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Abstract

This paper presents a new approach to mul-
tiobjective optimization by evolutionary al-
gorithm. The approach is based on fuzzifi-
cation of Pareto dominance relation. Using
fuzzy degrees of dominance, a set of vec-
tors (multiple objectives) can be partially
ranked. The FDD algorithm, a modifica-
tion of standard genetic algorithm using this
ranking scheme for the selection operations,
is presented and evaluated on benchmark
function.
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1 Introduction and Basic Definitions

In multiobjective optimization, optimization goal is
given by more than one objective to be extreme. For-
mally, given a domain as subset of Rn, there are as-
signed m functions f1(x1, . . . ,xn), . . . , fm(x1, . . . ,xn).
Usually, there is not a single optimum but rather the
so-called Pareto set ofnon-dominatedsolutions:

For two vectors~a and~b it is said that~a (Pareto-
)dominates~b, when each component of~a is less or
equal to the corresponding component of~b, and at
least one component is smaller:

~a >D ~b ←→ ∀i(ai ≤ bi)∧∃k(ak < bk). (1)

Note that in a similar manner Pareto dominance can
be related to>-relation.

The subset of all vectors of a setM of vectors, which
are not dominated by any other vector ofM is the
Pareto set (also Pareto front). The Pareto set for uni-
variate data (single objective) contains just the maxi-
mum of the data.
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Figure 1: Definition of Fuzzy-Pareto-Dominance.
Here,u dominatesv by degree 0.1·0.2/0.1·0.9 = 0.2̄
and is dominated byv by degree 0.1 ·0.2/0.7 ·0.2 ≈
0.143.

We propose the fuzzification of Pareto dominance re-
lation, given with the following definition:

It is said that vector~a dominatesvector~b by degree
µa with

µa(~a,~b) =
∏i min(ai ,bi)

∏i ai
(2)

and that vector~a is dominated byvector~b at degree
µp with

µp(~a,~b) =
∏i min(ai ,bi)

∏i bi
(3)

Remarks: Note that the definitions differ in the de-
nominator and thus are not symmetric: ”dominating
by degreeµ” and ”being dominated by degreeµ” have
different fuzzy values. The definition is similar to so-
called subsethood degrees as introduced by Kosko [3]
and has already been used for the definition of color



morphology operation [2]. For~a Pareto-dominating
~b, µa(~a,~b) = 1 andµp(~b,~a) = 1, butµp(~a,~b) < 1 and
µa(~b,~a) < 1.

We may use these dominance degrees to rank a setM
of multivariate data (vectors) like the fitness values of
a multiobjective optimization problem. Each element
of M is assigned the maximum degree of being dom-
inated by any other element ofM, and the elements
of M are sorted according to the ranking values in in-
creasing order:

rM(~a) = max
~b∈M\{~a}

µp(~a,~b) (4)

Note that this definiton is related to a set. Aranking
value of ~a within M can only be assigned with refer-
ence to a setM containing~a.
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Figure 2: Counterexample: no scalar function ofP
components can give the same ranking as the pro-
posed FPD ranking.

By sorting the elements ofM according to the rank-
ing values in increasing order (FPD ranking, FPD for
Fuzzy-Pareto-Dominance), we obtain a partial rank-
ing of the elements ofM. For vectors with the same
ranking values (like all dominated vectors), we have
to assign a random ordering. There is no additional
cue for complete ranking of these vectors.

An important property of this ranking scheme is that
it can not be obtained by sorting of a weighted sum of

the components. More general, it can be shown that
there is no scalar function of vector components of
one vector at all, which will give the same ranking of
the vectors of a setM. This can be shown by a simple
counterexample.

Consider figure 2. We assume, that there is a scalar
function f , which gives the same ranking as the
FPD ordering scheme. If we take the set of three
vectors{(1,10),(9,2),(10,1)}, the vector with low-
est ranking value is (1,10). If we take the set
{(1,10),(2,9),(10,1)}, the vector with lowest rank-
ing value will be (10,1). If there would be such anf ,
it has to bef (1,10) > f (10,1) from the first case, but
also f (1,10) < f (10,1) from the second case. This is
a contradiction, hence there is not such af .

In addition it should be noted that the FPD ordering is
also scale-invariant.

2 FDD Algorithm

This section presents the (Fuzzy-Dominance-Driven)
FDD algorithm, a Genetic Algorithm (GA) variant
that employs the FPD ordering of fitness values (rep-
resented as vectors in case of multiobjective optimiza-
tion) for defining selection operators. The algorithm
and its components can be seen in fig. 3.
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Figure 3: Schematic view of FDD algorithm.

FDD maintains four pools of individuals:

• Population: containsn individuals as in standard
GA.

• Mating Pool: Contains individual pairs that were
selected for crossover operation.



• Habitat: This pool is composed of individuals
from other pools and used to replace the popu-
lation of generationn by generationn+1.

• α-Set: In this pool, all non-dominated individu-
als are collected. This pool also gives the output
of the FDD algorithm.

After random initialization of the population, the FDD
algorithm iteratively repeats the following steps until
a stopping criteria (number of generations, size ofα-
Set) is met:

1. Rank population by FPD ordering of fitness vec-
tors of the individuals in the population (see sec-
tion 1).

2. Selectbest individuala from the ranked popu-
lation (one individual with lowest ranking value)
and conditionally add it to theα-set. Addinga
to the α-set is only possible, when fitness ofa
is not dominated by the fitness of any individ-
ual already in theα-set, and if fitness ofa is not
equal to any individual’s fitness there. In casea
is added, all individuals in theα-set with fitness
values dominated by fitness ofa are removed
from theα-set.

3. Add bestpn of population individuals, accord-
ing to FPD ordering ranking values, to the habitat
(0≤ p≤ 1).

4. Select(1− p)n pairs from population by tour-
nament selection, using ranking values of
the ranked population for tournament decision
(lower ranking value counts better), and put these
pairs into mating pool.

5. Apply crossover and mutation to the individuals
of the mating pool, and add these newly created
individuals to the habitat as well.

6. Replace population by habitat.

The FDD algorithm acquires non-dominated (with re-
spect to their fitness values) individuals in theα-set.
In an evolutionary sense, those ”FDD Pareto Set” ap-
proaches the Pareto front of the multiobjective opti-
mization problem under study.

3 Evaluation

The algorithm has been verified by using test function
MOP6 from the set suggested by Coello Coello [1]. A
new verification strategy will be proposed here.
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Figure 4: Location of individuals inα-set after 2000
generations of FDD algorithm for MOP6 problem.

The approach is to run FDD against random search
algorithm. The performance is measured as follows:

1. Let FDD run fork generations and take the fit-
ness values of theα-set as setM1.

2. Selectk× n random domain values (withn the
number of individuals of FDD algorithm) and
compute all corresponding fitness values, giving
setRM2.

3. Compute the Pareto setM2 of RM2.

4. Compute the setM3 of elements ofM2 that are
not dominated by any element ofM1.

The relation of|M1| to |M3| gives a measure how FDD
performs against random search. We claim that this
strategy is applicable to any multiobjective search al-
gorithm on a common base.

MOP6([1], p. 111) is defined as follows:

F = ( f1(x,y), f2(x,y))

where

f1(x,y) = x

f2(x,y) = (1+10y) ∗

∗

[

1−

[

x
1+10y

]α
−

x
1+10y

sin(2πqx)

]

(5)



with 0≤ x,y≤ 1 and the paramter choicesq = 4 and
α = 2.

FDD was applied to this problem, with the following
configuration:

• x and y values were encoded into bitstrings of
size 40, with 20 bits for binary representation of
each number.

• Population size was 50, with keeping 20 (p =
0.4) best from former generation in each new
generation. The 20 best were selected by FPD
ranking.

• Mating pool was obtained by tournament selec-
tion of 60 individuals according to FPD ranking.
Two-point crossover was used, as well as bitwise
one-point mutation with probability of 0.01.

Table 1: Performance of FDD against random search.
M1 is the set of non-dominated FDD individuals after
n generations,M2 the set of non-dominated individu-
als found by random search, andM3 the subset ofM2

that is not dominated by any individual ofM1. Listed
are average values of set sizes after 10 FDD runs. Af-
ter about 100 generations, FDD outperforms random
search.

Generations |M1| |M2| |M3|

20 5.0 11.5 10.6
50 9.7 15.3 11.2
100 32.2 22.4 7.2
200 69.4 30.8 5.2
1000 411.2 122.0 0.0

Figure 4 gives theα-set fitness values of a FDD run
after 2000 generations. The gray areas underlying
the plot gives the range of MOP6 function values and
were computed by Monte Carlo method with 5×107

test points. Note that fig. 4 only shows a part of the
complete range of MOP6, containing the Pareto front.
The α-set clearly has approached the Pareto front of
the test problem.

To justify further, theα-set sizes of FDD were traced
over 1000 generations in steps of 50 generations. Fig-
ure 5 shows the plot of this growing in comparison to
the growing of a random search. It can be seen that in
later phases, FDD produces a new non-dominated ele-
ment all 2-3 generations. For checking the affordabil-
ity of the FPD ordering scheme, also a plot is given
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Figure 5: Growing of the number of elements in the
α-set (FDD plot) against Pareto set size of random
selection (Randomplot) andα-set size with random
instead of FPD ranking based selection of individuals
(FDD no FDplot).

for FDD variant, in which selection is performed ran-
domly. As it can be seen,α-set sizes also drops re-
markably in this situation.

Finally, table 1 shows the decrease of size of set|M3|
(the randomly found individuals that are not domi-
nated by any individual in theα-set) towards 0.
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