
Many-Objective Particle Swarm Optimization
by Gradual Leader Selection

Mario Köppen and Kaori Yoshida

Kyushu Institute of Technology, Dept. Artificial Intelligence,
680-4, Kawazu, Iizuka, Fukuoka 820-8502 Japan
{mkoeppen, kaori}@pluto.ai.kyutech.ac.jp

Abstract. Many-objective optimization refers to multi-objective opti-
mization problems with a number of objectives considerably larger than
two or three. This papers contributes to the use of Particle Swarm Op-
timization (PSO) for the handling of such many-objective optimization
problems. Multi-objective PSO approaches typically rely on the employ-
ment of a so-called set of leaders that generalizes the global best particle
used in the standard PSO algorithm. The exponentially decreasing prob-
ability of finding non-dominated points in search spaces with increasing
number of objectives poses a problem for the selection from this set
of leaders, and renders multi-objective PSOs easily unusable. Gradual
Pareto dominance relation can be used to overcome this problem. The
approach will be studied by means of the problem to minimize the Eu-
clidian distances to a number of points, where each distance to the points
is considered an independent objective. The Pareto set of this problem
is the convex closure of the set of points. The conducted experiments
demonstrate the usefulness of the proposed approach and also show the
higher resemblance of the proposed PSO variation with the standard
PSO.

1 Introduction

Recently, there has been growing interest in the application of particle swarm
optimization (PSO) to the handling of multi-objective optimization problems.
Since the initial presentation of the MOPSO algorithm (Multi-Objective Particle
Swarm Optimization) [2], a growing number of proposals about corresponding
standard PSO variations can be found in the literature. The recent survey of
Reyes-Sierra and Coello [10] already classifies nearly thirty of such algorithms.
According to [10], the general structure of any such PSO variant can be seen
as given in Algorithm 1.1 (also covering the standard “single-objective” PSO).
The main difference to a PSO is the notion of “leaders,” which generalizes the
common concept of the global best particle in the standard PSO. This regards the
fact that in multi-objective optimization, usually, there is not a single optimum
but a set of optima solutions. Without the support of an additional, external
“decision maker” instance, the problem statement does not entail any further
selection criteria that can be applied to this set of optima.



MOPSO and all its successors proved to be competent algorithms to handle
the domain of multi-objective optimization, at least for problems posing two
or three conflicting objectives. However, no efforts so far have been devoted to
the handling of a notably larger number of objectives. More and more, problems
with a larger number of objectives are appearing in practice and deserve a deeper
study of the question whether they could be handled by the PSO heuristic as
well.

Algorithm 1.1: General Particle Swarm Optimization([10])

Initialize swarm
Locate leader
g ← 0
while g < G

do

8>>>>><>>>>>:

for each particle

do

8<:Update position (Flight)
Evaluation
Update lbest

Update leader
g ← g + 1

Notably, approaches to handle these so-called many-objective optimization prob-
lems are likely to suffer from the so-called “curse of dimensionality.” In this pa-
per, we will stress on this and identify a weak point in the common scheme for
selecting among the leaders, related to the rapdidly decreasing probability of
finding such leaders in the search space at all. We will propose an approach to
overcome this drawback by using a gradual ordering relationship among particles,
and compare its performance by means of a scalable many-objective optimization
problem that we are going to introduce here as well.

Section 2 will provide the necessary algorithmic concepts and solicit the prob-
lem statement. Due to space limitations, multi-objective optimization and PSO
will be only briefly touched. The reader is suggested to consider the excellent
books of Coello et al.[3] and Deb et al.[4] about multi-objective optimization, and
the book of Kennedy and Eberhart to learn about PSO[6]. The used ranking by
Fuzzy Pareto Dominance (FPD), which is employed in the PSO generalization,
will be recalled in section 2 as well. The so-called P* many-objective optimiza-
tion problem will be introduced in section 3. Section 4 then provides the results
of test runs of multi-objective PSOs on this problem, and a discussion of the
results. The concluding section and the references will be at the end of this
paper.

2 Multi-Objective Particle Swarm Optimization

In multi-objective optimization, the mapping of a feature vector space F into an
objective vector space O is considered, where points of F are seeked, having all
their objective values as small as possible. For comparing two points in objective



space, the common notion of Pareto dominance (or just dominance) is employed.
Given two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) of same size, it
is said that vector x “Pareto dominates” y, if each component of x is smaller
than or equal to the corresponding component of y, and at least one component
is smaller: x <D y ↔ ∀i(xi ≤ yi) ∧ ∃k(xk < yk). A similar definition for the
maximum case, or the case “smaller/larger-or-equal” (so-called weak dominance)
can be provided as well.

For simplicity, we also consider the dominance relation among points in the
feature space, if their corresponding objective vectors are in such a relation.
The set of all objective vectors assigned to feasible feature vectors, which are
not dominated by any other objective vector is the so-called “Pareto front” of
the multi-objective optimization problem. The set of the corresponding feature
vectors will be referenced as Pareto set in the following.

The general task of an multi-objective optimization algorithm is to find a
representation of the Pareto front of the given mapping. A new class of evolu-
tionary algorithms, with specialized selection operators to regard for the multiple
objectives, has gained much attractiveness for the handling of such problems. As
already said in the introduction section, this interest has expanded to the Par-
ticle Swarm Optimization algorithm in between.

Here, we consider the multi-objective PSO (MOPSO) that was recently pro-
posed by Alvarez et al.[1], see the algorithm listing 2.1. It shows the same global
structure as the general PSO given in listing 1.1. The procedure to select the
leader is based on selecting from an archive that stores all non-dominated posi-
tions found by the algorithm during its course so far.

Algorithm 2.1: MOPSOrand([1])

A← ∅
Initialize particles
for g ← 1 to G

do

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

for n← 1 to N

do

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

for k ← 1 to K

do


vnk = wvnk + r1(Pnk − xnk) + r2(Gnk − xnk)
xnk = xnk + vnk + ε

xn ← enforceConstraints(xn)
on ← f(xn)
if ∼ ∃u ∈ A : u ≤D xn

then


A← {u ∈ A | xn 6≤D u}
A← A ∪ xn

if xn ≤D Pn ∨ (xn 6<D Pn ∧ Pn 6<D xn)
then Pn ← xn

Gn ← selectGuide(xn, A)

The parameters used in the listing are: xn and vn are position and veloc-
ity of the n-th particle, A stands for the archive, G is the maximum number
of cycles, N is the number of particles, K the dimension of a particles’ vec-
tor, Pn is the local best position of particle xn, and Gn the leader (or guide)
for this particle, used to update its position according to the general swarm



equations. The parameters r1 and r2 are random numbers drawn from the in-
terval [0, . . . , wlocal] and [0, . . . , wglobal] respectively, w is the weight of former
velocity, and ε so-called curl parameter, a small random number. The proce-
dure enforceConstraints() ensures the swarm to stay within the feasible space,
and the procedure selectGuide() selects the leader for each particle, and will be
detailed in a moment.

2.1 Choices for the leader selection

In [1], three procedures for the selection of the leader from the archive were pro-
posed. All of them assume the presence of particles being dominated by vectors
that are already stored in the archive, or being dominated by new positions.
The procedure RAND randomly selects one of the archive members dominating
particle xn as leader for this particle. If there is no such particle, an archive
member is randomly selected.

However, for a larger number of objectives, the second choice becomes more
likely. Equation (1), taken from [7], gives the expected size of the Pareto front
of m points randomly selected from the n-dimensional unit hypercube.

em(n) = m−
m∑

k=1

(−1)k+1

kn−1

(
m

k

)
(1)

A closer look on this equation gives that the probability of finding two points
with one dominating the other drops exponentially with the problem dimension.
For example, for 15 objectives and 10 particles, the probability to have a ran-
domly selected dominated point is already as low as 0.0027.

For this reason, we are considering gradual Pareto dominance here, as it was
presented in [9]. Given a set of points, a “ranking value” is assigned to each point
a. This ranking value is the maximal value of the “degree of being dominated”
by any other element of the set. The dominance degree is computed as

µpmin(x, y) =
∏

i

[
xi

yi

]
(2)

where the notion of a bounded division was used:[
x

y

]
=

{
1, if y ≤ x

x/y, if x < y
(3)

The ranking value of a dominated point is 1, otherwise its between 0 and 1.
Points with smaller ranking values can be considered to be less dominated by
the other points in the set. The ranking value is scale independent, and points
close to other points in the set yields higher ranking values than points that are
more distant. Thus, the ranking values also punish crowding of points at the
same location. Finally, the ranking value is set-dependent. If in a set a point x
has a lower ranking value than y, adding an element to the set close to x may
reverse the ranking value size relation.



In this paper, the procedure FPD for selectGuide() selects as leader for all
particles the particle with the lowest ranking value within the set of all swarm
particles.

3 The P* Many-Objective Optimization Problem

The evolutionary multi-objective optimization community maintains a set of
benchmark measures for the performance assesment of algorithms, with the
DTLZ suite of problems [5] being among the most popular. Unfortunately, not
much is known about these problems for the many-objective case. This cir-
cumstance has already been remarked with the introduction of the Pareto Box
problem, which identifies objective vector and feature vector [8]. However, issues
of vector components becoming 0 and the bounded domain of positive vector
components hardens the use of the Pareto Box problems, especially for swarms.

Here, we are introducing a related problem, referred to as P* problem for
indicating the variable number of points from which the objectives are derived.

Given is a set P of m points Pi in the Euclidian plane (the case of two
dimensional Euclidian space is completely sufficient for the present analysis).
The feature space F equals the Euclidian plane, where the points Pi are located.
The objective space O is an m-dimensional vector space. For a given point x in
the feature space, its objective vector o(x) is the vector with the components
oi = d(x, Pi) for i = 1 to m, where d(x, y) is the Euclidian distance of two points
x, y ∈ F . Thus, the objectives to minimize are the distances to a given collection
of points, where the distance to any of these point is treated as an independent
objective.

The Pareto set of this problem equals the convex closure of the points Pi.
To see this, consider fig. 1. The left subfigure shows that for any point x outside
the convex closure there is at least one point y that is closer to all points of P .
In the subfigure, the line AiAi+1 represents one segment of the convex hull. All
points on this line or on the other side of this line than x are more close to y
than to x.

Ai Ai+1

X

Y

B

A
B

A1

A2

A3

A4A5

A6

A7

A8

U V

Fig. 1. Proof that the Pareto set of the P* problem for some points Ai is the convex
closure of these points.



To see that none of the points of the convex closure dominates any other,
consider the right subfigure of fig. 1. By connecting any two points U and V
of the convex closure and drawing the perpendiculars to this line trough U and
through V , the convex closure is segmented into three parts. There is at least one
point of the point set A (and thus of P ) located to the l.h.s. of the perpendicular
through U (indicated by encircled A in the figure), or located on this line, and
there is at least one point of A belonging to the r.h.s. of the perpendicular
through V or on it (indicated by encircled B). Otherwise, the shape would not
be convex. Now, point U is more close to any point of A than V , and point V is
more close to any point of B than U . Neither U nor V can dominate the other.

Having thus a rather simple solution structure, the problem is worth a study
for a heuristic algorithm for several reasons:

– the number of objectives can be easily scaled
– by reducing the area enclosed by the convex closure, the effort for random

search (the “Monte-Carlo Barrier”) can be easily increased
– typical performance measures (as average distance to Pareto front, number

of particles belonging to the Pareto front) can be directly computed
– as the feature space is two-dimensional, the results can be directly visualized;

however, extension to higher-dimensional spaces is straightforward
– the search space is not bounded
– the problem is a continuous optimization problem
– boundary conditions can be directly included
– crowding in objective space directly corresponds to crowding in feature space
– modelling of algorithm behaviour seems feasible
– by using the distance to the center of gravity of the points instead, a com-

parison to the single-objective case becomes possible

In the following, we are considering the performance of three algorithms on
the P* problem.

4 Results and Discussion

Several experiments have been conducted to study the behaviour of three algo-
rithms on the P* problem. The three algorithms were the MOPSO of Alvarez
et al. using RAND (algorithm MOPSOrand), the proposed usage of FPD (al-
gorithm MOPSOfpd) as procedures for selectGuide(), and the standard PSO
(algorithm PSO) by taking the distance to the c.o.g. of the points P as objective.
The result that we want to present here was achieved with the following settings:
swarm sizes were 10 particles each; the swarms were randomly initialized around
point 0, with deviation of 0.1 and max initial velocity of 0.001; the weight of the
global best was 0.08, the weight of the local best 0.02, the weight of the former
velocity 0.985. For each target problem, the average distance of the c.o.g. of the
particle positions after 1000 cycles for 20 different random initializations was
computed. The target problems were given by placing a set of 15 circular points
at a radius of 0.01 around the center (i/10, i/10) with i going from 1 to 20.



2 4 6 8 10 12 14 16 18
initial distance * 10

0

0.5

1

1.5

2

2.5

av
er

ag
e 

di
st

an
ce

 a
fte

r 1
00

0 
ge

ne
ra

tio
ns

initial target distance
PSO
MOPSO_rand
MOPSO_fpd

Fig. 2. Plots of the average distances to the target after 1000 cycles vs. different initial
target distances for a problem with 15 objectives.

The results can be seen in fig. 2. For reference, the initial distance of the target
to the starting point of the swarm has been plotted as well. The most notable
fact is the nearly complete failure of the algorithm MOPSOrand to find the
target set, once the target gets placed beyond the (0.8, 0.8) offset. The constant
bias of about 0.1 of MOPSOrand performance to the reference line refers to the
fact that the initial positions varied by about 0.1 around the point 0. Before
the failure, it has to be noted that the averages for MOPSOrand are taken from
more or less binary cases: the MOPSOrand swarm was either reaching the target
set, or got stuck at the initial position.

For understanding this failure, consider a snapshot of the MOPSOrand swarm
particles taken anywhere in such a situation (see fig. 3). The snapshot also shows
the positions of the local best, as they are kept by each individual, and the target
points. It can be seen that in such a situation, the local best positions establish
a kind of “trap” for the swarm. The swarm is surrounded by these positions,
and the probability of finding a closeby position that either dominates the local
best positions, or can get added to the archive is nearly zero. The archive so far
is not able to guide the swarm out of this trap. So, the swarm stays within the
area surrounded by the local best positions, and the local best positions never
get updated by new dominating positions. Thats the reasoning, given in humble
words. Any manner of quantifiying the situation of a MOPSO getting stuck will
only provide additional evidence for the fact that this is a ubiquitous feature of
all algorithms that depends on the finding of dominated points, to perform their
operations.

The algorithm MOPSOfpd shows a much more improved performance, as it
is capable to appraoch the target even if being initially placed distant from the
target set. However, naturally the explorational effort for MOPSOfpd is also
increasing. But it has to be taken into account that the average values shown for



the MOPSOfpd were taken from a variety of distance values: in nearly no case,
the MOPSOfpd swarm got ever stuck at the initial position, as it happened
many times for the MOPSOrand. It could always escape the trap set up by
the local best, even if no dominating position was found, as it is also rewarding
nearly dominating positions. By extending the number of cycles, the MOPSOfpd

swarm may still approach the target.

0.2 0.4 0.6 0.8x
0.65

0.7

0.75

0.8

0.85

0.9

y target point set

particle positions

local best positions

Fig. 3. A situation where a MOPSOrand swarm is trapped within the local best po-
sitions of the particles.

The performance measure for the standard PSO has been taken as well. It
is remarkable how strongly MOPSOfpd performance resembles the one of the
standard PSO, as both plots go nearly equal. This encourages the choice of the
FPD-based leader selection scheme as a way to expand the standard PSO to the
many-objective optimization domain.

5 Conclusions

In this paper, the extension of Multi-Objective Particle Swarm Optimization
(MOPSO) to the case of many-objective optimization has been studied. Here,
“many-objective” stands for a number of objectives considerably larger than
two or three. It has been demonstrated how algorithms that rely on the presence
of dominated points may get stuck in their search for the Pareto front. The
notion of Pareto dominance is not fully suited to the case of many objectives.
Pareto dominance requires ALL components of a vector to be smaller than the
corresponding components of the other vector. This becomes more and more
unlikely, as the number of components increases. As a consequence, such an
MOPSO algorithm may get trapped by the local best selection of the particles
itself, without being able to find new dominating positions. As a countermeasure,



this paper presented the use of gradual Pareto dominance, to fuse the relative
amount of smaller vector components, and the degree by which they are smaller,
into a single measure. Doing leader selection based on these so-called “ranking
values” allows for the design of a MOPSO, which better resembles a standard
single-objective PSO in the multi-objective case.

Acknowledgment

A researcher involved in this study has been supported by a JSPS grant.

References

1. Julio E. Alvarez-Benitez, Richard M. Everson, and Jonathan E. Fieldsend. A
MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts. In Car-
los A. Coello Coello, Arturo Hernández Aguirre, and Eckart Zitzler, editors, Evolu-
tionary Multi-Criterion Optimization. Third International Conference, EMO 2005,
pages 459–473, Guanajuato, México, March 2005. Springer. Lecture Notes in Com-
puter Science Vol. 3410.

2. Carlos A. Coello Coello and Maximino Salazar Lechuga. MOPSO: A Proposal for
Multiple Objective Particle Swarm Optimization. In Congress on Evolutionary
Computation (CEC’2002), volume 2, pages 1051–1056, Piscataway, New Jersey,
May 2002. IEEE Service Center.

3. Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evolution-
ary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,
New York, May 2002. ISBN 0-3064-6762-3.

4. Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley & Sons, Chichester, UK, 2001. ISBN 0-471-87339-X.

5. Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable
Multi-Objective Optimization Test Problems. In Congress on Evolutionary Com-
putation (CEC’2002), volume 1, pages 825–830, Piscataway, New Jersey, May 2002.
IEEE Service Center.

6. James Kennedy and Russell C. Eberhart. Swarm Intelligence. Morgan Kaufmann
Publishers, San Francisco, California, 2001.

7. Mario Köppen, Raul Vicente Garcia, and Bertram Nickolay. Fuzzy-pareto-
dominance and its application in evolutionary multi-objective optimization. In
Evolutionary Multi-Criterion Optimization, Third International Conference, EMO
2005, Guanajuato, Mexico, March 9-11, 2005. Proceedings, LNCS 3410, pages 399–
412. Springer Berlin / Heidelberg, 2005.

8. Mario Köppen, Raul Vicente Garcia, and Bertram Nickolay. The pareto-box prob-
lem for the modelling of evolutionary multi-objective optimization. In Adaptive
and Natural Computing Algorithms. Proceedings of the ICANNGA 2005, Coimbra,
Portugal, pages 194–197, 2005.

9. Mario Köppen and Raul Vicente Garcia. A fuzzy scheme for the ranking of multi-
variate data and its application. In Proceedings of the 2004 Annual Meeting of the
NAFIPS (CD-ROM), pages 140–145, Banff, Alberta, Canada, 2004. NAFIPS.

10. Margarita Reyes Sierra and Carlos A. Coello Coello. Multi-objective particle swarm
optimizers: A survey of the state-of-the-art. International Journal of Computa-
tional Intelligence Research, 2(3):287–308, 2006.


