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Abstract

Based on similarities between fuzzy set theory and mathe-
matical morphology Grabisch proposed a fuzzy morphology
based on the Sugeno fuzzy integral [2]. This paper shows
how these ideas can be applied to practical problems. Fast
implementable definitions for erosion and dilation based on
the fuzzy integral are given, their properties are discussed
and some application examples are presented.
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1. Introduction

A central problem for the design of image processing
algorithms is the inclusion of the human intention about
what a specific algorithm should do. As known from
soft-computing this task is best performed by using fuzzy
logic. Fuzzy logic allows data driven examination of human
knowledge represented as a set of fuzzy rules or definition of
fuzzy sets. The advantage of fuzzy logic in image process-
ing results from two reasons, the possibility to overcome the
crisp nature of pattern descriptions as they can be used for
algorithms and the inclusion of human intentions in the pro-
cess of algorithm goal formulation.

Mathematical morphology [4] has been succesfully ap-
plied to many problems of image processing, e.g. segmen-
tation , thinning or object recognition . Most of the oper-
ations and filters defined in morphological operations also
introduce a crisp element, the structuring element or mask.
This depends on the nature of the image function used. A
common approach to use fuzzy set theory is to define a fuzzy
image function and generalize the conventional morphology
to apply for this new kind of image [3]. Formally this ap-
proach is only a slight modification of the conventional 3D
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morphology. The region of the image to which the structur-
ing element is applied is not interpreted as a fuzzy set, it is
rather considered as a conventional set of image picture el-
ements (pixels).

Once started considering a subset of pixels of an image as
a fuzzy set it is straightforward to use fuzzy integral, as in-
troduced in [5], for the evaluation of a morphological opera-
tion. There are formal similarities between fuzzy set theory
and mathematical morphology that lead [2] to the proposal
of a new approach to fuzzy morphology based on fuzzy in-
tegral.

This paper shows how these ideas can be applied to prac-
tical problems. Fast implementable definitions for erosion
and dilation based on the fuzzy integral are given, their prop-
erties are discussed and some examples for the application
are presented. It is organized as follows: Several conven-
tional definitions of mathematical morphology will be re-
called in section 2. Section 2 also introduces the definiton
of dilation and erosion based on fuzzy integral and details an
implementable reformulation of this definition. In section 3
some new properties of this definition are explored using a
handsome model for the operations involved, followed by a
sample application that outperforms conventional morphol-
ogy in section 4. Section 5 gives a short discussion on the
subject how the masks of the proposed fuzzy morphology
really represent ”fuzzyness” and how the design of a fuzzy
mask could be based on human intentions. Finally, section
6 gives a short summary of the work presented in this paper.

2. Definitions of mathematical morphology

2.1. Conventional Morphology

Mathematical morphology treats with structure describ-
ing image operations. Most of the operations of mathemat-
ical morphology are based on local operators (e.g. filters)
which separate specific image regions due to their structural
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diversity. For many applications the use of a morphological
operation results in the enhancement, filtering, extraction or
deletion of an image constituant. In general, mathematical
morphology never marks or classifies an image constituant
because it is based on local operators. It gives rather a base
for a following final image evaluation.

The major part of morphological operations can be de-
fined as a combination of two basic operations, dilation and
erosion, and set operations like difference, sum, maximum
or minimum of two images.

The definition of these operations mainly depends on the
definition of the image function I(x). Here x represents an
element of the definition area of the image function (in most
cases a compact subset of IN � IN), also called picture ele-
ment (pixel). The domain of I(x) describes the nature of the
images. Mathematical morphology preserves the nature of
the image.

Morphological operations also make use of a structuring
element M, which can be either a set or a function that cor-
respond to a neighbourhood-function related to the image
function (i.e. the assignmentof neighbours to a pixel). Both,
image function and structuring element, constitute a specific
kind of morphological operations.

Further operators can be constructed by sequencing these
basic operations. Dilation and erosion are like the axioms of
a formal theory, so the mathematical properties of a morpho-
logical operation are guaranteed if the fundamental proper-
ties of the basic operations are verified.

In general, a dilation operator D is every operator that
commutes with the maximum operation, an erosion E is ev-
ery operator that commutes with the minimum operation.

If I(x) acts like IN � IN ! f0; 1g, I is called a binary
image, the associated morphology is called binary morphol-
ogy. There is a homomorphism between the image func-
tion I and the set of all pixels with image function value 1
(the “foreground pixels”). The structuring element M(x) is
a function that assigns a subset of IN�IN to every pixel of the
image function 1. Then dilation and erosion are sets defined
as:

DM � I =
[

fxjI(x)=1g

MT (x)

EM � I =
\

fxjI(x)=1g

M(x)

Dilation is an increasing transformation, i.e. (DM � I) � I,
while erosion is a decreasing transformation.

If I(x) is a function IN� IN! G, where G is a finite sub-
set of IN (mostly the values 0,1,2,...,255 representing grey-

1This assignment is made by considering the structuring element as a
mask (as used e.g. for a convolution operation) with an origin. The mask
is put with its origin on a pixel position. The subset assigned to that pixel
by the structuring element is the set of all pixels covered by the mask. The
transposeMT is the symmetric of M with respect to its origin.
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values), it is called greyscale-morphology. Here the prob-
lem is to define a morphology which is consistent to binary
morphology. That means a pseudo-binary-image, contain-
ing only two greyvalues (e.g. 0 and 255), has to be treated
like a binary image using binary morphology. The solution
is to use a mask-like structuring element as a set of offsets
from a fixed image position. So M is a set of offsets i and the
addition of pixels and offsets is defined due to the image lat-
tice. This results in the definiton for greyscale-morphology:

DM � I = max
i2M

(I(x� i))

for dilation and

EM � I = min
i2M

(I(x+ i))

for erosion.
Another approach for greyscale images is the 3D-

morphology that extends the concept of the structuring
element M from a set of offsets to a set of assignments M(i)
of offsets i into IN. The definitions for dilation and erosion
are as follows:

DM � I(x) = max
i2M

(I(x) +M(i))

EM � I(x) = min
i2M

(I(x)�M(i))

From dilation D and erosion E, independent of the type of
image function and structuring element used, the following
operations can be defined:

Opening: OM � I = DM � (EM � I)
Closing: CM � I = EM � (DM � I)
Morphological gradient: �mM � I = (DM � I) � (EM � I)
External gradient: �eM � I = (DM � I) � I

Inner gradient: �iM � I = I � (EM � I)
White tophat: Tw

M � I = I � (OM � I)
Black tophat: T b

M � I = (CM � I)� I

Further operations can be defined based on the use of a
second structuring element. Details about various morpho-
logical operators can be found in [4].

2.2. Definition of Fuzzy Morphology

The definition of fuzzy morphology used here is based on
the proposal of [2]. He showed that the quasi-Sugeno fuzzy
integral defined with respect to a proper measure can form
an algebraic dilation or erosion. All rank filters can be con-
sidered as special cases of such fuzzy integrals.

In our paper morphological operations are used which are
derived from the standard Sugeno fuzzy integral (see e.g.
[5], [6], [1]). To calculate such an integral a �–fuzzy mea-
sure w(A) is defined which gives every set A � X a def-
inite non-negative weight w. Here X is a finite discrete set



of pixels xi which may be given by the action of a structur-
ing element M(x) onto a single pixel. According to [5] the
�–fuzzy measure w(A) fulfills the axioms:

w(0) = 0; w(X) = 1 (1)

w(A) � w(B) if A � B (2)

w(A [B) = w(A) +w(B) + �w(A)w(B) (3)

for some � > �1 and A\ B = ;

The value of � is determined by the first axiom. Given the
weights wi of the Pixels xi, a � > �1 can be determined,
such that

w(X) =
1

�

h nY
i=1

(1+�wi)�1
i
= 1; wi = w(fxig): (4)

Axiom (3) defines the “�–fuzzy sum” for two weights as-
signed to disjunct sets. It is symmetric and associative, so a
unique weight for every setA � X can be calculated. Con-
sider a vector~g = (g1; g2; � � � ; gn) of greyvalues gi = I(xi)
which results from the action of the mask M(x) onto I. The
Sugeno fuzzy integral of the gi with respect to the �–fuzzy
measure w() (for finite discrete sets) is than given by

I(gi; w()) = maxi=1::n(min(gi; w(Ai)) (5)

with Ai = fxj j gj � gig

If a fixed weight wi is assigned to every mask point of the
mask M, thus defining the �–fuzzy measure w, this delivers
a algebraic dilation for the greyvalues fgig as was shown in
[2]. The corresponding erosion is given by the dual fuzzy
integral with respect to the dual �–fuzzy measure:

I�(gi; w�()) = mini=1::n(max(gi; 1 �w(A�
i )) (6)

with A�
i = fxj j gj � gig

2.3. Implementation

In our experiments a 3x3 square M with its origin in the
middle was used as the structuring element. To every mask-
point a fixed weightwi is assigned. Now � can be calculated
from the weights by solving equation (4). Because of that is
an algebraic equation of order n = 8, this has to be done
numerically. As shown in [6] there exists a unique solution
in (�1;1). Now the mask M can be applied to every pixel
of the image. The computation of the fuzzy integral requires
sorting of the greyvalues in the mask. When the greyvalues
are sorted in decreasing order, the w(Ai) can recursively be
calculated from the wi = w(fxig) and be compared with
the gi. So the algorithm is as follows:

1. Sort the greyvalues2 such, that g1 � g2 � � � � � gn.

2The corresponding weights get a new order, too.
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2. Start with w(A1) = w1 and I1 = min(g1; w(A1)).

3. For i � n recursively calculate:
w(Ai) = w(Ai�1) + wi + �wiw(Ai�1) and
Ii = max(Ii�1;min(gi; w(Ai)))
The value In gives the fuzzy integral.

Similarly the dual fuzzy integral can be computed from the
greyvalues sorted in increasing order. In the applications it
can be helpful to create a lookup table for the weightsw(Ai)
of all possible sets Ai of pixels in the mask. Then, the dual
fuzzy integral can also be computed from decreasing order,
thus speeding up the opening and closing operations.

3. Properties of the fuzzy integral

As shown in [6] there exists a unique � > �1, which
solves equation (4). Its sign depends on the sum of the
weights. If the sum of the weights wi is greater than 1, �
is negative, if it is lower than 1, � is positive. In the case ofP
wi = 1 the measure is a (additive) probability measure

with � = 0.
Since all wi lie in (0,1) the factors (1+ �wi) in equation

(4) vary only weakly. Therefore it is a reasonable approxi-
mation to replace their geometric average by the arithmetic
average. This leads to:

Qn

i=1(1 + �wi) �
h
1
n

Pn

i=1(1 + �wi)
in

= (1 + ��g)n

with �g = 1
n

Pn

i=1wi

That means that the value of � only shows a weak depen-
dence on the distribution of thewi. � is determined rather by
the sum of the weights. Figure 1 shows the dependence of �
from the sum of weights in the case of n = 9. In comparison
to the case of equal weights two curves for a distribution of
two different weights varying by a factor of 10 and 100 are
shown. As predicted the three curves differ only very little.

The fuzzy integral is a kind of average. Its value is deter-
mined by the crossover3 of the decreasing curve of the or-
dered greyvalues in the mask with the increasing curve of
the �–fuzzy sum of weights. Figure 2 shows two examples.
If the upper greyvalues have high weights the crossover
shifts to the left delivering high values for the integral. On
the other side, if low weights are assigned to the upper grey-
values, the crossover shifts to the right giving lower values
for the integral.

It is worth to consider two interesting limiting cases
which deliver upper and lower bounds for the value of the
fuzzy integral. As can be easily shown the �–fuzzy sum
of two weights is always greater than the minimum of the

3If they have more than one point in common, the minimum has to be
taken.
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Figure 2. Evaluation of fuzzy integral for ~w = (0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.6, 0.6, 0.6) (mask 1) and ~w = (0.6, 0.6,
0.6, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1) (mask 2). The values of the
corresponding fuzzy integrals are marked with crosses.
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Figure 3. �–fuzzy sum of the weights for wmax ! 1:
~w = (0.1, 0.9, 0.1, 0.1, 0.9, 0.1, 0.1, 0.9, 0.1) andwmax <<
1: ~w = (0.01, 0.09, 0.01, 0.01, 0.09, 0.01, 0.01, 0.09, 0.01)
two weights. Therefore, if there are one or more weights
wi which tend to 1 whereas all other weights are small,
then the fuzzy integral just gives the maximum greyvalue of
the mask points with these weights. In this case, the stan-
dard greyscale morphology is reproduced. If all weights are
much smaller than 1 the �–fuzzy sum of the weights will in-
crease only at the very end when reaching the low greyval-
ues. In this case the value for the fuzzy integral approaches
the minimum of all the greyvalues in the mask. The two
cases are shown in figure 3.

4. Application

The problem to solve was to detect infected regions of
a leaf (see figure 4a). In the image of the leaf the infected
regions occur as slightly brightened regions. From a local
point of view the pixels with slightly higher greyvalues are
not connected, so it was useful to apply an opening oper-
ation. The first erosion darkens isolated bright pixels, the
4

following dilation connects the remaining regions of bright
pixels (i.e. brightens the gaps). After that a two-threshold
binarization 4 is applied to separate leaf background and in-
fected regions. A morphological gradient operator and the
addition of this result and the original image are used for
marking the infected regions on the original image. In fig-
ures 4b-d the gradient marks the regions found by a white
border surrounding them. The result for using greyscale
morphology with a structuring element of shape

o x o

x x x

o x o

is shown in figure 4b. Using 3D morphology with a mask
with values

3 8 3

8 8 8

3 8 3

results in the marked white regions shown in figure 4c. The
regions in both results are badly connected and scattered
over the infected areas.

Finally the fuzzy morphology using the structuring ele-
ment

4This operation acts by two given thresholds, a weak one and a strong
one. This operation selects region of the image with greyvalues larger than
the strong threshold, but surrounded by regions of the image with greyval-
ues larger than the weak treshold. This is done by reconstruction of the set
of all pixels brighter than the strong threshold by the set of pixels brighter
than the weak treshold. The reconstruction operation is implemented by
a flooding algorithm. In the case of our application the weak and strong
thresholds were 80 and 150 resp.
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was applied for the same operation. The satisfying result,
which can be seen in figure 4d, comes from the fact that the
crosslike shape of the structuring element is a little bit fuzzy-
fied. So, the operation achieves a compromise between the
removement of isolated bright pixels and the connection of
scattered regions of bright pixels.

5. Discussion

Fuzzy morphology, as defined in this paper, has the same
advantages as other kinds of morphology. Also there is a
fast implementation, so the computational overhead can be
kept small. The advantage over other kinds of morphology
is just what its name says, its fuzzyness. Normally a mor-
phological operator tends to work as a crisp filter, recogniz-
ing only the exact match of an image pattern and the pat-
tern described by the structuring element. Fuzzy morphol-
ogy allows a tuning of the requested correctness of a match
between patterns.

Figure 5a shows a binarized herringbone pattern texture
which contains two direction primitives. Performing a bi-
nary dilation of size 3 with a structuring element (mask) of
the pattern

o o x

o x o

x o o

results in the image shown in figure 5b. The direction dis-
crimination of this operation can be clearly seen. The re-
sult of applying the same operation (dilation of size 3) with
a mask of similar shape

0.1 0.1 x
0.1 x 0.1

x 0.1 0.1

and x being a real from the set f0.9, 0.7, 0.5, 0.3, 0.1g gives
the results shown in figures 5c-g resp.

This way the preference of the filter for the 45 degree di-
rection can be tuned by modifying the x parameter in the
structuring element. This allows the perpendicular 135 de-
gree direction to be also partly detected by this filter.

The example shows, how fuzzy morphology introduces
fuzzyness in morphological operations. By proper choosing
5

mask values the designer of image processing algorithms
can take care for uncertainties in her goal and for noise in
images. Also it is possible to parametrize morphological op-
erations and to make them a subject of adaptation.

6. Summary

A new approach to fuzzy morphology has been intro-
duced. This approach is based on an idea given by [2] which
uses the Sugeno fuzzy integral for the definition of a new
kind of mathematical morphology. It is extended to an im-
plementable formulation of fuzzy morphology.

The structuring element is considered as a fuzzy set. By
describing it as a mask the mask values are used as fuzzy
densities and a measure for subsets of the mask can be de-
fined. This measure is the �–fuzzy measure as defined in
fuzzy set theory.

Also the subset of pixels covered by the mask is consid-
ered as a fuzzy set. Hence, dilation and erosion can be de-
fined by fuzzy integration of this fuzzy pixel set according to
the fuzzy measure defined by the mask. The dilation is just
the Sugeno fuzzy integral, the erosion is given by its dual.

The so defined operations have the same properties as the
conventional morphological operations.

An application example (detection of infected regions of
a leaf) demonstrates the ability of fuzzy morphology to be
more sensitive for specific image substructures. Also, an-
other advantage of the proposed approach was shown in
section 5. By modifying mask weights it is possible to
tune morphological operations to specific image processing
tasks. This allows the adaptation of fuzzy masks, a possibil-
ity currently under study.
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(a) (b)

(c) (d)

Figure 4. Application of fuzzy morphology: (a) Image of an infected leaf, (b) Opening using greyscale morphology, (c) Opening
using 3D morphology, (d) Opening using the proposed fuzzy morphology

(a) (b)

(c) x=0.9 (d) x=0.7 (e) x=0.5 (f) x=0.3 (g) x=0.1

Figures 5c-g: Dilation of size 3 using fuzzy morphology for different values of x

Figure 5. (a) Binarized textured image, (b) Dilation of size 3 using binary morphology, (c)-(g) Dilation of size 3 using fuzzy mor-
phology for different values of x
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