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Abstract—Wireless channel allocation (WCA) is a relevant
resource allocation problem that cannot be handled by a simple
maximization approach. In such a case, users can often be
excluded from receiving channels at all. Therefore, here we
want to focus on fairness concepts for specifying wireless
channel allocations. We extend the concept of fairness in
traffic congestion avoidance to the wireless channel allocation
problem. The main characteristics of the state achieved by
the fair Bottleneck Flow Control algorithm were directly
applied to the WCA problem, including lexmin fairness,
maxmin fairness, proportional fairness, and, as a new result,
exponential Ordered-Ordered Weighted Averaging (OOWA)
operator maximization. The utility of the numerical exponential
OOWA maximization for reflecting fairness in the WCA is
demonstrated. Based on this and two basic properties of the
general OOWA, a replace and swap operation based annealing
heuristic is proposed. Its study on small problem instances
allows justifying their applicability to real-world instances of
the WCA problem.
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I. INTRODUCTION

The wireless channel allocation (WCA) problem refers to
the allocation of channels for a sequence of consecuting time
slots to a numbers of users by a base station in a wireless
communication network. For each channel, time slot, and
user, there is a so-called channel coefficient, representing
the physical characteristics, by which a user can send data
through the channel at the specific time slot. Usually, these
values are predictions and are drawn from distributions
according to a physical model of the wireless infrastructure.
Seen as a combinatorial problem, and abstracting from the
specific set up, the conditions of the WCA can be given as
follows. A set of m channel-timeslot pairs, which we will
call here cells, has to be assigned to a set of n users ui. Each
user is specified by a vector ci of m channel coefficients
(m ≥ n). An allocation a is an index vector of size m,
where the index ai indicates the assignment of the cell i to
user uai

. The performance p of an allocation is the vector
of sums of channel coefficients for all users: the component
pi equals

∑
{j|aj=i} cij .

The question for this problem is how to decide for an
allocation in a specific situation. It can be easily seen that

a maximization criterion is not helpful. Actually, it is trivial
to maximize the total performance for such a problem, by
just selecting for each cell the user with the highest channel
coefficient. However, for such a selection it can happen that
a number of users will be neglected, once they never have
the maximum channel coefficient anywhere. So it also needs
some means to ensure that users never become neglected or,
in other words, that all users are treated equally. So, we will
focus on fairness in Wireless Channel Allocation here.

Fairness in WCA has only rarely been discussed. So far,
the focus seems to rather employ game theory, especially
bidding concepts [1], or scheduling policies [2], instead of
providing exact algorithms. In [3], Bottleneck Flow Control
(BFC), an algorithm taken from network traffic congestion
avoidance, was proposed as a means for also defining and
achieving fairness in the discrete context of the WCA. There,
so-called “equality bottlenecks” were identified to represent
fair allocations, and a heuristic approach was presented to
find these bottlenecks. In this paper, we want to advance
on this concept by introducing a new characteristic of the
BFC and using it for defining a fairmost allocation of users
to cells. The new characteristic is a real-valued function of
the performances alone, the so-called exponential Ordered-
Ordered Weighted Averaging (OOWA) and it was recently
shown that this function is maximized by the BFC algorithm
[7]. So, the prospect of using the exponential OOWA also for
the WCA will be further explored in this paper, and based
on some mathematical properties, an annealing heuristic is
derived that can handle the WCA problem under real-time
conditions.

Next section will recall the BFC algorithm and its char-
acterization by maximum and best sets of relations, and
introduce the exponential OOWA. Section III will provide
a study of the same relations for the WCA problem and
provide the means for the design of a heuristic approach to
fairness in WCA. Section IV will provide the new algorithm
and some results.

II. BOTTLENECK FLOW CONTROL APPROACH TO
FAIRNESS

While comparing different solutions to a resource sharing
task, usually, subjective justification of fairness can be easily



done. Doing the same formally and, at the same time,
effectively appeared to be not that easy. A notable exception
here was already devised about 30 years ago [4]. The
studied problem was to allocate traffic volumes to users in
network routing, once all paths for the traffic routing through
the network were decided. The so-called “bottleneck flow
control” was proposed as a means to avoid congestion while
being fair to all users as well. The limitation in resources
is expressed by assigning maximum capacities to the links
in the network. Thus, if the paths do have some overlap
in the used links, certain subsets of users will attempt to
share links for sending their traffic. If the situation is rather
visualized in analogy to a network of water channels, where
each user wants to achieve a certain height-level of water
along her path, then the algorithm starts with flooding all
channels increasingly from level 0. At some point, and for
at least one link, a bottleneck will appear, i.e. the rising
water level will hit the maximum level for one channel (the
maximum capacity in terms of the network problems). Up
to this moment, each user has received exactly the same
height-level. But obviously, the steady increase in water
level cannot be continued anymore, as this will exceed at
least one capacity. On the other hand, in most cases, only
a subset of users will be affected by this bottleneck. So,
the approach is to stop the continuous increase of water
levels for the affected users, but continue for all others.
The level will continue to raise except for the channels that
have reached their maximum level, and eventually reach
another bottleneck. Then, the affected users are excluded
from further increase as well, and the procedure iterates until
all bottlenecks are reached. More details about the algorithm
can be found, for example, in [3].

A. Characterization of the BFC Result

Given an instance of a network routing problem with
maximum capacities, the BFC algorithm will always assign
a unique traffic state to all users. Within the feasible space of
all possible traffic states, this state T ∗ can be characterized
in several ways. A number of ways have been reported in
the past, and all of them lead to a notion of fairness. Here
we will focus on four of them.

We also want to recall that for any relation >R, formally
seen as a subset of A × A, where A is an arbitrary but
fixed set, we can define a maximum set and a best set: the
maximum set contains all elements x from A such that there
is no other y 6= x in A with y >R x. The best set, on the
other hand, contains all elements x of A such that for any
other y 6= x x >R y holds.

The most simple and obvious relation is the lexmin
relation. The lexmin relation is defined as a relation between
two points from Rn. Given two vectors x and y from Rn, we
consider the coordinates of both vectors sorted in increasing
order. It is said that x >lm y if and only if the first coordinate
of x, in this sorting, which is different from y, is larger than

the corresponding coordinate of y in this sorting. From the
design of the BFC algorithm (actually already for the first
bottleneck), it can be easily seen that state T ∗ is the best
element of the feasible space of all traffic allocations for the
lexmin relation.

Second we note the maxmin fair dominance relation:

Definition 1. An element x of the feasible space (a subset
of Rn) is maxmin fair dominating an element y of same
space, if for each component yi of y, which is larger
than the corresponding component xi of x there is another
component xj of x which is (already) smaller than or equal
to xi and such that yj is smaller than xj .

It has already been reported (e.g. [5]) that the state T ∗

is the maximum set as well as best element of this relation.
For some weaknesses of the maxmin fair dominance relation
(see [6]), several extensions have also been considered in the
past, with the proportional fair dominance relation being the
most popular:

Definition 2. A point x of feasible space (a subset of R+
n )

is considered proportional fair dominating another feasible
point y, if and only if∑

i=1,...,n

yi − xi

xi
≤ 0 (1)

holds.

Proportional fairness can be seen as an approximation to
maxmin fairness but it is not directly related to the BFC
algorithm.

While the former definitions show how to use a relation
between points in the feasible space, and to characterize
the BFC algorithm as the one that finds the best element
(or maximum set elements) of these relations, the question
comes up if there is also a scalar function of the traffic
amounts that is directly maximized by the BFC algorithm.
We define a special case of the ordered weighted averaging
(OWA) operator. As a reminder, the OWA of a point x of Rn,
given a weight vector w ∈ Rn, is defined as

∑
wix(i). In

this expression, x(i) indicates the i-th smallest element of all
coordinates of x. We specialize the OWA by also requiring
the weights to be sorted in the opposite order:

Definition 3. Given a point x from Rn and a set of weights
w ∈ Rn, the Ordered-Ordered Weighted Averaging (OOWA)
of x by w is defined as

OOWAw(x) =
n∑

i=1

w(i)x(n−i+1) (2)

Thus, in the OOWA, the largest value is multiplied with the
smallest weight, the second-largest value with the second-
smallest weight etc. As a special case of the OOWA, we also



introduce the exponential OOWA. The additional require-
ment here is w(k) >

∑k−1
i=1 w(i), so that the weights itself are

exponentially increasing. A possible choice is wi = 2(i−1)

for any i ∈ N .
Based on this, we can state the following:

Theorem 1. Given a weighted graph G of a network, a
routing (i.e. a set of linking paths between nodes), then
among all feasible traffic allocations to the users, the BFC
algorithm gives the state with the maximum value of the
exponential OOWA (for any fixed choice of weights).

The result has recently been reported in [7]. We also
employ two extensions of the result. The requirement of
an exponential increase of the weights is a result of link
sharing. The worst case, where the condition of exponential
weight increase has to be fulfilled, is where a single user
shares traffic with all other users. If we transfer such results
to the WCA problem, where there is no direct notion of
link sharing available, we cannot know whether there is a
corresponding situation. If there is no link sharing at all,
any OOWA will be maximized by the BFC algorithm. So
we also consider a linear OOWA with wi > wi−1 for any
i > 1 in the following. In case that its maximum coincides
with the maximum for the exponential OOWA, we can see
this as an indication that such a virtual “link sharing” does
not occur, or only to a small degree with low influence on
related results.

Another special case for representing low link sharing will
be newly introduced here. If a link never shares traffic with
more than one other user, the requirement of exponential
increase of the weights can be relaxed to the requirement
wi > wi−1 + wi−2 for i > 2 and w2 > w1. One possible
choice for such weights is wi = Fi+2 − 1, where Fi is
the i-th element of the FIBONACCI series (F1 = 1, F2 = 1
and for i > 3 Fi = Fi−1 + Fi−2). From wi−1 + wi−2 =
Fi+1 +Fi−2 = Fi+2−2 = wi−1 < wi it can be seen that
this choice fulfills the relaxed weight increase requirement.
We will call an OOWA computed with these weights a
Fibonacci OOWA. The exposition can be extended by using
more than two weights in a straightforward manner. We
consider such special versions of the OOWA as a convenient
tool for probing implicit sharing issues in any domain, where
these expressions can be computed.

B. Application to WCA

In this section, we want to study the concept of exponen-
tial OOWA maximization for the WCA problem. We will
consider two essential properties of an OOWA, and also
study the relation between various forms of fairness. This
will give the base for defining a suitable heuristic approach.

C. Some properties of the OOWA operator

The exponential OOWA comes out to be a “good” repre-
sentation of fairness, as it numerically increases when values

are replaced by their averages. But at first we recall

Lemma 1. Among all OWA values with the same set of n
data ti in same order and weights w(i) in any order (i =
1, . . . , n), the OOWA takes the smallest value.

For the rather simple proof, see [7]. Based on this, we
note two ways to improve an OOWA (independent of the
weight growth rule).

Theorem 2. Given a set of data ti and a set of weights wi,
each with n elements. If we select any subset of data and
replace their values with the average of the selected data,
the OOWA computed from the modified data set will never
decrease.

Proof: We consider the set of data t∗i after modification,
and sorted in decreasing order (see Fig. 1 for an example
with 8 data points). Without loss of generality, we assume
the weights to be already sorted in non-decreasing order,
so wi = w(i). The averaged data points will appear in a
sequence within the ordering (darker green bars in Fig. 1).
Now we modify them such that each average value becomes
the value of the data point in the unmodified set of data,
and such that the unmodified values become sorted in non-
increasing order. Since the sum of all changes (decreases and
increases) has to be 0, there will be a limit weight wa so
that in the sequence of average values, values with an index
equal to or less than a will not decrease, and will not increase
for values with an index larger than a (like index 4 in the
example). If the sum of all increases of ti values against the
t∗i values is S, then S will also be the sum of all decreases.
Then it is clear that the weighted sum of all increases, where
the weights are assigned by the order of the t∗i , will not be
larger than waS. Correspondingly, the weighted sum of all
decreases, also weighted by the order of the t∗i , will not be
smaller than waS. Thus, when replacing the averaged values
with the sorted unmodified values, while keeping the weight
order, the value of the modified OOWA expression (it is an
OWA now for some order of the weights, since the values
are not sorted) will not increase. Now we still have to sort
the data points into the correct non-increasing order to get
the OOWA expression for the unmodified values. By Lemma
1, this will also never increase the OWA value. So we can
transform the OOWA expression for the modified data set
into the OOWA expression of the unmodified one without
ever increasing the OOWA value.

Theorem 3. Given two sets of n data points t = (ti) and
s = (si). If ti Pareto-dominates si, then for any set of
weights w = (wi) OOWAw(t) > OOWAw(s).

We can skip the proof here for space reasons, as the
principle is the same as for Theorem 2.
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Figure 1. On the proof that exponential OOWA does not decrease when
replacing any number of data values by their average. Note that w1 <
w2 < · · · < w8.

D. Feasibility of the exponential OOWA

As the exposition in this paper is focussing on the expo-
nential OOWA as a means to achieve fairness in the WCA
problem, we want to explore the position of this fairness
among the various other ways of representing fairness. For
instances of the WCA problem, where the feasible space can
be completely handled (in face of the exponential growth of
the feasible space), we have derived several properties from
the best element or maximum sets of fairness relations and
the maximum value of some OOWA expressions. For each of
these cases, the values of the properties were averaged over
1000 random problem instances, with channel coefficients
to be chosen as uniform random numbers from [0, 1]. The
results are shown in Table I.

The notations in Table I are: nu - number of users, nc -
number of cells, Mmmf - maximum set for the maximum
fair dominance relation, Teo - maximum exponential OOWA
element, Tlm - best element of lexmin relation, Tlo -
maximum linear OOWA element, Tfo - maximum Fibonacci
OOWA element, Mpf - maximum set of proportional fair
dominance relation. A hyphen indicates that the value was
not evaluated, as the property is always fulfilled (e.g. the
expressions for linear and exponential OOWA coincide for
nu = 2). A star next to the number of cells indicates that
for the average, due to larger computational effort, only
100 samples were taken. So, the last line for each number
of users is for verifying trends. For handling proportional
fairness, all performances containing 0 components had to
be excluded.

First at all, while the definitions for fairness coincide in

case of the network routing traffic allocation by the BFC
algorithm, in case of the WCA problem they obviously
refer now to different things. Nevertheless, some relations
and trends are visible. We can observe (with the term
“element” reffering to an element of the feasible space, i.e.
the allocation of users to cells, and its performance vector):

• The size of the maximum set of the maxmin fair
dominance relation is bounded from above by the
number of users. For the case of a set of vectors with no
pairwise equal component, this has been shown in [5].
However, no such bound is known for the proportional
fair dominance relation so far, but the 7th column of
Table I indicates that also here, the maximum sets
are rather small (while definitely not bounded by the
number of users, see result for 3 users and 5 cells).

• The maximum set Mmmf often contains the maximum
exponential OOWA element, while this ratio decreases
with increasing number of cells. However, a subsequent
study (omitted here for space reasons) indicates that
Teo nevertheless, stays close to this set, and especially
always closer than the best lexmin relation element
Tlm. So we can confirm a tendency of the exponential
OOWA to represent or approximate the maximum set
of maxmin fair dominance relation, and better than the
lexmin relation.

• Nevertheless, the maximal exponential OOWA element
and lexmin element often coincide already, with a
stronger decay of this ratio with increasing number
of cells. Also, we can see that for a small number
of users, we have to face issues where the maximum
exponential OOWA element contains 0, i.e. users are
virtually excluded. The same problem is known for
maxmin fairness (see [6]), and the only thing we can
say here is that this problem rapidly vanishes with
increasing problem dimensions.

• There are, in general, only few cases, where the dif-
ferent OOWA values differ, in the majority of cases in
more than 80% of the problem instances, there is no
difference between linear, Fibonacci, and exponential
OOWA. This is an indication that “link sharing” is not
pre-dominant in the WCA problem, i.e. there is only
a lower number of cases where the larger performance
for one user needs to be compensated by many other
users.

• Next to maxmin fair dominance, the exponential
OOWA also seems to represent the maximum set of the
proportional fair dominance relation. We can see that
Mpf quite often contains Teo, and this ratio does not
seem to be strongly affected by increasing problem size.
On the other hand, the best lexmin element is contained
in Mpf to a lesser degree, and this ratio is much
stronger falling with increase of problem size. The
advantage of the OOWA here is that numerical values



Table I
AVERAGE VALUES FOR SEVERAL PROPERTIES OF FAIRNESS RELATIONS DERIVED FROM EXACT SOLUTIONS OF WCA.

nu nc |Mmmf | Teo ∈Mmmf Tlm = Teo Tlo = Teo 0 ∈ Teo Tfo = Teo |Mpf | Teo ∈Mpf Tlm ∈Mpf

2 2 1.845 0.848 0.805 - 0.137 - 1.185 0.863 0.969
2 3 1.847 0.679 0.501 - 0.034 - 1.687 0.946 0.688
2 6 1.709 0.679 0.590 - 0 - 1.586 0.874 0.509
2 8 1.680 0.645 0.555 - 0 - 1.669 0.783 0.415
2 9* 1.67 0.61 0.52 - 0 - 1.63 0.70 0.34

3 3 2.676 0.886 0.815 0.916 0.036 - 1.436 0.951 0.892
3 5 2.868 0.657 0.450 0.814 0.001 - 3.063 0.920 0.482
3 6* 2.27 0.73 0.65 0.87 0 - 2.86 0.87 0.56

4 4 3.161 0.914 0.811 0.882 0.005 0.977 1.640 0.953 0.828
4 5* 3.39 0.80 0.67 0.76 0 0.98 4.06 0.79 0.52

5 5* 3.50 0.93 0.84 0.85 0 0.96 1.58 0.91 0.80

of all performances are involved in its computation,
while maxmin fairness as well as lexmin only refer to
minimum values.

In summary it can be said that also for the WCA problem,
maximizing the exponential OOWA of the performances
among all possible allocations of users to cells is a rea-
sonable way to represent fairness, as it comes close to other
ways of defining fairness, despite some few weak points.

III. EXPERIMENTAL VALIDATION

The considerations of the former section will be summa-
rized now to define a heuristic approach for approximating
the maximum exponential OOWA element for a given in-
stance of the WCA problem (i.e. a specification of channel
coefficients for all cells for each user). We take advantage
of Theorems 2 and 3 to define two local operators with the
tendency to increase the exponential OOWA values.

1) We will use a replace operator, where for a given
allocation of users to cells, a random cell will be
selected and its assigned user replaced with a ran-
domly selected different user. If the average of the
performances of both users will not decrease, and
the absolute difference will decrease, the replace is
accepted.

2) For the swap operator, we select two cells at random,
and swap their user allocation. If this increases the per-
formances for both users, the swap will be accepted.

Operator 1 refers to the fact that any OOWA will become
larger or stay equal, if a set of numbers is replaced by
their average. As we cannot manipulate performance values
directly, since their values depend on sub-sums of channel
coefficients, we want to enforce at least changes that make
performances values at least more similar. Thus, the replace
operator is not guaranteed to always increase the exponential
OOWA, but may tend to do so. On the other hand, operator
2 refers to Theorem 3, and here, if the swap increases both
performances, the exponential OOWA will increase as well.

In addition, we use an annealing probability p for both
operators, where the operator is accepted with probability p
even if it fails to fulfill the required property. The heuristic
algorithm then itself is rather simple: start from a random
allocation of users to cells, and apply operators 1 and 2
iteratively for a fixed number of times. Keep the maximum
value of the exponential OOWA achieved over all steps.

The validation of such a heuristic can be only reasonable
in cases where there is knowledge of the exact maximum
value of the exponential OOWA. As mentioned before, the
feasible space of the WCA problem grows exponentially, and
up to our knowledge, there is no exact algorithm provided
(yet) to find the maximum value analytically. Therefore, we
use a rather small problem instance to compare the results
of the heuristic approach with the known exact result. Here
we report about results for a WCA problem with 4 users
and 4 cells. The complete feasible space is small with a size
44 = 256 but we are interested in the validation. For 1000
random problem instances, we have recorded the number
of steps that are needed (one “step” here is application of
one replace and one swap operator) to reach the maximum
exponential OOWA by at least 99% (due to discrete nature
of the problem, this usually means an exact match).

The result can be seen in Fig. 2, and it has been compared
to some variations of the proposed heuristic. The plot shows
the distribution of the average number of steps to reach the
maximum value of the exponential OOWA of all possible
allocations. Cases where more than 300 steps were needed
(which can be seen as “failures”) are included in the largest
bin 300. We compared the - after some experiments - best
choice of the annealing probability 0.2, with the case of
using no annealing at all, the case of using a decay factor
for the annealing, and the case of using annealing, but no
swap operator. It can be seen that annealing is necessary
to reduce the number of failures to an acceptable value
(less than 1%). Without annealing, the maximum value is
reduced fastest, but the number of failures is unacceptable
high (not visible in the plot, the value is 653). Annealing
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Figure 2. Validation of the proposed heuristic for a problem with 4 users
and 4 cells, where the exact solution is known. Shown is the distribution of
the number of steps needed to be closer than 1% from the true maximum
of the exponential OOWA for 1000 random problem instances.

slows down the approach, but still needs fewer steps than
the size of the feasible space in the majority of cases, with
even rapid approach (less than 20 steps) for about 25% of
the random instances. Using factored annealing, there is no
notable difference, but skipping the swap operator has rather
negative influence: the mean of the number of steps shifts to
a larger value, and the number of failures increases strongly.

Thus, we can consider the choice p = 0.2 a reasonable
approach to approximate the maximum value. Testing the
same annealing heuristic on the next larger instance 5 users
and 5 cells for 100 problems (search space size 55 = 3125),
and using bins of size 100, we can find the following
frequencies: 10, 22, 20, 9, 6, 6, 1, 3, 9, and 13 failures,
so an average of 150 steps and about 15% failures.

IV. SUMMARY

In this paper, we have extended the concept of fairness
in traffic congestion avoidance to the wireless channel al-
location (WCA) problem. The main characteristics of the
state achieved by the Bottleneck Flow Control algorithm,
giving the base for the definition of fairness, were directly
applied to the WCA problem, including lexmin fairness,
maxmin fairness, proportional fairness, and, as a new result,
exponential Ordered-Ordered Weighted Averaging (OOWA)
operator maximization. A complete study for the case of
small problem instances was provided, demonstrating the
utility of exponential OOWA maximization for reflecting
fairness in the WCA as well. Based on this and two
basic properties of the general OOWA, a replace and swap
operation based annealing heuristic was proposed, and it
was studied on small problem instances as well, in order to
justify their applicability to real-world instances of the WCA
problem. Future work will focus on the improvement of such
a heuristic, including a possible embedding into an meta-

heuristic, or memetic search approach in order to expand
the search capabilities.
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