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Abstract

This paper presents the exploitation of the concept of fuzzy–subsethood for
defining a new class of color image processing operations. By considering a
color value as a fuzzy set, the calculus of fuzzy-subsethood becomes applicable
to color images. From this, a simple color threshold operation can be defined,
which gives a grayvalue image from the degrees of subsethood. Also, mathe-
matical morphology can be extended to color images this way. For doing so, the
important class of Pareto–Morphologies is introduced, and fuzzy–subsethood is
used to define a new ranking scheme for multivariate data. This gives the Fuzzy–
Pareto–Morphology (FPM), which fulfills basic requirements for a generalized
morphology. An extension of the difference image to color images and an op-
eration given by an intermediate result of FPM, the M-image, are presented as
new operations. Some examples of frameworks, which employs the newly de-
fined operations, are given. It comes out, that fuzzy–subsethood allows for the
definition of a new class of comprehensive color image processing operations.

1 Introduction

Color image processing is of essential importance in order to increase robustness, ver-
satility and reliabilityof technical vision systems. As exemplified by human perception
abilities, color is more than a simply “add-on” to grayscale images. Modern comput-
ing equipments with a major improvement of its calculation and storing capabilities
allows for color image processing to become a nowadays state–of–the–art.

Two questions are considered to be of basic importance for color image process-
ing, the question of color representation, which is strongly related to color spaces,
and the question of appropriate color image processing operations. While investiga-
tions on the first question resulted in a wide variability of technical, psychological or
theoretical important color models (as HSI, RGB, CMYK, Lab, but there are much
more. . . ), research on the second question has been performed in a more restricted
manner. Some basic problems related to color image processing are: multivariate na-
ture of color data, which complicates the extension of some grayscale operations to
color images (e.g. convolution, mathematical morphology); and the dual nature of hu-
man (or mammalian) color perception sensitiveness: being highly sensitive to smallest
“color artifacts,” and being highly insensitive for luminiscance variations within im-
ages (e.g. under varying lightning conditions) at once.



This complicates and restricts possible definitions for versatile operations on color
images. Neither Laplacian, Sobel, Dilation nor Thresholding found suitable counter-
parts in color spaces so far. To overcome this, in this paper a means is given for de-
signing a new class of such operations, employing the calculus of fuzzy–subsethood.

This paper is organized as follows: in section 2, the concept of fuzzy–subsethood is
shortly recalled. Then, section 3 presents the new operations Color Thresholding (sec-
tion 3.1) and Color Morphology (section 3.2). In order to define the new generalized
morphology, a broader class of multivariate morphologies, the Pareto–Morphologies,
has to be introduced. The Fuzzy–Pareto–Morphology is proposed in this section, and
also some accompanying operations. Some demonstration examples, which prototype
possible frameworks for applying the new operations, are presented along with the
defintions. The paper ends with the acknowledgment and the reference.
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Figure 1: Fuzzy sets as points in the unit square.

2 Fuzzy subsethood

Normally, a fuzzy set is given by the membership degrees of its elements

M = (µ1;µ2; : : : ;µn)

According to the fuzzy set approach of Kosko [7], fuzzy sets could be considered as
points in then-dimensional unit square (or unit cube) by using the membership degrees
as coordinates. If the parallels to the coordinate axis are drawn, a hyperrectangle is
constructed this way. Hence, each fuzzy set corresponds to a hyperrectangle in the
unit square. Fig. 1 shows 2 two-dimensional fuzzy sets. This approach gives the way
for a redefinition of the term subsethood. Initially, a fuzzy setA was considered as a
subset of fuzzy setB , when for all membership valuesai � bi is fulfilled [12]. Kosko
extended the concept to degrees of subsethood. This degree is derived geometrically
from the assigned hyperrectangles. It equals the ratio of the volume of the intersection
of both hyperrectangles to the volume of one hyperrectangle. Thus, even the whole set
is a subset of each of its subsets to a certain degree1.

1This was considered as fuzzy foundation of probability by Kosko.
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3 Fuzzy subsethood based color image processing

3.1 Color thresholds

The simplest operation, which can be defined by using fuzzy subsethood, is to take
a color value as three-dimensional fuzzy set, and derive the degree of subsethood of
each image pixels’ color value. Thereby, each color value is considered as a fuzzy
set, too. The degree as a value from[0;1] is linearly mapped onto a grayvalue from
f0; : : :;gmaxg. More formally, if(cx;cy;cz) is the choosen color threshold, and an image
pixel position has the color value(px; py; pz) for a choosen color model, then the same
position in the result image gets the new grayvalue

gnew= gmax
min(cx; px)min(cy; py)min(cz; pz)

cxcycz
:

Clearly, each component of the color threshold must be different from Zero.
The result of this “color thresholding” is a grayvalue image. Despite of its simple

nature, color thresholding allows for the design of useful operation, for example highly
sensitive color texture filters.

Consider the color textile example given in fig. 2. The HSI representation of this
image is thresholded twice, with color threshold (0,200,100) and with color threshold
(0,100,80) (the color thresholds are taken fromf0; : : :;gmaxg and rescaled to[0;1]).
The result of the second thresholding is subtracted from the result of the first thresh-
olding by pixelwise subtraction of the grayvalues. The resulting image is given in fig. 3
(b). For comparison, the standard grayvalue transformation of color images is given
in fig. 3 (a)2. As can be seen from the threshold difference image (b), the seemingly
homogenuous background texture of the textile reveals its pecularities. These are due
to surface faults, but also due to errors in the shading correction of the used scanning
device.

Figure 2: Original color textile image.

2The original color plates can be found athttp://vision.fhg.de/ipk/koeppen/images/nfs99.
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(a) (b)

Figure 3: Comparison between standard grayvalue conversion (a) and the difference of
two color–thresholdings of fig. 2 (b) (see text for details). The latter one reveals some
anomalies of the background texture.

3.2 Pareto–Morphology

3.2.1 Generalized morphologies

Each generalized morphology will be based on its definition of two basic operations:
dilation and erosion. As suggested by Serra [8], there should be three key ideas, based
on which a generalized dilation is defined3: an idea of ranking due to a sort order; an
idea of a supremum due to this ranking; and the possibility of admitting an infinity of
operands. The issues related to generalized morphologies, especially in the context of
fuzzy logic, have been intensively discussed in [2] [3] [6] [4] and [11]. Consider also
[8] [9] and [10] for a comprehensive introduction into the field and the applications of
mathematical morphology for image processing.

3.2.2 Multivariate ranking

In order to fulfill these requirement for multivariate data, the concept of rankingn
values should be extended to the ranking ofn vectors. In [1], multivariate ordering
principles were classified into four categories: marginal ordering, reduced ordering,
partial ordering and conditional ordering. Only marginal ordering and reduced or-
dering can be used in order to define the set function of a generalized dilation. An
example for a generalized dilation based on marginal ordering is given by applying a
one-dimensional set functionP component-wise:

P �f(px; py; pz)g= (P �fpxg;P �fpyg;P �fpzg):

3Generally, when the definition of a dilation is fixed, the erosion is defined as the complementary
operation.
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However, marginal ordering would give new color values within the result image, thus
possibly producing “color artifacts.”

By reduced ordering, a scalar parameter function is computed from the vector
components of each color value withinM. The ranking is performed according to the
resulting scalar values. Generalized morphologies can be designed based on reduced
ordering. This has been intensively discussed in [4]. The comparison of these mor-
phologies with the here proposed Fuzzy–Pareto-Morphology is currently investigated.

Multivariate ranking is important for solving multi-objective optimization prob-
lems. Recent approaches here made use of the concept of the Pareto set [5]. If two
vectors~a and~b are to be compared, it is said that~a dominates~b, when each compo-
nent of~a is at least as large than the corresponding component of~b, and at least one
component is larger:

~a >D ~b  ! 8i(ai � bi)^9k(ak > bk):

The subset of all vectors, which are not dominated by any other vector, is the Pareto
set (also Pareto front). From this, we define the subset operatorP, which assigns the
Pareto set to a set of vectors.

The Pareto set describes the possible solutions of a multi–objective optimization
problem. According to the problem statement, every solution, which gives an element
of the Pareto set, when its multiple criteria are computed, is optimal in this generalized
sense.

3.2.3 Pareto–Morphology

The concept of Pareto sets allows for a new interpretation of the supremum of multi-
variate data. The operatorP comprises a natural extension of the max operation. Hence
we formulate the following requirement for a generalized (e.g. color) morphology:

The result of the dilation must not be dominated by its original value.

� 9p : p >D p�a:

A generalized dilation is said to fulfill the Pareto property, if its set functionP gives
the same result for a neighborhoodM, if restricted toP(M).

Every morphology derived from a generalized dilation with the Pareto property is
referred to as Pareto-Morphology.

Reduced ordering gives a Pareto-Morphology, if its parametric functionf is mono-
tonic. If not, it could violate the Pareto property4.

At this point, the important question comes up, whether there exists a Pareto-Mor-
phology, which is not based on reduced ordering. The answer to this important ques-
tion will be given next.

4Considerf (x;y) = sin π
2x+sinπ

2y and its valuesf (1;1) = 2; f (2;2) = 0 and f (1;3) = 0. While the
Pareto set is given withf(2;2);(1;3)g, the selected point is (1,1).
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3.2.4 Definition of Fuzzy–Pareto–Morphology

Fuzzy–subsethood can be used to define a new ranking scheme, which does not belong
to one of the four categories of Barnett [1]. At first, we consider maxmin operations
of the kind

argmax(min(~f (p))

and
argmin(max(~f (p)):

When~f is derived from fuzzy–subsethood degrees of onep within the otherp, the
resultant ranking scheme is neither marginal nor reduced ordering. Moreover, it al-
lows for the design of a new generalized dilation. This will lead to the Fuzzy-Pareto-
Morphology (FPM).

Thus, we can give the definition of the FPM. If the neighborhoodM of a pixel is
given byn pixels with color valuesxi j with i = 1; : : :;n and j = 1;2 or j = 1;2;3, then
the set operationP is given by:

P � argmini

�
max
k6=i

∏ j min(xi j ;xk j)

∏ j xi j

�
: (1)

The dilation of FPM is derived from this set function, which gives the replaced supre-
mum value of a neighborhoodM of a pixel.

Figure 4: Detection of a thread in a colored textile by filtering it out.

An example of the application of FPM to color images is given in fig. 4. There,
the detection of thread faults in a color textile is demonstrated. The structural property
of the threads horizontal orientation is used by the FPM. The structuring element is
a vertical oriented mask of size 7. If opening, i.e. dilation followed by erosion, is
applied with this mask, the thread “vanishes.”

Fig. 5 demonstrates the detection of blots in a colorized texture. From left to right:
the original image part5; the result of FPM dilation with a structuring element of size
3�3; the result of applying this operation twice; and the result for applying it three
times.

3.2.5 Properties of the Fuzzy–Pareto–Morphology

The following properties of the FPM can be verified from its definition.

1. The FPM is a Pareto–Morphology.

5The arrow is just for marking the fault, but it is processed as well.

6



Figure 5: Detection of blots in a colored textile by repetetive application of Fuzzy–
Pareto–Morphology.

2. The FPM does not comprise a reduced ordering, except for exactly two points.

3. FPM reduces to standard grayscale morphology, when applied to grayscale im-
ages (i.e. color values of dimension 1).

4. But, FPM is not contiguously, i.e. it violates

(p�a)�b = p� (a�B b)

for certain values ofa;b and neighborhoodsp (�B stands for standard binary
morphology).

3.3 Accompanying operations

Within the context of FPM, other operations for color image processing can be de-
signed, too. Two examples will be given in the following:

� A fuzzy color image subtraction operation of two imagesp1 and p2, by which
the degree of fuzzy subsethood of the color value ofp1 in the corresponding
color value inp2, multiplied by the original color value, is assigned toeach
image position.

This is important for e.g. the definition of the morphological gradient in FPM.
In grayscale morphology, the morphological gradient is the difference of dilated
and eroded image by the same structuring element. However, simply subtracting
two color values would introduce alien color values in the result image. By
replacing subtraction with the mutual fuzzy subsethood operation, this could be
prevented6.

With this operation, edge operators from morphology can be used in applica-
tions.

� The selection scheme of equation 1 actually computes values, for which the
argument leading to the smallest value is taken as result. However, the lowest
value itself can be taken as a grayvalue, and a grayscale image can be constructed
this way (the so-called M-image).

These operation may support the processing of color images by the newly proposed
FPM. Fig. 6 shows the M-image of the third dilation in fig. 5. The blots are clearly

7



Figure 6: Indication of blots in the colored textile of fig. 5 by the M-image.

indicated.
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