
A GRATIS Theorem for Relational Optimization

Mario Köppen, Kaori Yoshida, Kei Ohnishi
Kyushu Institute of Technology

680-4 Kawazu, Iizuka, Fukuoka 820-8502 Japan
Email: mkoeppen@ieee.org, kaori@ai.kyutech.ac.jp, ohnishi@cse.kyutech.ac.jp

Abstract—We are studying the NFL Theorems with regard to
relational optimization. In relational optimization, we represent
the optimization problem by a formal relation, and the solution
by the set of maximal (or non-dominated) elements of this
relation. This appears to be a natural extension of standard
optimization, and covers other notions of optimality as well.
It will be shown that in this case, the NFL Theorems do not
hold and that there are pairs of algorithms and a performance
measure, where one always outperforms the other with regard
to this performance measure if averaged over all possible
relations. More specifically, the outperforming algorithm is
an algorithm, where elements are checked one by one if they
are dominated by any other element, while the outperformed
algorithm is an algorithm, where elements are checked one
by one if they dominate any other element. The proof is
accompanied by a complete analysis of a special case, where
also other performance measures are shown to be better when
using the former algorithm.

Keywords-no free lunch theorems; relational optimization;
optimization

I. INTRODUCTION

The No Free Lunch (NFL) Theorems state the equal
average performance of search algorithms, if no a priori
knowledge of the objective function is known, no matter
how the algorithm is designed or how the performance is
measured from sampled function values [1]. We want to
shortly recall the reasoning leading to this consequence. The
basic assumption is the existence of a mapping f from a
sample space (also called feature space, decision space) X
to an objective space Y . In f : X → Y , both X and Y are
assumed to be finite sets.

A (deterministic) search algorithm a is set up to sample
from X without repetition. In step m the algorithm will
sample x(m) ∈ X and it will learn about the so-far unknown
function value y(m) = f(x(m)) by consulting the function
issuing domain (this has been considered as a demon action
in past interpretations of the NFL theorems). Based on the
new information about the new pair (x(m), y(m)) and also on
all former pairs (x(k), y(k)) with 1 ≤ k < m, the algorithm
provides a procedure to compute the next sample x(m+1) as
long as m < |X|. This way, for any f the algorithm will
also sample a sequence of elements from Y where sample
y(m) = f(x(m)). The performance of the algorithm a is
only seen in terms of this sampled function value sequence.
A typical goal could be to sample a largest value from Y

from the unknown f in as few steps as possible1. In other
words, an algorithm a starts with an unbiased sample x(1)

from X (this is fixed for the application of the algorithm
to any unknown function). From the “demon” the algorithm
receives y(1) = f(x(1)). Based on this pair from X ×Y the
algorithm decides about the next sample point, x(2), which is
different from x(1), receives y(2) = f(x(2)), decides on x(3)

based on the evaluation of both former pairs and different
from x(1) and x(2) etc. The algorithm will stop when the
search space X is exhausted.

Tables I and II show examples for the sample sequences
generated by two different algorithms. In both cases, X =
{x1, x2, x3} and Y = {0, 1}. Then, there are 23 = 8
possible function mappings from X to Y . In Tables I and II,
the mappings are grouped by so-called atomar cups (closed-
under-permutation). For each function belonging to a cup, if
the elements of X are permuted, the permuted function will
also belong to the same cup. For example, function number
5 maps x1 to 0, x2 to 1 and x3 to 1. If we permute the
set {x1, x2, x3} to {x3, x1, x2} while keeping the positional
function value assignments (i.e. the first element is mapped
to 0, the second and third are mapped to 1) we obtain the
function mapping x1 (now second element) to 1, x2 (now
third element) to 1 and x3 (now first element) to 0. This
corresponds to function number 7 in Tables I and II, which
belongs to the same cup. By atomar cup we mean that these
cups and only these have no true subsets that are also cups,
but any cup (including the total set of all possible functions)
is a union of atomar cups.

For Algorithm 1, we sample x2 first, than x1 and then
x3. This algorithm does not take the corr. y-values of the
samples into account when deciding on the next x-value.
This is commonly understood as a model of a random al-
gorithm (also sometimes called blind algorithm). Algorithm
2 samples x1 first. If y(1) = f(x1) = 1 then x2 will be
sampled next, x3 otherwise. For the third step, there is only
one x-value remaining (either x3 or x2). Table I shows the
sampled function value sequences of Algorithm 1 for all
possible functions f : X → Y , and Table II the same for
Algorithm 2.

1This is a deterministic algorithm, as sampling according to a probability
distribution is not considered here. However, it has already been shown
in [1] that the effects of sampling from distributions just unfold over all
possible deterministic states.

Table I
SAMPLING OF ALL BINARY FUNCTIONS OF 3 ARGUMENTS BY

ALGORITHM 1 (x2 → x1 → x3). THE FUNCTIONS ARE GROUPED BY
CUPS.

f(x1) f(x2) f(x3) y(1) y(2) y(3)

1 0 0 0 0 0 0
2 0 0 1 0 0 1
3 0 1 0 1 0 0
4 1 0 0 0 1 0
5 0 1 1 1 0 1
6 1 0 1 0 1 1
7 1 1 0 1 1 0
8 1 1 1 1 1 1

Table II
SAMPLING OF ALL BINARY FUNCTIONS OF 3 ARGUMENTS BY

ALGORITHM 2 (x1 FIRST, IF f(x1) = 1 THEN x2 NEXT ELSE x3 , AND
LAST THE REMAINING x SAMPLE). THE FUNCTIONS ARE GROUPED BY

CUPS.

f(x1) f(x2) f(x3) y(1) y(2) y(3)

1 0 0 0 0 0 0
2 0 0 1 0 1 0
3 0 1 0 0 0 1
4 1 0 0 1 0 0
5 0 1 1 0 1 1
6 1 0 1 1 0 1
7 1 1 0 1 1 0
8 1 1 1 1 1 1

The key for understanding the NFL Theorem is within
the cups. It is obvious that the sampling sequence of a
function is a permutation of the ordered set of function
values. For example, in Table I the ordered set of function
values for function number 4 is {1, 0, 0} and the sequence
of sampled function values is {0, 1, 0}. But also, if an
algorithm samples two different functions from the same
cup than the corresponding function value sequences need
to be different. Assume the opposite: there are functions
f1 and f2 for which the sequences of sampled Y values
are the same. Since the algorithm always starts with the
same x(1) and the sampled Y values are the same, we
find that f1(x(1)) = f2(x(1)). Then, also the decision for
the next sample x(2) is based on the same conditions, the
knowledge of the pair (x(1), y(1)) and will be the same for
both functions. Then, also y(2) = f1(x(2)) = f2(x(2)), the
algorithm will decide on the same next sample x(3) for both
functions etc. Thus after finishing the search it will come
out that f1 and f2 have the same values for all x(i) and
therefore also for all xi.

Thus, all sample sequences of Y values, listed for all
functions of the same cup, must be different from each
other. Then their list is a permutation of the list of ordered
function value sequences for functions from the same cup.
For example, the three functions 5, 6 and 7 in Table I are
sampled as follows: function 5 by the ordered set of function
values of function 6 (which is {1, 0, 1}), function 6 by the
one of function 5, and function 7 by its own ordered set. In
the same sense, the function set (2, 3, 4) is sampled as the

function set (2, 4, 3) by Algorithm 1, and as the function set
(3, 2, 4) by Algorithm 2.

Now, the NFL Theorem here is a direct consequence of
this property: if we evaluate algorithms by means of their
value sampling sequences for all functions of a cup alone,
the evaluation will always be based on the same sampling
sequences, just in a different order. For example, if we count
the average number of 1s found after two steps, it will be
8/8 = 1 for Algorithm 1 and also for Algorithm 2, since
the evaluation is only based on the number of 1s in the
sequences 00 (cup with function 1), 00, 01, 10 (cup with
functions 2, 3 and 4), 01, 10, 11 (cup with functions 5, 6
and 7) and 11 (cup with function 8), only appearing in a
different order.

Up to this point, we have said nothing new about the
NFL Theorems, but we will need the arguments for the
following discussion. Basically, the NFL Theorems confirm
that a performance evaluation based on sample functions
alone is ill-posed. If the evaluation will not put any specific
demands on the sample function, it will include functions
that are far beyond any practical concern, but “average out”
performance gains to any wanted degree. Therefore, the
focus of past studies has been on conditions, for which
the NFL Theorems do not hold. Several of them have
already been identified. For example, the proof requires
all functions to be feasible, a condition that is often not
fulfilled in combinatorial optimization problems2. Also, in
the presented form, the theorem is also sometimes referred
to as Generalized NFL-Theorem: it will not hold for a subset
of functions that is not cup, i.e. closed under permutation
[2].

In [3] and [4] it was shown independently that the NFL
Theorems are also valid for multi-objective optimization,
where the elements of Y are vectors from Rn. However,
in [5] it was shown that an often used component of
evolutionary multi-objective optimization algorithms, the
archive, gives raise to a condition where the NFL Theorems
will not hold. The issue is that archiving strategies break
the independence of the measurement from the sampled
elements. In the arguments given above, the performance
of an algorithm applied to an unknown function is derived
from the sampled sequence of values from the set Y alone.
However, an archive keeps “good” sample points from X for
some time, but if it grows too large, there is a strategy to
remove a number of points. This is usually an evaluation of
X-values alone (e.g. the so-called crowding measures), but
it will affect the sampled sequence of Y values as well. The
authors gave the name GRATIS theorems to such kind of
differences in average performance assessments, to indicate

2Take the Traveling Salesperson Problem with 5 cities, it happens that
the opposite of a route, i.e. the selection of all connections that are not
included in the route is also a route. Thus, there are linear dependencies
among the route costs, and a “free” assignment of costs to routes is not
possible (Christian Igel, personal communication).

the existence of a “free lunch.”
In this paper, we will expand this analysis by considering

relations among elements of the set X . It should be noted
that the performance measure used in the NFL Theorems
is completely arbitrary, and not necessarily related to any
concept of “maximality.” For a binary space Y , we may
also count the number of cases that a function value 1
was sampled after having sampled two times the function
value 0 in the preceding two steps. Such measures do
not express any concept of optimality, but are nevertheless
covered by the NFL Theorems. Therefore, we want to study
the case where the initial idea of optimization is directly
represented by the performance measure, and consider there-
fore relational optimization. In this case, relations formally
represent the notion of optimality, where the maximal, or
non-dominated elements represent the seeked optimal set.
We find such relations among the elements of X , if we
compare them via the corresponding function values in Y . In
fact, querying the function for a function value of a sample x
or querying whether an unknown function value of x is in a
kind of better-relation to another one appears to be a similar
compensatory action for incomplete knowledge, while the
latter is of direct relevance for the goal of optimization. We
will clarify the notion of relational optimization and how
hybrid meta-heuristics can be used to obtain this goal in the
next section. Then, it can be shown that the NFL Theorems
do not hold for this kind of optimization, and that in fact
some algorithms have a steady better average performance
over all possible relations (and not all possible functions)
than other algorithms. The proof will be given in Section
III, followed by a demonstration example in Section IV.

II. RELATIONAL OPTIMIZATION

Given a feasible space X , a (binary) relation R is a subset
of X×X . Thus, for two points x1 and x2 from X it is said
that x1 is in relation R to x2 if the ordered pair (x1, x2)
belongs to this subset. Relations may represent various
things like equality, similarity, dependency etc. depending
on the nature of X , and they can be represented in various
equivalent forms (list of ordered pairs, tabular form, binary
matrix, directed graph, logical property etc.). Here, we are
focusing on the interpretation of a relation as a larger
relation, and will write >R to represent that x1 is of better
quality, or preferred to x2 in some sense.

For each relation (no matter if it represents such better-
ness) we may assign two characteristic subsets of X [6].

Definition 1. Given a relation >R then the best set is defined
as the set of all x′ such that for any other x ∈ X x′ >R x
holds.

Definition 2. Given a relation >R then the maximum set
is defined as the set of all x′ such that for no other x ∈ X
x >R x′ holds.

The best set is sometimes called set of greatest elements,
and the maximum set is also called set of maximal elements
or non-dominated set. Also note that both definitions are
dual, the best set is the maximum set of the converce
complement relation to >R and vice versa.

Once having specified a relation >R the goal of relational
optimization is to find its maximum set (also sometimes the
best set). Thus, the relation provides a specific notion of
optimality. We can find this kind of optimization in various
circumstances:
“Multivariate optimization”: it appears to be a general-
ization of the standard optimization task, where a function
f : X ⊆ Rn → Y ⊆ R is given (usually called fitness
function, quality function, or cost function) and the goal is
to find a x′ ∈ X such that f(x′) is maximal3. With regard to
the domain of f (i.e. a subset of R) this appears to employ
the standard larger relation between real numbers. However,
with regard to the feasible space X this refers to probing an
pre-order relation between elements of X: x1 ≥f x2 if and
only if f(x1) ≥ f(x2). Then, the goal is to find the best set
of >f . In this case, best set and maximum set coincide so
the definitions are equivalent.
Pareto front: In multi-objective optimization (MOP), the
Pareto-dominance vector relation is used where for x1, x2 ∈
Rn x1 >P x2 holds if and only if each component of
f(x1) is larger than or equal to the corr. component of
f(x2) and at least one component is larger (here, f is a
mapping from a feature space X ⊆ Rn into an objective
space Y ⊆ Rm). Then, the goal of a MOP is specified as
finding the non-dominated elements of X , i.e. the maximum
set of the Pareto-dominance relation.
Fair distribution and social choice: in mathematical econ-
omy, problems are studied where a limited resource (for ex-
ample indivisible goods) have to be distributed to a number
of agents. Concepts like Pareto-efficiency and envy-freeness
of such a distribution are represented by relations or sets
of preference relations assigned to the agents (fair division
problem [7], preference-based search and notions of B-
preference, E-preference etc. [8]). Suzumura [9] introduced
relations to represent social choice (as given for example by
a voting scheme): a social choice is rationalizable if there
is a relation such that the social choice corresponds with the
best set of the relation.
Fairness relations: similar to mathematical economy, in
data communication also relations are used to represent fair
sharing of resources, but the relations are much more specific
here. Among such relations, we can find maxmin fairness
[10] and proportional fairness [11]. For example, maxmin
fairness is defined as follows:

Definition 3. Given a feasible space X ⊆ Rn. For two
different elements (vectors) x1 and x2 from X it is said that
x1 maxmin fair dominates x2 (x1 >mmf x2) iff for each

3Of course, minimal if we consider f as a cost function.

i with x2i > x1i there is at least one j 6= i such that (1)
x1i ≥ x1j and (2) x1j > x2j .

In a convex feasible space, maximum and best sets of this
relation coincide and define the maxmin fair state that can
be used to assign, for example, fair traffic rates in a data
communication network.

Interactive Genetic Algorithms: in interactive evolutionary
computation, the fitness function is not given explicitely but
in terms of comparisons by a user. This refers to sampling an
unknown relation between the elements of the design space
(note that it probably needs the concept of n-ary relations as
subsets of Xn as it cannot be ensured that user preferences
can always be represented by a binary relation) and employ
it to approach the maximum set of this unknown relation.

All these examples show that in fact, relational optimiza-
tion is a common approach in many fields and allows for
much more flexibility in the specification of optimization
goals. It also allows to specify such optimization prob-
lems essentially as the search for the maximum set of
an arbitrary relation. One concern might be raised about
empty maximum sets. In fact, they exist, and would render
the corresponding relational optimization problem as one
without a solution. But two arguments are in place: if we
consider the standard optimization, Pareto front, or most of
the fairness relations, the maximum sets can be shown to
be non-empty. In other cases, the problem might be also
related to the propper specification of a relation such that
the maximum sets are meaningful, i.e they are not empty,
but also much smaller than the feasible space. This aspect
is of higher interest for the social choice and distribution
theme, where existence of a corresponding scheme (i.e that
the goals of the various agents are fulfillable) is of higher
importance.

Last but not least, we also have to comment then on
how these maximum sets can be found at all. It appears
that also here, meta-heuristic approaches like evolutionary
computation, swarm intelligence, tabu search and simulated
annealing can provide valuable search algorithms. The basic
experience comes from the transition from (single-objective)
evolutionary computation and swarm intelligence to their
multi-objective “counterparts” by replacing internal compu-
tations and design principles basing numerical comparisons
with the Pareto-dominance relation. This gives the family of
so-called Evolutionary Multi-Objective Optimization Algo-
rithms (EMOA). It has already been demonstrated that an
equivalent transition can be done with some fairness rela-
tions [12]. For example, in [13] the SPEA2 algorithm [14] is
extended to a generalized SPEA2 in order to approximate the
maxmimum set of various fairness relations in the problem
domain of wireless channel allocation.

III. A GRATIS THEOREM FOR RELATIONAL
OPTIMIZATION

We provide a model for relational optimization by deter-
ministic search, which is similar to the deterministic search
for function optimization, leading to the NFL Theorems in
the latter case. Again, consider a set X and a relation >R.
The searchspace here is the set of pairs from X×X and for
each pair we use a function assignment 1 if the pair belongs
to the relation, and 0 if not. We consider the performance of
a over all possible relations (there are 2|X| of them). Then,
we sample pair by pair in a manner prescribed by a search
algorithm a in order to find the maximum set of the unknown
relation. For simplicity, we exclude pairs of equal elements
from the search, since they are not of interest with regard
to maximum sets (reducing the searchspace to 2|X|(|X|−1)

elements). During the sampling, the algorithm finds about
elements of X belonging to the relation, based on two rules:
Rule 1. If for some x′ the algorithm has sampled all pairs
(x, x′) and the function assignment was 0 in all cases, it is
confirmed that x′ belongs to the maximum set.
Rule 2. If for some sampling (x, x′) → 1 (i.e. x >R x′) it
is confirmed that x′ does not belong to the maximum set.
Further pairs containing x′ at the second position will not
be sampled anymore.

The algorithm starts with a predetermined sample pair
p1 = (x1

1, x
1
2). Based on whether the value 0 or 1 is

unrevealed, i.e. whether the first point of the first sample pair
is in relation to the second point of the first sample pair, the
algorithm decides on the next sample pair p2 = (x2

1, x
2
2).

Then, based on the results for p1 and p2 the algorithm
continues with a selection of p3 etc. This model corresponds
with the model for function optimization, where X is the
set of all pairs with different elements and Y = {0, 1}. The
only difference is that the search will not include elements
anymore that have been confirmed to not belong to the
maximum set according to Rule 2 in a former step of the
algorithm.

The performance of a search algorithm a for such a
relational search problem is based on the number of elements
that have been confirmed to belong to, or excluded after a
number m of algorithm steps. For example, we can simply
count how many elements of the maximum set have been
confirmed after m steps.

For this kind of relational search, we will show the
following Theorem.

Theorem 1. There exist algorithms a and b and a perfor-
mance measure c such that for any relational search problem
for some number of steps algorithm a always outperforms
algorithm b in average over all possible relations.

Proof: We take some fixed order of the n elements
of X , yielding X = {x(1), x(2), . . . , x(n)} and consider
two algorithms exploit and explore, working as follows.

Algortihm exploit first tests all pairs (x(i), x(1)) with i =
2, . . . , n, then all pairs (x(i), x(2)) with i = 1, 3, . . . , n
etc. In the comparison, we exclude elements that have
already been confirmed to not belong to the maximum set
according to Rule 2. Thus, algorithm exploit exhaustively
tests elements of X one by one if they belong to the
maximum set or not. Algorithm explore does the opposite.
First, it tests all pairs (x(1), x(i)) with i = 2, . . . , n, then all
pairs (x(2), x(i)) with i = 1, 3, . . . , n etc, and also skipping
pairs according to Rule 2. Thus, algorithm explore tests
elements of X one by one whether they are dominating any
other element of X or not.

We choose as performance measure c the number of
elements of the maximum set that have been found after
(n−1) steps. Then, algorithm exploit has surely confirmed
whether x(1) belongs to the maximum set of the sampled
relation >R or not. Since there is always at least one relation
whose maximum set contains x(1), the average performance
over all possible relations is larger than 0. On the other hand,
algorithm explore cannot confirm even a single element
of the maximum set since it will never test any element
of X against all other. At most, it can confirm (n − 1)
elements NOT belonging to the maximum set, and also,
Rule 2 will never apply since no second element of the
sampled pairs appears twice in the first (n− 1) steps. Thus,
the average performance over all possible relations is 0. As
a consequence, for this measure and (n−1) steps, algorithm
exploit will always outperform algorithm explore.

IV. DEMONSTRATION

In this section, we want to illustrate the result of the
former section by a complete example evaluation. We
take as an example the set X = {a, b, c}. Thus, the
searchspace for the relational search is composed of the pairs
{(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)} (again, we do not
consider equal pairs). Then, the algorithm exploit samples
them in the order (b, a), (c, a), (a, b), (c, b), (a, c), (b, c) i.e.
first checks if any element dominates a, then b and then c.
After at most 2 steps exploit can decide whether a belongs
to the maximum set, after at most 4 steps for b and at most
6 steps for c. The algorithm explore samples in the order
(a, b), (a, c), (b, a), (b, c), (c, a), (c, b) and can decide about
a membership to the maximum set after at most 5 steps, b
6 steps and c 4 steps.

For space reason, we cannot present the evaluation for
all possible 26 = 64 possible relations. To illustrate the
different action of both algorithms, we take the relation
R = {(a, b), (a, c), (b, c), (c, b)}. The maximum set of R
contains a only as the only non-dominated element. Algo-
rithm exploit first tests (b, a). This does not belong to R
so nothing can be concluded. Then the algorithm tests (c, a)
which is also not contained. We learn that a belongs to the
maximum set, since neither b nor c are in relation to it.
Next is (a, b) which belongs to R and we learn that b is

dominated by a and cannot belong to the maximum set.
Therefore, there is no need to test the next pair (c, b) in
the initial sequence, and the algorithm continues with (a, c).
Also this is contained in R and c does not belong to the
maximum set. The algorithm can stop after step 4, since all
three element membership to the maximum set have been
decided.

Algorithm explore starts with (a, b) and since this is in
R we learn that b is not an maximal element. The second
step (a, c) reveals that also c is not maximal. The third step
(b, a) does not provide any information, and the following
(b, c) can be skipped, since c has already been ruled out.
The last step (c, a) then shows that a is neither dominated
by b or c, and the maximum set is found after 4 steps as
well.

This processing will be performed for all 64 possible
relations, and we may present a few results for this case.
We also compared with an algorithm mixed that samples
(a, b) first, and if it is contained in R follows the order
(a, c), (b, a), (c, a), (b, c) ((c, b) is skipped by Rule 2), oth-
erwise the order (b, a), (c, a), (b, c), (a, c), (c, b) (probably
shorter if Rule 2 applies). Among all relations, 1 has a
maximum set of size 3, 9 of size 2, 27 of size 1, and in
27 cases, the maximum set is empty.

Table III
AVERAGE NUMBER OF ELEMENTS FOR THE 3 ALGORITHMS WITH

CONFIRMED MEMBERSHIP OR NON-MEMBERSHIP TO THE MAXIMUM
SET, IN FRACTIONS OF 64.

alg 1 2 3 4 5 6
exploit 32 80 120 160 184 192
explore 32 64 96 152 184 192
mixed 32 64 104 152 184 192

Table III shows the average number of confirmed member-
ships or non-memberships for increasing number of steps.
Also here, exploit clearly outperforms explore. Despite
the fact that algorithm explore is designed to make rather
early decisions about non-membership to the maximum set,
it lacks behind algorithm exploit and also mixed (thus,
the naming “explore” might actually not be appropriate).
Moreover, for the 37 relations with one or more elements
in the maximum set, algorithm exploit needs an average
3.1 steps to confirm the first element, algorithm explore 4.3
steps and algorithm mixed 4.0 steps. For the 10 relations
with at least 2 elements, algorithm exploit needs 4.8 steps
to find a second element of the maximum set, explore
needs 5.2 steps and mixed 5.1 steps. For the only case that
the maximum set has 3 elements (the empty relation) all
algorithms need 6 steps to confirm the 3rd element. In each
case, algorithm exploit finds elements of the maximum set
fastest, followed by mixed and slowest is explore. However,
in average all algorithms finish after 4.5 steps.

V. OUTLOOK

Relations play a fundamental role in the design of models
of the real world, and only by means of a relation, we can
establish efficient notions for optimality. In a deterministic
search algorithm, seeking to maximize a function y = f(x),
both aspects seem to be equivalent: querying an unknown
function value for a sample x from the searchspace and then
comparing the numerical result to other already sampled
function values, or querying directly whether this sample
is in a pre-order relation via the function values to other
already sampled elements of the searchspace. We considered
this latter aspect of optimization as relational optimization,
and have provided various contexts where this modality of
optimization appears. Then, it was shown that, in contrary
to the first aspect and with regard to all possible relations
(and not all possible functions), outperforming algorithms
exists. More specifically, an algorithm that tests elements
one by one, whether there is any other dominating element,
seems to outperform an algorithm that tests elements one
by one, whether they are dominating any other element, in
various cases. It is a subject of further investigation if this
is generally the case (not only in the case used for the proof
of the GRATIS theorem that was presented in this paper).

As a “standard” argument against the NFL Theorems,
that the vast majority of considered functions is of no
practical relevance, it might also be brought up against the
present analysis. However, we adopt the point of view that
the NFL Theorems is about the fact that a performance
evaluation based on unspecified functions is ill-posed, as this
automatically covers all these “useless” functions as well.
The same holds for relational optimization, but here is the
result that we can provide such a means of performance,
and do not need to care about the practical importance
of appearing relations. However, we may have to fix the
boundary conditions, under which all possible relations
actually can appear during the functional mapping involved
in an optimization task. For example, if just mapping into the
set of real numbers, relations among the elements of X also
have to be complete and transitive, so a relevant number of
possible relations is excluded. In the same line of arguments,
it has also to be considered whether specific properties of
relations, especially transitivity, will have any impact on the
expected performance of algorithms. Last but not least, the
analysis here has been restricted to binary relations and a
corrsponding study of n-ary relations might become more
interesting in this regard, as concise approaches to these
extended relations have not been much investigated so far.

REFERENCES

[1] D. Wolpert and W. Macready, “No free lunch theorems for
optimization,” IEEE Trans. Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1995.

[2] C. Schumacher, M. D. Vose, and L. D. Whitley, “The no free
lunch and problem description length,” in Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-
2001), 2001, pp. 565–570.

[3] M. Köppen, “On the benchmarking of multiobjective opti-
mization algorithm,” in Knowledge-Based Intelligent Infor-
mation and Engineering Systems (KES 2003), Proceedings,
ser. LNAI 2773, V. Palade, R. J. Howlett, and L. Jain, Eds.
Springer-Verlag Heidelberg, 2003, pp. 379–385.

[4] D. Corne and J. Knowles, “No free lunch and free left-
overs theorems for multiobjective optimization problems,”
in Evolutionary Multi-Criterion Optimization (EMO 2003)
Second International Conference, Faro, Portugal, April 2003,
Proceedings. Springer LNCS, 2003, pp. 327–341.

[5] ——, “Some multiobjective optimizers are better than oth-
ers,” in Proceedings of the IEEE Congress on Evolutionary
Computation, vol. 4, 2003, pp. 2506–2512.

[6] A. K. Sen, Collective Choice and Social Welfare. Holden-
Day, San Francisco, 1970.

[7] S. Bouveret and J. Lang, “Efficiency and envy-freeness in
fair division of indivisible goods: Logical representation and
complexity,” in Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI-2005), 2005, pp.
935–940.

[8] U. Junker, “Preference-Based Search and Multi-Criteria Opti-
mization,” Annals of Operations Research, vol. 130, no. 1-4,
pp. 75–115, 2004.

[9] K. Suzumura, Rational Choice, Collective Decisions, and
Social Welfare. Cambridge University Press, 2009.

[10] D. Bertsekas and R. Gallager, Data Networks. Englewood
Cliffs, N: Prentice Hall, 1992.

[11] F. Kelly, “Charging and rate control for elastic traffic,” Eur.
Trans. Telecomm., vol. 8, pp. 33–37, Jan./Feb. 1997.

[12] M. Köppen, R. Verschae, K. Yoshida, and M. Tsuru, “Com-
parison of evolutionary multi-objective optimization algo-
rithms for the utilization of fairness in network control,” in
Proc. 2010 IEEE International Conference on Systems, Man,
and Cybernetics (SMC 2010), Istanbul, Turkey, 2010, pp.
2647 –2655.

[13] M. Köppen, K. Yoshida, and K. Ohnishi, “Meta-heuristic
optimization reloaded,” in 2011 Third World Congress on Na-
ture and Biologically Inspired Computing, Proc., Salamanca,
Spain, October 2011, pp. 569–575.

[14] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving
the Strength Pareto Evolutionary Algorithm,” in EUROGEN
2001, Evolutionary Methods for Design, Optimization and
Control with Applications to Industrial Problems, K. Gian-
nakoglou, D. Tsahalis, J. Periaux, P. Papailou, and T. Fogarty,
Eds., Athens, Greece, 2002, pp. 95–100.

