
NeuroHough: A Neural Network for  
Computing the Hough Transform 

M.Köppen, A. Soria-Frisch, R. Vicente-García 
Fraunhofer IPK, Dept. Pattern Recognition, Pascalstr. 8-9, 10587 Berlin, Germany 

Abstract. A new paradigm for the implementation of the 
Hough Transform (HT) is presented in this paper. The 
paradigm makes use of the neural networks' properties as 
function approximators in order to avoid some problems of 
the standard HT implementation. Some encouraging results 
are presented. 

1 Introduction 

Originally designed as a procedure to detect 
patterns on binary images [8] the Hough Transform 
(HT) is nowadays a methodology used for the 
resolution of a wide variety of problems in image 
processing and understanding. Beyond the classical 
application for linking contours on edge maps [5] the 
HT is applied in object recognition [6], shape 
parametrization [11][12], shape detection [13][17], and 
movement analysis on image sequences [4]. 

The performance of the original HT has been 
improved with the apparition of numerous 
modifications, e.g. generalized HT [2], adaptive HT 
[9], fast HT [14], randomized HT [16], fuzzy HT [7], 
whose abundance can be taken as a sign of its regard as 
processing tool. Moreover the research on the subject 
has been encouraged by the uncertain classification of 
the HT from a theoretical point of view. The HT has 
been considered as a paradigm of a more general 
connectionist model for low- and intermediate-level 
visions [3]; as a product of Bayes theorem [18]; as an 
evidence gathering procedure in the context of a 
computational evolutionary strategy [15]; and as a 
particular case of the mathematical transformation 
called Radon transform [19]. 

The here presented paradigm does not want to bring 
this fruitful tradition to an end but to widen it into the 
theoretical framework of neural networks. This point 
was scarcely considered in [3] and [18]. In this case the 
paradigm makes use of a neural network as function 
approximator, a new terrain for the implementation of 
the HT.  

A brief review on the HT is presented in Section 2. 
In Section 3 the neural architecture is discussed. Finally 

some results, the conclusions and the projective work 
can be found in Section 4. 

2 The Hough Transform on review 

The HT considers the transformation of the image 
space to a multidimensional parameter space, where a 
set of image points (x,y) belonging to a determined 
geometrical element in the image space is represented 
by a combination of its characterizing parameters. This 
parameter space consists of a set of discrete 
accumulator cells, which are incremented when a point 
in the image space fulfills the analytical expression of 
the geometrical element being searched for. In this so-
called accumulation process the fulfillment of the 
analytical expression acts as a piece of evidence being 
accumulated in the parameter space. The parameter 
space is finally analyzed to detect the cells where the 
evidence is mostly accumulated. Therefore the 
geometrical element can be characterized as a function 
of the parameters related with the most voted 
accumulator cell. 

In the most basic application of the HT a straight 
line is for instance characterized through the length (ρ) 
and orientation (θ) of its normal vector: 

f (( x, y), (ρ,θ )) = ρ − x cosθ − y sinθ = 0     (1) 
In this case the parameter space is two-dimensional 

and the straight line is eventually parameterized 
through (ρ,θ) of the accumulator cell with a greatest 
value (characterization that includes the error produced 
by the discretization of the parameter space). 

The generalization of the HT for the detection of 
arbitrary shapes was introduced by Ballard [2]. The 
generalizing strategy is to increase the dimensionality 
of the parameter space in order to include not only 
changes in the geometrical element to be detected, but 
also in its translation, scale and rotation. 

2.1 Properties of the HT for shape detection 

The HT has demonstrated its suitability for the 
detection of shapes on edge maps [13][17]. This 



suitability is based on the reduction of the complex 
problem of line analysis to a more tractable one of peak 
detection in the parameter space. This is true even for 
the detection of arbitrary shapes, thanks to the already 
mentioned generalized HT. The robustness of the HT in 
front of noisy images, light deformations of the 
searched shapes respect to its model, and 
discontinuities of some parts of the edges are very 
appreciated features of this kind of analysis. 

Another interesting property is the parallelism of 
the computations undertaken in the calculation of the 
HT. The analysis of a complex form can be carried out 
after a decomposition in simpler geometrical elements 
of the model shape. Moreover the structure of the 
accumulator cell allows also the parallelization of this 
computation for each line. This property has been 
exploited in numerous parallel architectures 
implementing the polar parameters finding approach 
[10], and even in a general connectionist framework for 
modeling low and intermediate human vision [3]. 

2.2 HT drawbacks 

The extensive memory usage and the computational 
cost, both proportional to the dimensionality of the 
parameter space, are the most known disadvantages of 
the HT for shape detection [10]. The problem of 
computational cost becomes more evident when trying 
to detect complex forms or to implement the 
methodology in applications where real-time response 
is needed. Beside this, quantization errors appear when 
applying the methodology in real applications due to 
the consideration of a discrete parameter space. In 
order to successfully implement the methodology a 
trade-off is needed [1]. Parameter accuracy on the one 
hand, and computational time and tractability of 'thick' 
lines (see figure 1) on the other have to be considered. 
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Fig. 1: Hough Transform pair that show different not-
desired effects in the parameter space (1b). Lines A and B in 
the image space (1a) should appear as unique points A and 
B in the parameter space (1b). B appears not as a point but 
as a surface, due to the thickness of the line in image space 
(1b). The same as C, which is a point induced by a reflective 
adjacency relationship with B. The cloud of points D, 
caused by alignments of different points in lines A and B 
(1a), avoids a clearer appearance of point A in the parameter 
space (1b). 

 

The apparition of false peeks is a minor problem 
when considering the HT from a mathematical point of 
view, but plays an important role in the resolution of 
real problems. They appear in front of spurious edges 
and of aligned points of objects that are separately 
analyzed, and due to reflective adjacency relationships 
of lines occupying extreme positions in polar 
accumulator spaces [5] (see figure 1).  

2.3 Neural Networks Solution 

In the following a neural network paradigm for the 
computation of the HT, which will be called 
NeuroHough Transform, will be presented. The 
purpose of this implementation is the avoidance of 
some drawbacks of the classical implementation taking 
advantage of the approximation capability of neural 
networks.  

One of the general goals to be attained through the 
neural implementation of the HT is the constancy in 
terms of computation time independently from the 
complexity of the analyzed shape and the quantization 
step of the parameter space. This is a significant point 
when trying to implement the HT in real-time. The 
neural implementation should be also easier to 
generalize, what will allow the analysis of more 
complex scenes than edge maps, i.e. the analysis of 
surfaces and textures. Finally the NeuroHough 
Transform is thought to achieve the elimination of 
some false peeks, those caused by adjacency reflection 
and by the presence of spurious contours, through 
usage of pre-processed training data. Being these goals 
quite ambitious the main objective of the here 
presented work was succeeding in implementing the 
HT through a neural network. 

3 NeuroHough Transform 

In this section, a method is proposed to represent the 
computations of the HT by a neural network. The 
proposed architecture can be observed in figure 2. 
Some previous aspects have to be taken under 
consideration before realizing the neural architecture. 
Assume the HT constructed from a mapping H of the 
four-tupel (x,y,ρ,θ) into the interval [0, 1] , with x and 
y coordinates in the image space and ρ and θ the 
coordinates in the accumulator space. Thereby, the 
assignment H(x,y,ρ,θ)=1 means that the presence of the 
pixel (x,y) in the image foreground domain induces the 
accumulator cell with the coordinates (ρ,θ) to be 
incremented by 1. For H(x,y,ρ,θ)=0, the accumulator 
cell remains unchanged. Thus, the HT is realized by 



going for each (x,y) in the image foreground over all 
(ρ,θ) according to the chosen quantization of the 
accumulator space, and adding H(x,y,ρ,θ) to the 
corresponding cells: 

A(ρ,θ ) = H( x, y,ρ,θ )
(x , y) in I
∑              (2) 

This will give the same result as for the standard Hough 
transform algorithm, but can be computed cell-wise. 
Now, the task for the neural network is to approximate 
H(x,y,ρ,θ). 

For the function approximation no special neural 
architecture is necessary and thus a 3-layer 
Backpropagation Network was chosen for the sake of 
simplicity. However a special representation of the 
given input and output data is considered.  
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Fig. 2. Proposed neural architecture for the computation of 
the HT, NeuroHough. 

The neural network is fed with the following input 
data: x, y, x*sinθ, y*cosθ, ρ, sinθ. This is regarded to 
the fact that neural networks may have problem to 
internally approximate products of input data. 
Furthermore the inclusion of redundant inputs help to 
empirically adjust the relevance of the input 
parameters. So, for the standard Hough transform, the 
task is presented as a linear separation problem to the 
network. 

For the output, two neurons are used. Considering 
the Hough equation, as in (1), it could be assumed that 
the neural network should compute the value 0 for 
"correct" (x,y,ρ,θ) tupels (and "non-zero" otherwise) 
just using one output neuron. However, this approach is 
not practicable, since the training data become 
ambiguous. It is simpler to train a network on having 
either output value larger or smaller than a given 
threshold (due to the sigmoidal transfer functions used). 
So, for the "neural computer", a=0 is taken as (a>=0) 
AND (a<=0), which gives the right motivation to 
decide considering two output neurons. Then, the 
training data for output neurons O1 and O2 are given 
by: 

I. ρ-x sinθ-y cosθ > 0: O1=1, O2=0,  
II. ρ-x sinθ-y cosθ < 0: O1=0, O2=1, 
III. ρ-x sinθ-y cosθ = 0: O1=1, O2=1 
(the case O1=O2=0 never happens).   

As a consequence the NeuroHough network is trained 
by randomly selecting (x,y) positions and (ρ,θ) values, 
checking for case 1, 2 or 3 and setting accordingly the 
training data.  The training set itself should be planned 
in a manner so that the loading of values 0 or 1 into the 
output neurons is balanced. 

This procedure will give a neural network, which is 
able to perform the computations of the standard HT 
and can be directly trained from the analytical 
expression of the transform. The same training 
procedure can be used for slight modifications of the 
transform, since it is based on a more general 
interpretation of the Hough transform not considered so 
far (as a special case of an arbitrary mapping of R4 into 
the interval [0,1]). 

For a superposed training regime, the NeuroHough 
procedure can be used for the initial configuration. 
Then, the error backpropagation procedure has to be 
modified according to the given recognition task. This 
is mostly addicted to further works on this approach. 
But before doing so, it is essential to prove the validity 
of the approach by representing the standard HT in its 
neural form. 

4 Preliminary Results, Conclusions and 
Future Work 

In order to approximate the desired function using a 
Multilayer Backpropagation Network the empirical 
performance of the paradigm was researched. The 
training and test data sets do not include any noise 
added and the amount is usually about 7000  examples.  
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Fig. 3: Hough Transformation of an image (3a) with the 
classical procedure (3b) and through the here presented 
neural network paradigm, NeuroHough (3c).  

 Till now the best results were obtained with a 3-
layer structure, 7 neurons in the input layer, 2 in the 
output one, and between 18 and 20 neurons in the 
hidden layer. Larger checked network sizes did not 



improve the results significantly and needed very large 
training time, while smaller sizes underfit the targets.  

The gain is set to 3 in order to sharpen decision 
areas of the network, the momentum factor, the 
learning rate, and the initial weights were and to 
achieve a good generalization in a reasonable training 
time. 

The results obtained till now are excellent in terms 
of approximation capability. The Hough 
Transformation could be approximated through the 
NeuroHough, what can be observed in the case of the 
transformation of a straight line (see figure 3). The 
NeuroHough shows a good generalization capability, as 
the result (3c) were obtained with a neural network 
trained for the transformation of a line different from 
the one shown (3a).  
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Fig. 4. Transformation of more complex forms through the 
here presented NeuroHough architecture. Original images of 
a square (4a) and a circumference (4b) were transformed with 
the classical HT (respectively, 4c and 4d) and the 
NeuroHough Transform (respectively, 4e and 4f). The 
suppression of points due to reflective adjacency relationship 
(4c) can be avoided using this methodology (4e).    

 Also the suppression of points due to reflective 
adjacency relationship in the analysis of more complex 

shapes, which was one of the aims to be attained by the 
neural implementation of the HT, was reached through 
the implementation of the NeuroHough architecture 
(see figure 4c and 4e). Although having only been 
trained with straight lines the transformation of a 
circumference was encouraging (4f). 

The complete results of the here presented work, 
which is on progress at the present, will be presented in 
future communications.  
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