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Abstract

In this paper, an alternative approach to the non-linear
filtering of Mathematical Morphology for color and multi-
spectral images based on the Pareto-dominated Hypervol-
ume measure is presented. Parteo-set theory is studied in
this context, and among others, successfully implemented
in the morphological filtering of color images. The demand
to assess the quality of a multi-objective optimization al-
gorithms, in particular, has put forth several kind of mea-
sures. One of these measures, the Hypervolume, bases on
the Lebesque measure of all points dominated by a set of
points and maps a set of Pareto-optimal points to a scalar.
By considering the Hypervolume in the color-image do-
main, it can be shown that this Hypervolume corresponds
to another kind of Color Morphology, were each pixel in
the filtered image represents the Hypervolume of its set of
neighbours in the original color image. In the following,
some properties of the Hypervolume, as used as an image-
processing filter will be derived, and some potential ap-
plications of this approach to Color Morphology will be
shown.

1 Introduction

Color image processing is of essential importance in or-
der to increase robustness, versatility and reliability of tech-
nical vision systems. Potential application of color image
processing are for example object recognition, image un-
derstanding, retrieval and compression. Since modern com-
puting equipments with significant improvements of its cal-
culation and storing capabilities are becoming available far
and wide, color image processing is becoming a kind of
state-of-the-art. However, its fundamentals as for exam-
ple a realistic color representations in different electronic
devices such as digital cameras, monitors and printers, the
mapping of different color spaces and the appropriate color-

processing filters are still subject of intensive research. Ba-
sic problems of color-image-processing filters, that are the
focus of our research, are (I) the multi-variate nature of
color data that complicates the extension of some gray-
scale image filters to the color domain, and (II) the dual
nature of human color-perception sensitiveness, that is be-
ing highly sensitive to smallest “color artifacts,” and being
highly insensitive for luminescence variations within im-
ages, e.g. under varying lightning conditions at once. In
this paper we propose a new concept for handling the multi-
variate color-image data that yields to an alternative ap-
proach of morphological color-image filtering.

To start with, morphological filtering is an non-linear
image-to-image transformation by means of a structural el-
ement that acts like a probe sensitive for structural infor-
mation. Mathematical Morphology in general is based on
set theory [9, 10]. Its core definitions are fixed for binary
and gray-scale images. The two basic morphological op-
erations are dilatation and erosion that can be used for the
definition of more complex filters. Further advanced ap-
proaches consider concepts from fuzzy logic in the defini-
tion of the dilatation 1 (see e.g. [1, 6, 7, 10]). All these
shape-based filters are able to preserve / enhance structural
information while suppressing noise or removing clutter.
Sine pattern and edge information are often crucial to im-
age understanding, morphological filter operations found a
number of challenging applications as for example medical-
image analysis, surface-quality inspection and check pro-
cessing, e.g. [11, 5]. Subsequently, the question arises in
which way these powerful binary and gray-scale morphol-
ogy filters can be generalized and adopted for the processing
of multi-variate data in color images.

Requirements for a generalized dilation as an image-
to-image transformation, which employs a structuring ele-
ments, are still under discussion. As suggested in [9], there
should be three key ideas, based on which the dilation is de-

1Generally, when the definition of a dilation is fixed, the erosion is
defined as the complementary operation.



fined: (1) an idea of ranking due to a sort order, (2) an idea
of a supremum due to this ranking, and (3) the possibility
of admitting an infinity of operands.

Color is more than a simply “add-on” to gray-scale im-
ages, as exemplified by human perception abilities. In addi-
tion, there is no unique way to extend the concepts of gray-
scale morphology to color images. The fundamental lack of
a “natural sort order” of multi-variate data and the numer-
ical differences due to the choice of different color spaces
make it hard or even impossible to define something like
THE Color Morphology. But it could be expected to trans-
fer a large number of gray-scale morphological techniques
to color images. It could be expected to design highly color-
specific filters from morphology as well.

Different viewpoints have led so far to the proposal of
a number of useful operations for the processing of color
images. Among these viewpoints we can find the lin-
ear weighted, or scalar, approaches, where a multi-variate
channel-intensitiy vector is mapped onto a point by a scalar
function that is monotone in each argument.

In this paper, we are studying an intensity-based Color
Morphology, with its main difference to other Color Mor-
phologies being the generation of a gray-scale image that
cannot be the result of a morphological operation on a gray-
scaled version of the color image itself. The formal tech-
niques for achieving this goal come from the field of multi-
objective optimization and its related concept of Pareto
dominance. A consideration of the various Pareto-set-based
means and techniques, which have been developed in the
past for the study of (continuous) multi-objective optimiza-
tion problems, leads to the formulation of a number of
image-processing operators. A simple example is the gen-
eration of a gray-scale image from a color image, where
each pixel’s gray-scale represents the number of Pareto-
dominating points in the neighborhood of this pixel. Prac-
tically this comes out to be an edge operator. However,
recent interest has been grown on the use of the so-called
Hypervolume measure in order to access quality in multi-
objective optimization. Given a set of points, the Hyper-
volume is defined as the Lebesque measure of the set of all
points that are Pareto-dominated by at least one of the given
points. By considering the Hypervolume in the color-image
domain, it can be easily seen that this Hypervolume cor-
responds to another kind of Color Morphology, were each
pixel in the filtered image represents the Hypervolume of
its set of neighbours in the original color image. In the fol-
lowing, some properties of the Hypervolume, as used as an
image-processing filter will be derived, and some potential
applications of this approach to Color Morphology will be
shown.

The reminder of this paper is organized as follows: Sec-
tion 2 deals with the fundamentals of Pareto-set theory that
are needed for the definition of the Hypervolume detailed

in section 3. The following section 4 then gives the options
of using the hypervolume as a base for the specification of
morphological operation. The paper ends with a conclusion
section.

2 Pareto-set Theory

The notion of Pareto efficiency originally stems from
economics. In the late 19th century, Vilfredo Pareto estab-
lished a model for the economic stability of a society, where
an economy is in a state where one can only become more
rich if someone else becomes more poor. In modern terms,
given a feasible set of multi-variate values (vectors, points,
objectives, decision criteria), each of its elements is consid-
ered to be Pareto-efficient, if for any other element having a
larger component there is always another component that is
smaller. This notion gave raise to the definition of a Pareto-
dominance relation. For two vectors a = (ai) and b = (bi)
from Rn it is said that a Pareto-dominates b if and only if

a >D b ↔ ∀i(ai ≥ bi) ∧ ∃j(aj > bj) (1)

where i, j = 1, 2, · · · , n. This definition is accompanied
by the related definition for minimum dominance, where
the “>” is replaced by “<” and “≥” is replaced by “≤.”
To avoid confusion, we will refer to the former one also as
maximum Pareto dominance, and by minimum Pareto dom-
inance to the latter one.

Note that in general not a >D a. There is the extension
to the so-called weak dominance, or a ≥D b, if and only if
either a = b or a >D b. Also, the (weak) Pareto dominance
is transitive, i.e. from a >D b and b >D c follows a >D c,
but is not given a complete ordering relation, as for two vec-
tors a and b neither a >D b nor b >D a may hold (example
are the two vectors (1, 2) and (2, 1)).

Given a set of vectors V = vi, the term (maxi-
mum / minimum) Pareto-set refers to its subsets of all ele-
ments that are not (maximum / minimum) Pareto-dominated
by any other element of the set.

In general, a Pareto-set may give raise to a num-
ber of quantitative measurements. By indicating with
Pmax / min(S) the maximum / minimum Pareto-set of the
set S, and by |M | the number of elements of an arbitrary set
M , the following measures can be introduced:

• The percentage of non-maximum dominated elements:
rmax = |Pmax(S)|/|S|.

• The percentage of non-minimum dominated elements:
rmin = |Pmin(S)/|S|.

• The absolute difference between rmax and rmin: rδ =
|rmax − rmin|.
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• For any element s ∈ S, the number npmax/pmin(s, S)
of elements of S that maximum / minimum-Pareto
dominate s.

• For any element s ∈ S, the number namax/amin(s, S)
of elements of S that are maximum / minimum Pareto-
dominated by s2.

• The largest and smallest values of npmax/pmin(s, S)
and namax/amin(s, S) among all s ∈ S.

The list could be easily continued.

The Pareto-dominance relation allows for an ordering of
a set S of vectors by assigning rank values to each element.
This is the so-called non-dominated sorting, and further op-
erations can be based on this ranking. All elements of P (S)
get rank 1 assigned, all elements of P (S−P (S)) rank 2 and
so on, until the remaining set is empty. The disadvantage of
this way of ordering is that elements that are different, but of
the same rank are indistinguishable, and this ranking cannot
be further refined.

Ranking in the multi-variate domain is not restricted to
the Pareto-dominance relation. A less rough way of or-
dering is the so-called lexmin ordering. Here, in case of
maximum preference, the element with a smaller largest
component would come before an element with a larger
largest component. If both element have the same largest
component, then comparison is based on the second-largest
component, if they are equal on the third-largest and so
on. While the Pareto non-dominated sorting usually assigns
rank 1 to more than one element, the lexmin ordering only
selects one element as firstly ranked (and all that are equal
to it, but only these).

Both strategies can be combined, since the first element
in the lexmin sorting is also an element of the Pareto-set.
So, the lexmin can be used to sort the elements of the non-
dominated sorting of the same rank. However, several other
secondary ranking assignments have been proposed in the
literature, especially methods related to the NSGA-II algo-
rithm [8], an evolutionary algorithm for multi-objective op-
timization [2].

Each of the proposed methods can be used for the spec-
ification of an image-processing operation on color images.
If the image is provided in an intensity-based (technical)
color space like RGB, then a pixel is a mapping from
the image coordinates (x, y) to a tupel (r, g, b), where r
indicates its red color component, b its blue component
and g its green component. Usually, r, g and b are taken
from the integers in (0, · · · , 255), and the pixel coordinates
are integers taken from a rectangularly bounded domain
(0, · · · , (width− 1))× (0, · · · , (height− 1)).

2The “a” and “p” stand for active and passive dominance in the relation
a >D b, i.e. the fact that a dominates b (active) or b is dominated by a
(passive).

A masked operator is an image processing operation,
which is based on a topology (or neighborhood system) that
is assigned to the image pixel coordinate domain. The mask
M of a masked operator assigns a subset of the image pixel
coordinate domain to each pixel. In the most common form,
these are the direct neighbours of the pixel, but other assign-
ments are feasible as well. The mask is also sometimes re-
ferred to as structuring element, especially in the discipline
of Mathematical Morphology.

A number of masked operators for color images based
on Pareto-set analysis can be easily defined, using any of
the operations listed in the beginning of this section. Fig-
ure 1 gives a few examples for such operations. It is notable
that the operators based on the number of dominating neigh-
bours appear to work as edge detectors in the image.

(a) (b)

(c) (d)

Figure 1. Pareto-set measurements
as masked image operators in the 8-
neighborhood (8NB): (a) original image;
(b) number of points in 8NB dominating
central point (CP); (c) number of points in
8NB dominated by CP; (d) size of Pareto-set
in 8NB.

3 Hypervolume and its properties

Recently, and in relation to the design of heuristic multi-
objective optimization algorithms, interest has grown in the
so-called Hypervolume. We can find evolutionary multi-
objective optimization algorithms employing the concept of
the Hypervolume [12, 3], as well as multi-objective coun-
terparts of the simulated annealing algorithm [4].

The Hypervolume is defined as follows: given a set
V = vi of N vectors from a bounded domain in Rn (the fea-
sible space), the Hypervolume is the Lebesque measure of
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all vectors (i.e. points in the feasible space) that are Pareto-
dominated by at least one of the vectors in V .

If we assume for example the feasible space to have a
lower bound of 0 for all components, and target for max-
imization, than each vector v (or point) in R+

n dominates
all points within the hyper-cube having v as its outermost
corner. The Hypervolume then is the union set of all these
hyper-cubes for all vectors in V (see fig. 2).

x y

z

(1,1,3)

(1,3,1)
(3,1,1)

(2,2,2)

Figure 2. Example for the hypervolume en-
closed by the points (1, 1, 3), (1, 3, 1), (3, 1, 1)
and (2, 2, 2). The union of the four cubes has
a volume of 11..

4 Hypervolume usage as image-processing
operator

4.1 Preliminaries

In gray-scale image processing, an operator is consid-
ered to be a dilation if it commutes with the supremum. A
similar specification can be given for color dilation, by us-
ing the concept of Pareto-dominance. Then, any operation
that commutes with the Pareto-set set operator (i.e. the map-
ping of a set S to P (S)) is considered a color dilation. Prac-
tically, this has usually been seen as the provision of a selec-
tion procedure from the Pareto-set of a color pixels’ neigh-
bours (if seen them as three-dimensional vectors (r, g, b)).
A simple example is to use as color value at position (x, y)
in the processed image the color value of all neighbours of
(x, y) (including (x, y)) in the processing image with the
maximum sum r + g + b (or one of them if there are more).

Since this will always give a single color value vector,
the Pareto-set is composed of this color value, and the op-
eration always commutes with the operation of taking the
Pareto-set. However, it has not been considered so far that
the operation could also map into the gray-scale domain.

Considering the Hypervolume, it is obvious that its value
does not change under the addition of dominated points. So,
it can be seen as an alternative way of specifying a morpho-
logical operation. Since we may consider maximization or
minimization, and the Hypervolume of the union and sec-
tion, we find the following four Hypervolume-related mor-
phological operators:

1. maximum Hypervolume of the union of the vectors
dominated by the pi, and divided by g3

max

2. maximum Hypervolume of the section of the vectors
dominated by the pi, and divided by g3

max

3. minimum Hypervolume of the union of the vectors
dominated by the pi, and divided by g3

max

4. minimum Hypervolume of the section of the vectors
dominated by the pi, and divided by g3

max

and as a first composition the six pairwise absolute differ-
ences between these four operations. Examples for all these
operations are shown in the figures 3 and 4.

1
2

3 4

Figure 3. Application of the four hypervolume
methods to a color image: 1 maximum union,
2 minimum union, 3 maximum section and 4
minimum section hypervolume.

4.2 Potential applications

As in the binary or gray-scale morphology, starting from
the basic operations dilation and erosion, a number of other
operators can be defined (opening, closing, thickening, thin-
ning, top-hat transform etc.). This can also be done for the
proposed Hypervolume based morphology. Here we are
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Pixel-wise absolute differences be-
tween the gray-values of pairs of hypervol-
ume measures: (a) maximum union and min-
imum union, (b) maximum union and maxi-
mum section, (c) maximum union and mini-
mum section, (d) minimum union and maxi-
mum section, (e) minimum union and mini-
mum section, and (f) maximum section and
minimum section.

considering the use of such operator for the processing of
the scan image of a security document. Figure 5 shows a
part of the scan of an ID-card, where some security fea-
tures are only visible in the UV light. However, UV scan
might be to expensive for e.g. small, mobile devices. The
right half shows, how the (absolute) difference image be-
tween maximum union hypervolume and maximum section
hypervolume helps to visualize the hidden security features
even from a camera image in the visible light spectrum. The
small activations by the small eagle patterns in the blue
channel lead to a more or less uniform representation of
these areas after the hypervolume processing. With such
an approach, for example, it becomes possible to check hid-
den security features that are difficult to reproduce in low,
medium effort counterfeit passports.

At this point we want to emphasis that the approach to
color morphology presented in this paper is able to enhance
structural information that varies in a very little color range
only.

Figure 5. The difference image between max-
imum union and maximum section hypervol-
ume applied to a scan of a security document
visualizes features (the small eagle symbols)
that can usually only be seen under UV light.

5 Conclusion

In this paper, we have discussed the opportunities for
taking analytical methods of multi-objective optimization to
the domain of color image processing. The multi-variate na-
ture of color images allows for a more or less direct transla-
tion of Pareto-set theory based measurements to image pro-
cessing operators. Such operators can account for the local
dominance relations among the pixel in the neighborhood
of a pixel. Counting dominance relations is one easy way
to specify new operators, and some of them come out to be
edge operators. One of the more interesting recent tools of
multi-objective optimization analysis is the hypervolume,
which stands for the Lebesque measure of all points dom-
inated by a given set of points, and is an example for the
so-called indicator functions. The hypervolume, if used as
an image processing operator, appears to be a morphologi-
cal operation, since it is commuting with taking the supre-
mum (infimum), meaning the taking of the Pareto-set of a
set of points. In contrary to other color morphologies, which
now can be characterized as “selection-based”, this mor-
phology is intensity-based. The result of the application is
a gray-value image, and it was exemplified that such an ap-
proach can be much more separatively (due to the higher di-
mensionality) for small intensity fluctuations in local pixel
neighborhood.
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