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Abstract. The Kolmogorov theorem gives that the representation of continuous and
bounded real-valued functions of n variables by the superposition of functions of one
variable and addition is always possible. Based on the fact that each proof of the Kol-
mogorov theorem or its variants was a constructive one so far, there is the principal
possibility to attain such a representation. This paper reviews a procedure for ob-
taining the Kolmogorov representation of a function, based on an approach given by
David Sprecher. The construction, adapted to our purposes, is considered in more de-
tail for an image function. It comes out that such a representation is featureless (with
regard to analytical properties of the represented function), and basically resembles
a look-up procedure, employing fuzzy singletons around functions values that were
looked up for generalization.

1 Introduction

This paper gives a study of the superposition of a continuous, bounded real-valued func-
tion of n variables by the superposition of functions of one variable and addition. The
universal possibility of such a representation is granted by the Kolmogorov theorem [1]. It
was Hecht-Nielsen [2], who rediscovered the importance of the Kolmogorov theorem for
the theoretical understanding of the abilities of neural networks. The Kolmogorov theorem
was also pointed out to be of importance for other designs of soft computing, as e.g. normal
forms in fuzzy logic [8] [9]. Here, we focus on the constructive aspects of this representa-
tion, thus following a line of studies presented so far e.g. in [3], [4], [5], [6] and [7].

The starting point is the Kolmogorov theorem in a notation used by Sprecher:

Theorem 1 (Sprecher, 1996). Every continuous function f � In � R can be represented
as a sum of continuous real-valued functions:

f�x�� � � � � xn� �
�nX
q��

�q�yq�� (1)

In this representation, the x�� � � � � xn are the parameters of an embedding of In into
R�n��:

yq � �q�x� �
nX

p��

�p��xp � qa� (2)

with a continuous real-valued function� and suitable constants � p and a. This embedding
is independent of f .

In [6] and [7], Sprecher gives a numerical procedure for computing the “inner” function
� and setting the “outer” function” �. However, the inner function given easily shows to be
non-continuous, so the definition presented here has been corrected accordingly in order to
give a continuous � function.

This paper is organized as follows: section 2 describes the ingredients needed for per-
forming the construction. Then, section 3 shows how this procedure might be used to gain



understanding of a given function f ( an image function). The paper concludes with a dis-
cussion.

Due to space limitations, it will not be possible to provide the complete proof of the
Kolmogorov theorem from the construction. We hope to be able to present this in a future
communication.

2 The revised Sprecher algorithm

2.1 The inner function

Be n � � the dimensionality of the function f , and m � �n the number of terms in eq. (1).
Also, be � � m � � a natural number, which is used as radix in the following (a good
choice for n � � is m � � and � � �	). A constant a is given by a � ���� � �����, and x
will asign a vector �x�� � � � � xn�. For the decimal base, a has the representation 	�	��� � � � .

One further definition: ��r� � �nr � ��	�n� �� � ��n� n�� � � ��n�r��� (e.g. for
n � � the sequence 1, 3, 7, 15, 31, � � � ).

The constants �p in theorem 2 will be computed by the expression

�p �

�
� p � �P
�

r�� �
��p�����r� p 
 �

(3)

Using those definitions, the inner function��x� can be defined. The construction is given
for all terminating rational numbers dk � I, which have in the decimal notation to the base
� not more than k digits (as 0.031, 0.176, 0.200, if � � �	 and k � 
).
The notation dk � �i�� � � � � ik�� means that dk to the base � has the notation 	�i�i� � � � ik.
Then, the inner function is defined as follows:

�k�dk� �

����
���
dk for k � �;

�k���dk �
ik
�k

� � ik
���k�

for k 
 � and ik � � � �;
�
�

�
�k�dk �

�
�k

� � �k���dk � �
�k

�
for k 
 � and ik � � � �.

(4)

It can be easily seen that this recursive definition always terminates.

Fig. 1. Graph of the inner function �x for n � � and � � ��.

Figure 1 gives the graph of ��x� for n � � und � � �	. It features some kind of
structural self-similarity. The assembling part of this self-similarity is shown in fig. 2. There
are two self scalings. The section a with increase � is replaced by � segments, with the first



�� � �� segments having identical increase �� � � and going to 0, and the last 2 segments
having increase �� 
 � going to � for growing k. The “switching point”, where the two
replacement schemes change, approximates the point dk � 
k with


k �
� � �

� � �
��k � �� � ��

�X
r�k��

��k � (5)

The function�x has some mathematical features, as being continuous, strict monotone
increasing, being flat nearly everywhere and concave.

γ δ

Fig. 2. Self-similar part of the inner function �x for n � � and � � ��, and definition of �k .

2.2 Inner superposition

Now, we have to consider the superposition of the inner functions, as given by

�q�dk� �
nX

p��

�p��dkp � qa� (6)

for a fixed 	 � q � m � �n. Here, dk shall be the vector composed of n rational numbers
from the dkp.

This superpositions has an important property: For two arbitrary vectors d k�d
�

k � In,
the distance of their images under ��� is never smaller than ��n��k�.

2.3 The outer function

The construction of the outer function is basically a look-up. Each value from In is assigned
a different “height” under the mapping �. Now, the values of f at point x � In gives the
value of � at the height assigned to x by �.

However, this would not suffice to gain an exact representation of f for growing k. This
is, where the m � �n � � shifted versions of � come into play, but the final proof can not
be given here.

If such a look-up is made for all dk, the function � has to extended for being defined
over its full domain. This is done by the help of fuzzy singletons. Be

�k �
�

�

�
�

���k���
�

�

�n��k���

	
� (7)



Then, a fuzzy singleton is designed around ��dk� by

��dk
x� � �����k �x� ��dk�� � ��

� �����k �x� ��dk�� �� � ��bk�� (8)

Here, ��x� is a continuous function with ��x� � 	 for x � 	 and ��x� � � for x � �.
From the minimum separation of images of �, it can be seen that the fuzzy singletons

around ��dk� are not overlapping. The principal design of the outer function is given in
fig. 3.

η(dk
q)

η(d'k
q)

g(dk)

g(d'k)

ξq(y)

Fig. 3. Construction of the outer function �q�x� by putting fuzzy singletons around looked up values
��dk�.

2.4 The Sprecher algorithm

Based on the constructions given in the foregoing sections, the Sprecher algorithm gives
an iterative procedure for approximating the representation of a given function f by the
Kolmogorov theorem.

The values � 
 	 and 
 
 	 being choosen such that they fulfill

	 �
m� n� �

m� �
��

�n

m � �
� 
 � � (9)

Therefrom � � �� �n	�m� n� ��� (e.g. � � �	
 for n � �).
The algorithm starts with f� � f and the number k� � 	. Then, for each r � �, from

fr�� a function fr is computed in four layers. The sum of all functions fr converges to f ,
thus approximating a representation of f .

I. Layer 1 computes all ��x�.
Function fr���x� with x � In is known. Now, a natural number kr 
 kr�� is de-
termined fulfilling that for all p � �� � � � � n from jx p � ypj � ��kr it follows that
jfr���x� � fr���y�j � �jjfr��jj. Via

d
q

kr
� dkr � q

krX
r��

�

�r
� dkr � qakr (10)

we obtain the values dqkr for q � 	� � � � �m. Now, we can compute the values ��dqkr �
from eq. (4).

II. Layer 2 computes the linear combinations �q�x� of ��x�.
This is achieved by the equation

�q�d
q
kr
� �

nX
p��

�p��d
q
krp

� qa�� (11)



III. In Layer 3 the values �q��q�x�� are computed.
The m � � functions of one variable �rq�y� are given by

�rq�y� �
�

m � �

X
d
q

kr

fr���dkr���d
q
kr

 y� (12)

The y-values are substituted by the �q-values of layer 2:

�rq��q�x�� �
�

m� �

X
d
q

kr

fr���dkr���d
q
kr

 �q�x��� (13)

IV. In Layer 4 the fr�x� are computed as linear combination of the �q��q�x��.
This is done by computing

fr�x� � fr���x��
mX
q��

�rq��q�x��� (14)

This ends the rth iteration step.

3 Image function

The procedure may be applied for the representation of image functions. From the Sprecher
algorithm, the following algorithm can be derived for getting the representation of an image
subsampled for e.g. k � � and resampling it for a higher k, as e.g. k � 
:

I. (Offline-Phase) For all d��� d�� � 	�			� � � � � 	���� and q � 	� � � � � �:
1. Compute

�� � ��d� � qa� � ��d�� � qa� d��� qa��

2. Find a pair d� and d
�

� of points from D�, which are neighbors in the ranking
induced by � in D� and fulfilling:

��d�� � �� � ��d����

3. Now, be dq � �dqx�d
q
y� the value from d� and d��, for which in case

��d�
 �����d
�

�
 ��� �� 	 holds that ��dq 
 ��� �� 	, otherwise one of both values is
arbitraily choosen .

4. Enter into a table Tq�� at position �d��� d��� the triple
�dqx � 	�	�� dqy � 	�	�� ��dq
 ����.

II. (Online-Phase) A result array Ir of �				 �			 positions is initialised with values 0.
For all d��� d�� � 	�			� � � � � 	���� and q � 	� � � � � � then:
1. Get the value �dqx� d

q
y� �� in Tq�� at position �d��� d���.

2. Add the value

f�dqx� d
q
y�

�

 �

to the value at position �d��� d��� in Ir .

Figure 4 shows the result of resampling the Lena image from the representation of its
image function for k � � at the next level k � 
. The right subfigure illustrates the manner
how the Sprecher algorithm for one value of k attempts to generalize the unknown parts of
the image function by placing fuzzy singletons around each already looked up position of
the unit square. This gives the granular structure of the resampled image.



Fig. 4. Resampling of the Lena image according to the Kolmogorov theorem for k � � at all positions
from D�.

4 Summary

The construction of a representation of functions of n variables by superposition of func-
tions of one variable and addition was considered in this paper in more detail. Following the
approach given by David Sprecher, an algorithm was given for approximating such a rep-
resentation. Based on the fact that the inner function of the Kolmogorov theorem induces a
ranking of the points in the unit square, a qualitative analysis of such a representation can
be derived. The generalization of one approximation step to the next was considered by
providing the technical procedure of such a computation for an image (the Lena image).
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