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Abstract—In the present paper we propose a multi-
objective optimization procedure inspired by the famous
secretary problem from optimal stopping theory. The pro-
posed algorithm is designed to be applied to multi-attribute
decision making problems that require fair solutions to be
obtained. We consider two fairness relations, namely maxmin
fairness and proportional fairness, and the evaluation is
performed on the problem of wireless channel allocation. The
performance is compared to random search, and the quality
of the solution is measured with respect to the distance to
the results obtained with brute-force in the whole search
space. Results show that the proposed algorithm, compared
to random search, can cover a much larger portion of the
search space for the same number of pairwise comparisons.
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I. INTRODUCTION

Recently, there is increasing awareness for the multi-
objective nature of optimization problems, especially in
fields such as design and scheduling. In such cases there
is no single numerical criterion alone able to represent
the various aspects and needs of the final solution. A
common framework is to consider Pareto optimality with
regard to the Pareto dominance relation and then to find
the set of non-dominated solutions. Since the number of
non-dominated solutions might be rather large, reference is
also done to a “decision maker” (DM) who selects among
the Pareto-optimal set by means that are not covered by
the various optimization criteria.

In a special case of multi-objective optimization, a
number of agents share the access to a joint resource
and explicate their goals by the same objective. Such
problems appear especially in modern telecommunication
and network design problems. For example, end-to-end
traffic among users of a wired network requires assigning
feasible traffic rates (e.g. measured by the average number
of packets per time unit). Physical restrictions on the
communication facilities impose link capacity constraints,
while different users have to share links at the same time.
This can lead to congestion, and from the network control
point of view, the objective becomes that of an efficient
congestion control, fair resource allocation, or effective
buffer queue management. However, each user of the
network experiences the effects of such network control
issues in a passive way, for example in terms of admitted
traffic rates or sensed communication delays.

Compared to a general multi-objective optimization,
such cases show two distinguishing characteristics: (1) the
objectives need to be commensurable -i.e measurable by
the same standard; (2) solutions where an agent receives
no share of a resource — and such solutions can still be
Pareto optimal — are not acceptable.

For this reason, the DM needs to intervene into the
decision process much more early. In the field of network-
ing research, this is usually done by introducing a formal
concept of fairness among the solutions. We have found
some potential in following a strict relational approach to
fairness and consider non-dominated sets for such formal
relations in the same sense as Pareto optimality is based on
non-Pareto dominated solutions. These are the maximum
sets of fairness relations and considered as solutions to
the optimal resource sharing problem with fair DM. If a
specific fairness relation is implied by Pareto dominance,
their maximum sets are subsets of the Pareto sets of the
same problem, and thus effectively appear as net effect
of a DM who selects from the Pareto optimal solution
with regard to a particular concept of fairness among the
various solutions.

Typical concepts for fairness can be expressed as: “It is
unfair to take amount δ from a poor and give this amount
to a rich.” or “It is unfair to improve the amount given
to one agent while reducing the amount given to another
agent that has already same or less.” We will provide
related definitions in the next section.

Like for general multi-objective optimization, there is
a potential and a need for meta-heuristic optimization
algorithms to approximate maximum sets of fairness rela-
tions. Recent work has shown that especially most of the
well-known evolutionary multi-objective optimization al-
gorithms (EMOA) like SPEA2, NSGA-II, MOPSO, PAES
can be adjusted by replacing algorithm-internal references
to the Pareto-dominance relation by corresponding refer-
ences to a fairness relation [1]. It has also been shown that
such an approach to relational optimization is not affected
by the No-Free-Lunch Theorems [2]. Thus, in addition to
EMOA there can be simple ways of sampling appearing
more efficient than others. In this paper, we want to derive
such an efficient sampling from a well-known result from
optimal stopping theory known as the secretary problem.

A chief wants to hire a new secretary, and there are
many applicants for the new job. The chief is assumed
to be very busy, and thus wants to shorten the selection
process as much as possible, while still having a good



chance to select the best secretary suitable for the job.
In stopping theory it can be shown that the best strategy
– when the number of applicants is known– is to reject
a share d of the first applicants who are interviewed,
and then to select the first applicant that appears better
than all applicants interviewed so far. The optimal share
d approximates 1/e and the chance to indeed select the
best secretary this way approaches 1/e if the number of
applicants grows indefinitely. But even in small scales
of the problem, the chance is about 30% to select the
optimum by this simple procedure.

There have been considerations how this problem ap-
plies, if multiple attributes of an applicant have to be
considered. However, no concise result have been achieved
so far [3] due to ambiguity in the specification of a
comparison between candidates. However, one can easily
see that the approach can serve as inspiration for a meta-
heuristic search procedure. The proposal of such a concept
will be the main aspect of this paper, but under the
consideration that we want to avoid a potential exhaustive
search of the feasible space. Thus, the proposed approach
differs in a few points from the optimal stopping strategy:
(1) we use a fairness relation for comparing candidates;
(2) we select only from a subset of feasible solutions, i.e.
perform the search in so-called episodes; (3) the stopping
criterion in the secretary problem, i.e. to be better than
all candidates before, is replaced by the criterion that a
candidate dominates at least one element of the maximum
set of a number of random candidate solutions; (4) the
algorithm is applied in a recursive manner, i.e. we have
a hierarchical base-level 0 where solutions are randomly
selected from feasible space, and on hierarchical level k,
instead of random samples we use samples generated from
applying the procedure on hierarchical level k − 1.

For validating the proposed approach, we also have to
focus on a relevant resource sharing problem. We take note
that many problems especially in wireless communication
are of combinatorial nature and arise from the need to
allocate communication channels to various users. As a
basic and generic problem, wireless channel allocation
(WCA) will be considered in this study. Its definition will
be provided in the following section, along with other
related definitions of concepts mentioned so far. Section
III will introduce the proposed Many-Attributes Secretary
Problem (MASP) algorithm, and section IV present and
discuss some results.

II. DEFINITIONS AND PREREQUISITES

A. Binary Relations

For space reasons, we basically provide needed defini-
tions only.

Definition 1 (Relation). Given a set A. A (binary) relation
R over domain A is a subset of A×A i.e. a set of pairs
(x, y) where x, y ∈ A. If A ⊆ Rn then R is called a
vector relation.

A basic way to compare two vectors is the Pareto dom-
inance relation. Here and in the following, i = 1, dots, n.

Definition 2 (Pareto Dominance Relation). Pareto domi-
nance: x ≥p y if for all i xi ≥ yi.

We consider two fairness relations. Maxmin fairness
was introduced in [4].

Definition 3 (Maxmin Fairness Relation). Maxmin fair-
ness: x ≥mmf y if for all i with xi < yi there exists a j
such that (1) xj ≤ xi and (2) xj > yj .

The other is proportional fairness, initiated by Kelly’s
seminal paper [5].

Definition 4 (Proportional Fairness Relation). Propor-
tional fairness: x ≥pf y if and only if

n∑
i=1

yi − xi
xi

≤ 0 (1)

Both relations are defined over the domain R+
n , i.e

vectors with positive components. By using a “≥” no-
tation we indicate that these relations are of comparison
character. A corresponding “>” notation will refer to the
asymmetric part of R which is the relation minus pairs
of equal elements from the domain in our case. Many
relations either refer to a comparison or to equivalence
(or similarity) between related elements. The following
definition can be applied to any relation, but it suits a
comparison relation.

Definition 5 (Maximum Set). Given a relation R over
domain A and a subset S ⊆ A. The maximum set MR(S)
of S with respect to R is the set of all x ∈ S such that
there is no y ∈ S with x 6= y and (y, x) ∈ R.

Note that for the Pareto dominance relation, this corre-
sponds with the common concept of a non-dominated set,
or Pareto set. But the concept of maximum set applies
to any relation in the same way. The task of finding
maximum sets for a given relation is called relational
optimization.

Without proof, we denote three properties of maxmin
and proportional fairness relations (by R we indicate one
of these two relations):

• Both relations are antisymmetric, i.e. from (x, y) ∈ R
and (y, x) ∈ R follows x = y.

• Both relations are implied by Pareto dominance rela-
tion, i.e. from x ≥p y follows x ≥mmf y as well as
x ≥pf y. From this follows that MR(S) ⊆Mp(S).

• Both relations are out-bound (or cycle-free, acyclic):
there is no sequence of k xi ∈ R+

n such that
x1 ≥R x2 ≥R · · · ≥R xk and xk >R x1. From this
follows that we can rank all elements of a finite set
S with regard to R: on rank 1 are elements from the
maximum set, on rank 2 elements from the maximum
set of S minus the maximum set of S etc.

B. The WCA Problem

We study a special class of distribution of indivisible
goods. With reference to such a task in the resource shar-
ing of wireless channels, it is commonly called Wireless
Channel Allocation problem.



Definition 6 (Wireless Channel Allocation (WCA) Prob-
lem). Given a set of n users U and m cells C and an n×m
matrix CC of channel coefficients, i.e. reals from [0, 1].
A channel allocation is a mapping A : C → U where to
each cell ci with i = 1, . . . ,m exactly one user uj with
j = 1, . . . , n is allocated. The notation is uj = A(ci).
An allocation is feasible if at least one cell is allocated
to each user. The performance of user uj in allocation A
is pj =

∑
i,A(ci)=uj

CCji. The task of wireless channel
allocation (WCA) is to find a feasible allocation a that
“maximizes” the performances for all users.

If “maximizing” is seen as maximizing the total sum
of performances for all users, then the solution would
be simply to select for each cell one of the users with
largest channel coefficient. However, this might not be a
feasible allocation, i.e. there can be users to which no cell
will be allocated this way. What we are considering here
is to maximize performances by selecting solutions from
the maximum set of a relation, esp. maxmin fairness and
proportional fairness.

III. THE MASP ALGORITHM

The MASP algorithm is inspired by the Secretary
Problem optimal stopping strategy. It is composed as an
hierarchical algorithm, applied to subsets of the feasible
space of multi-objective optimization problems and going
from hierarchical level 0 (just random sampling) to a fixed
maximal hierarchical level kmax. At hierarchical level k
the algorithm uses samples from repeated application of
the algorithm at level (k − 1) and generates exactly one
sample as output that can be used as sample in hierarchical
level (k+1). MASP stands for “Multi-Attribute Secretary
Problem” and we will use the notation MASPR,k(d, n)
to indicate an algorithm that returns with exactly one
sample of the feasible space. This sample is generated
from repeated sampling using MASPR,k−1(d, n) and will
generate a different sample each time. We will specify the
way sampling is done in a moment. The parameters are
the trailer sampling ratio d, a real from (0, 1] and episode
size n, an integer number. R is the relation that we use for
maximizing (here maxmin fairness MMF or proportional
fairness PF ). MASPR,0(d, n) is simply a random sample
from feasible space, ignoring the parameters R, d and n.
Then, MASPR,k(d, n) works as follows:

1) Trailer Step: Create a set S of Floor(d ·
n) different samples by repeated application of
MASPR,k−1(d, n).

2) Compute the maximum set MR(S).
3) Episode Step: Generate step by step a new sample

s by MASPR,k−1(d, n). If there is any x ∈MR(S)
from former step where (s, x) ∈ R (i.e. s dominates
any element of the maximum set of the trailer
samples) then stop and return s. Otherwise continue
for at most n−Floor(d·n) steps. If no s dominating
at least one element in MR(S) appears then return
a random element from MR(S).

It can be seen that for a set of n real numbers, d =
1/e and R being the natural order relation among real

numbers, MASP>,1 returns with the maximum of these n
numbers with a probability that approaches 1/e for n →
∞. This is the solution of the secretary problem.

By MASP∗
R,k(d, n) we indicate MASPR,k(d, n) with-

out the episode step at level k (but including episode steps
for all levels before). The effort of the algorithm will grow
exponentially with level number k, so in practise, we will
restrict to at most MASP∗

R,2(d, n).

IV. RESULTS

In this section we present some results of the application
of MASP to larger instances of the WCA problem. Before
continuing we shortly discuss the complexity of a WCA
problem. If the problem is about allocating n users to m
cells, there are nm possible allocations. However, not all
of them are feasible, i.e. there are users to which no cell
was assigned. The number of feasible solutions can be
computed by n!S2(m,n) where S2(m,n) is the Stirling
number of second kind. For example, for 5 users and 7
cells, among all 57 = 78125 possible allocations, 16800
appear to be feasible. For a single-objective problem,
this would not be a large search space. However, for
finding the maximum set we have to consider pairwise
comparisons, and in worst case the exhaustive search could
need up to 282 240 000 such comparisons. While there
is no course of dimensionality, the implied squaring of
the search effort has notable influence. However, we have
issued the derivation of exact maximum sets for a number
of test instances of the WCA problem for 4 to 6 users and
7 cells and will use these results for validating the MASP
algorithm, compared to random search with a comparable
number of pairwise comparisons [6].

In a first experiment, we want to select a suitable value
for d. After some initial tests, an episode of size 100
was found to be reasonable. Then, several values for d
were tested using MASPR,1(d, 100) and one of the test
instances for 5 users and 7 cells mentioned in the foregoing
paragraph.
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Figure 1. Average rank [r] of solutions sampled by MASPR,1(d, 100)
for increasing values of d. Averages were computed over 100 runs.

Figure 1 shows the average rank of 100 samples re-
turned by MASPR,1(d, 100). Remember that maxmin and
proportional fairness are out-bound relations, so a rank can
be assigned to each element of the feasible space. Rank



1 are the elements of the maximum set, so an average
rank close to 1 represents an efficient sampling. However,
smaller values of d reduce the search effort. From the
figure it can be seen that d = 0.2 is a suitable trade-off
between having smaller d while staying close to 1 with
average rank.

It should also be mentioned that in this example case,
the Pareto optimal set contains 305 allocations, while the
maximum sets for maxmin fairness contains 5 and for
proportional fairness 12 allocations (in both cases these
are subsets of the Pareto optimal set). This also illustrates
the suitability of a fair DM in order to maintain a tractable
number of choices for selection.

n,m dmin MASP dH MASP dmin RND dH RND

Maxmin Fairness

4, 7 6e-8 0.43 0.23 0.63

5, 7 0.086 0.4 0.36 0.71

6, 7 3e-8 3e-8 0.46 0.9

Proportional Fairness

4, 7 0.0 0.039 0.28 0.85

5, 7 0.0 0.31 0.23 1.1

6, 7 0.0 0.05 0.45 1.6

Table I
PERFORMANCE COMPARISON OF MASP AND RANDOM SEARCH RND

WITH 1000 SAMPLES FOR THE TWO FAIRNESS RELATIONS AND
LARGER PROBLEM INSTANCES (n USERS AND m CELLS). THE TABLE

SHOWS MEDIAN DISTANCE VALUES FOR 30 RUNS IN EACH CASE.

Then we have applied MASP∗
R,2(0.2, 100) to 30 in-

stances of the WCA problem, where the exact maximum
sets were pre-computed by exhaustive search [6] and
compared the performance with random sampling of 1000
elements from feasible space. For having a comparable
number of comparisons, the last step of MASP used only
10 samples instead of 20 as in the two hierarchical levels
before. The quality measures were derived from Euclidean
distances between the maximum sets M1 yielded by
MASP and the true maximum sets M2. Two measures
were used: the minimum distance dmin between any
element of M1 to any element of M2 and the Hausdorff
distance dH between both sets (i.e. for each element from
M1 find the minimum distance to an element from M2 and
then take the maximum of all these minimum distances).

Table I gives the results for the median values of
these measures for MASP and random search. For space
reasons, we omit the other quantiles of the distributions.
We can see that in nearly all cases MASP succeeds to find
maximal elements, and also notably outperforms random
search in view of worst elements (indicated by Hausdorff
distance dH ). The performance is better for proportional
fairness, so we consider MASP more suitable for this type
of fairness relation. Also we note that the problem of 5
users and 7 cells appears to be more hard than the other
two problems.

The evaluation has to be seen under the aspect of

a fair comparison. We selected the number of pairwise
comparisons, since we are focusing on maximum sets. If
we consider the number of performance evaluations, as
it is common in multi-objective optimization, we see that
MASP covers a much larger portion of the search space
than RND, by using fewer comparisons for each element.
Then, the result basically confirms that MASP is more
efficient in reducing the number of comparisons needed in
order to decide whether an element of the feasible space
is maximal or not.

V. CONCLUSIONS

We have presented a generic MASP algorithm for assist-
ing multi-criterion decision making, where the objectives
are expressed by fairness relations. The relations specify
ways for comparing solutions, and the goal is to find solu-
tions to which no other solution is in fairness relation (i.e.
non-dominated, or maximal solutions). As an example, the
basic problem of allocation of communication channels to
clients (users) in a wireless network was studied. It comes
out that this problem cannot be properly addressed without
evoking fairness of the allocation. The proposed MASP
algorithm is inspired by the well-known secretary problem
from stopping theory, and emulates the optimal strategy
to solve the secretary problem. The generic nature of
MASP, combined with easy implementation, hierarchical
complexity, and simple parametrization allows for many
variations and new applications that will be subject of
further investigation.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant
Number 24650030. One of the authors was supported by
the BecasChile Postdoctoral Scholarship Program.

REFERENCES
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