Fargier, H., Prade, H., “Beyond min aggregation in multicriteria
decision: (ordered) weighted min, discri-min, lexmin”, in: Yager, R. R.,
Kacprzyk, J. (eds.), “The ordered weighted averaging operators — Theory
and applications”, Kluwer Academic Publishers, Dordrecht a.o., 1997.

[2] Goldberg, D. E., “Genetic algorithms in search, optimization & machine
learning”, Addison-Wesley, Reading, MA, 1989.

[3] Gonzales, R. C., Woods, R. E., “Digital Image Processing”, Addison-Wesley,
Reading MA, 1993.

[4] Haralick, R., Shanmugam, K., Dinstein, I., “Textural features for image
calssification”, IEEE Trans. SMC, 3, (6), pp.610-621, 1973.

[5] Haralick, R., Shapiro, L., “Image segmentation techniques”, Computer Vi-
sion, Graphics and Image Processing, 29, pp.100-132, 1985.

[6] Holland, J. A., “Adaptation in natural and artificial systems”, MIT Press,
Cambridge MA, 1975.

[7] Köppen, M., Ruiz-del-Solar, J., Soille, P., “Texture segmentation by
biologically-inspired use of neural networks and mathematical morphology”,
Proc. NC’98, Vienna, Austria, pp.267-272, 1998.

[8] Köppen, M., Ruiz-del-Solar, J., “Fuzzy-based texture retrieval”, Proc.
FUZZ-IEEE’97, Barcelona, Spain, pp.471-475, 1997.

[9] Köppen, M., Teunis, M., Nickolay, B., “A framework for the evolutionary
generation of 2D-Lookup based texture filters”, Proc. IIZUKA’98, Iizuka,
Japan, pp.965-970, 1998.

[10] Köppen, M., Soille, P., “Two-dimensional frameworks for the application
of soft computing to image processing”, Proc. IWSCI’99, Muroran, Japan,
pp.204-209, 1999.

[11] Koza, J., “Genetic programming — On the programming of computers by
means of natural selection”, MIT Press, Cambridge, MA, 1992.

[12] Langdon, W. B., Poli, R., “Fitness Causes Bloat”, Proc. of the 2nd On-line
World Conference on Soft Computing in Engineering Design and Manufac-
turing (WSC2), 1997.

February 14, 2003 19:22 WorldScientific/ws-b8-5x6-0 flsi

[13] Serra, J., “Image analysis and mathematical morphology”, Academic Press,
London, 1982.

[14] Serra, J., “Image analysis and mathematical morphology. Vol. 2: Theoretical
advances”, Academic Press, London, 1988.

[15] Whitley, D., “A genetic algorithm tutorial”, Statistics and Computing, 4,
pp.65-85, 1994.

[16] Yager, R. R., “On ordered weighted averaging aggregation operators in
multi-criteria decision making”, IEEE Trans. SMC, 18, pp.183-190, 1988.

