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b Fraunhofer IPK, Department of Security Technologies, Pascalstr. 8-9, 10587 Berlin, Germany

Received 15 November 2004; received in revised form 30 August 2006; accepted 30 August 2006
T
E
D

P
R

Abstract

The selection of a suitable illumination subsystem is seldom practicable in the automated visual inspection of highly reflective sur-
faces. The paper presents an algorithmical approach in the form of a framework for enhancing images of objects with such surfaces.
This framework is based on the application of so-called Intelligent Localized Fusion Operators (ILFOs), whose formalization is herein
undertaken for the first time. Furthermore the guidelines for its implementation are given and different aspects of the resulting pre-pro-
cessing system are systematically analyzed. The framework successfully performs in the automated visual inspection of different objects
presenting highly reflective surfaces, namely headlamp reflectors, plastic bundled packages, and electric bulbs.
� 2006 Published by Elsevier B.V.
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E1. Introduction

The automated visual inspection of objects with highly
reflective surfaces results extremely complex due to the
presence of some areas in the acquired images, where the
camera detector is saturated. These areas are known as
highlights. Though this problem can be tackled by applying
a suitable lighting system, this solution is not trivial and
seldom practicable for such objects. In this context the
application of a pre-processing system for filtering the
highlights becomes extremely helpful.

Following the seminal paper of Burt and Kolczinsky [1]
image fusion has been applied for image enhancement in
different applications. In [1] an image pyramid is used in
order to fuse a multi-focal image set through a weighted
sum operator. On the other hand, the active consideration
of the illumination conditions in the image acquisition pro-
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cess in order to obtain a well-conditioned input image was
taken into consideration in [2] for the first time. As an
extension of these two works, some research groups [3–5]
apply image fusion on a multi-dimensional image set
resulting from different illumination conditions in order
to enhance it.

The framework proposed in [3] is based on a model-
based approach for the evaluation of the fused image
energy [6]. Different images taken under varying illumina-
tion conditions are fused within a probabilistic Bayesian
framework, where the employed fusion operator can be
modeled as a weighted sum. The second approach [4]
applies a so-called comparametric processing of an image
set taken under different exposure times. The used com-
parametric equations are related to the fields of photome-
try and radiometry. They are applied in order to increase
the signal-to-noise ratio of the output image. Thus, the
image fusion results from the application of diverse non-
linear functions.

In the framework presented in [5] a multi-dimensional
set of images taken under different illumination conditions
e enhancement through intelligent localized fusion operators ...,
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are fused with a so-called Intelligent Localized Fusion
Operator (ILFO), which is a further development of the
fuzzy integral [7] within a theoretical framework denoted
as soft data fusion [8,9]. This theoretical framework focus
its attention on the role of the operator binding the data
from the different information sources in multi-sensory
systems. In this context, the fuzzy integral, which presents
a non-linear function for the fusion of information, plays
a principal role because it generalizes the more com-
mon fusion operators. Thus it subsumes the weighted
sum approach employed in [1,3]. In contrast to the other
non-linear methodology proposed in [4], ILFOs improve
the interpretability of the fusion operator because of
its relationship to the field of Fuzzy Computing. The
framework presented in [5] attains for the first time the
filtering of highlights as a pre-processing task in auto-
mated visual inspection, whereas the frameworks in
[3,4] attain the general image enhancement of the input
images.

The here presented paper furthers the framework based
on ILFOs [5]. The formalization and the automation of
different aspects of the framework is undertaken herein
for the first time. The formalization succeeds by taking
the Theory of Fuzzy Sets [10] and the Pattern Recognition
approach presented by Watanabe [11] into account. More-
over, the novel application of peak dynamic analysis [12]
for the automation of the process allows the framework to
attain the results without heuristic parameterization. This
fact constitutes a clear advance with respect to the frame-
work presented in [5]. Although some results could look
the same as those obtained in [5], the application of
genetic algorithms [13] is newly done herein. In [5] the best
results were obtained through the manual modification of
the parameters deliver by the genetic algorithms. No man-
ual adaptation is undertaken herein. Furthermore, the
following properties of the framework are analyzed
herein: automation, best parameterization and conver-
gence of GAs, execution time, generalization capability,
and quantitative evaluation of the resulting images’ qual-
ity. The employment of Interactive genetic algorithms [14]
is presented herein for the first time as an alternative to
GAs.

The paper is organized as follows. Section 2 gives an
overview of the theoretical background on the fuzzy inte-
gral, including the more general framework of soft data
fusion and some considerations on the application of the
fuzzy integral for image fusion. The formalization of
ILFOs is attained in Section 3. The pre-processing frame-
work, which is based on the application of an ILFO for
highlights filtering is presented in Section 4. The results
obtained by applying this framework in different auto-
mated inspection systems can be found in Section 5, where
the inspection of automotive headlamp reflectors, plastic
bundled objects, and electric bulbs is described. The first
application is used in order to undertake the systematic
analysis of the framework. Finally the conclusions are
given in Section 6.
Please cite this article as: Aureli Soria-Frisch, Mario Köppen, Imag
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2. Theoretical background

2.1. Soft data fusion and the fuzzy integral

The theoretical framework of soft data fusion [8,9] relate
different fusion operators by taking the flexibility of the
operation result into account. In this sense traditionally
used fusion operators can be considered as hard. Fuzzy
fusion operators were established as generalizations of clas-
sical ones. This mathematical generalization can be consid-
ered as a softening process of the operator, which improves
the mentioned flexibility.

The consequence of the evolution of fusion operators
from harder to softer ones is shown in the following para-
graph. In classical operators the fusion result exclusively
depends on the value being operated on. For instance the
result of the sum operator just depends on the summands
and thus 1.9 + 3.1 is always computed to 5, different from
values ‘‘close to 5’’ like 4.9. The result of such a fusion
operation through the application of a softer operator,
i.e. a weighted sum, an Ordered Weighted Averaging [15],
or a Fuzzy Integral [7], differs from this hard one. This dif-
ference is based on the inclusion of an increasing number of
freedom degrees in the operators as shown in [9]. While in
weighted operators the weight of the information sources is
established upon its index, weighted order operators estab-
lish the weight upon the ranking of the information
sources. This difference improves the performance of the
operation w.r.t. compatibility, partial aggregation, and
reinforcement [16].

Fuzzy integrals further increase the flexibility of the
operator by taking the fusing values, the a priori impor-
tance of the fusing sources, and their ranking into consid-
eration in the fusion result. This can be observed on
hand of the mathematical expression of the Choquet Fuzzy
Integral (CFI):

Cl½h1ðx1Þ; . . . ; hnðxnÞ� ¼
Xn

i¼1

hðiÞðxiÞ � ½lðAðiÞÞ � lðAði�1ÞÞ�

ð1Þ

where l(A(i)) = l({x(1),. . .,x(i)}) denote the coefficients of
so-called fuzzy measures l and hi(xi) the fuzzified informa-
tion sources. The enclosed sub-index states for the ranking
result, i.e x(1) P x(2) P � � �P x(i). This operation deter-
mines the coefficients of the fuzzy measures employed in
the integration. The reader is referred to [9,17] for a deeper
description of this operator.

The fuzzy measure coefficients are used for quantifying
the a priori importance of the information sources. Fuzzy
measures l are functions on the power set of information
sources PðX Þ, whose coefficients are defined in the interval
[0,1] and fulfill the so-called monotonicity condition:

Aj � Ak ! lðAjÞ 6 lðAkÞ 8Aj; Ak 2 PðX Þ ð2Þ

The fuzzy measure coefficients of the subsets with cardinal-
ity one are denoted as fuzzy densities l({xi}) = li. They
e enhancement through intelligent localized fusion operators ...,
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Fig. 1. Lattice structure of a fuzzy measure up to [18]. The data structure
constitutes a graph with unidirectional links from l{;} to l{X}. The
sorting operation of the fuzzy integral, Eq. (1), fixes up the path for the
selection of the fuzzy measure coefficients. For instance a dotted line
marks the path for the coefficients selected if x2 > x1 > x3 > x4, since then
x(1) = x2, x(2) = x1, x(3) = x3, and x(4) = x4.
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quantify the importance of the individual sources. The
remaining coefficients l({xi,. . .,xj}) = li. . .j quantify the
importance of the coalitions among them [17].
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2.2. The fuzzy integral in image processing

The complexity of fuzzy measures makes a lattice struc-
ture suitable for its implementation [18]. Such a graph
structure (see Fig. 1) presents n + 1 layers, where n is the
number of information sources, connected by unidirec-
tional links. The nodes of the graph are occupied by the
coefficients corresponding to each of the subsets of PðX Þ.

Each layer is occupied by the
n
i

� �
coefficients that corre-

spond to the subsets with the same cardinality. The links
connect the subsets among the different layers that satisfy
the monotonicity condition (2) of the fuzzy measure. The
employment of look-up tables constitutes an alternative
to this data structure which can help optimizing the com-
putational cost of the fuzzy integral operator.

An algorithm of the fuzzy integral for image fusion is
presented (see Algorithm 1). The algorithm makes use of
the lattice structure formerly presented. Thus, the fuzzy
integral is iteratively computed by following the links in
the lattice. The used T- and S-norms are defined by the type
of fuzzy integral employed [19]. As it can be observed, the
fuzzy integral is computed on each pixel of the multi-sen-
sory input image in order to fuse the n image channels into
a single one.
248
249
250
251
252
253
254
3. Intelligent localized fusion operators

Operators for soft data fusion can achieve a higher
degree of softness (see Section 2.1) in Image Processing
by defining local application domains of the weighting
Please cite this article as: Aureli Soria-Frisch, Mario Köppen, Imag
Information Fusion (2006), doi:10.1016/j.inffus.2006.08.003
schemes. This is attained within the paradigm denoted as
Intelligent Localized Fusion (ILF) [20].

Algorithm 1. Iterative algorithm for image fusion through
the fuzzy integral. The algorithm makes use of the lattice
structure of fuzzy measures (see Fig. 1).

construct a fuzzy measure FM

for all pixels P in multi-channel image do

FI 0
current node  l{;}

5: lcurrent 0
O
O

F

sort pixel channels
for all element CH in sorted sequence do

lprior lcurrent

follow link in lattice corresponding to the current
element

10: lcurrent coefficient in current node
P
Rif Choquet Integral then

lcurrent lcurrent � lprior

end if
TR Tnorm(CH, lcurrent)

15: FI Snorm(FI,TR)
E
Dend for

P FI

end for

Usually the fuzzy measure coefficients are defined by
taking the image as a unit (see Section 2.2). In contrast with
this fact the used fuzzy measure is said to be ‘‘localized’’ in
the ILF paradigm. A ‘‘localized’’ fuzzy measure l is defined
as a set of fuzzy measures lj. Each element of this set oper-
ates on a particular area j of the image domain. The map-
ping between lj and the image sub-domain where it
operates is defined through a label image. A fuzzy integral
operated with respect to such locally defined fuzzy mea-
sures becomes a so-called Intelligent Localized Fusion
Operator, ILFO. It is noteworthy to take into consider-
ation how ILFOs are mathematically defined and how they
can be implemented in engineering systems. This is attained
in the following subsections.
3.1. ILFOs’ mathematical foundations

The image space X is partitioned by the label image in
different subspaces Xj, where different fuzzy measures lj

are defined. A mapping is then established between j and
the gray-level of the labels gj.

The definition of the fuzzy measures lj attains the charac-
terization of different importance relationships among the
image channels in the corresponding subspaces. The image
space is partitioned based on a process of feature analysis.
The goal of this feature analysis procedure is the determina-
tion and extraction of a set of features, whereby the impor-
tance of the information channels can be established.
Thence the label image codifies the spatial distribution of
e enhancement through intelligent localized fusion operators ...,
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the analyzed features over the different channels of the input
image.

The generation of the label image can be formalized as
follows. For the sake of simplicity the description is made
for a two channel image (xi, i = 1,2). Being the image space
X = {X1,X2}! G2, where g 2 [0,255] for 8-bit grayvalue
images, a feature extraction procedure is applied on each
channel Xi. Thus a feature (or a group of them) a priori

characterizing the importance for the fusion operation is
firstly extracted, what can be expressed as X! F. Thence
the application of a threshold hi over the resulting feature
maps leads to the definition of the following sets:

F 1 \ F 2 ¼ fx=both channels are important for the fusiong
F i ¼ fx=channel i is important for the fusiong
F 1 [ F 2 ¼ fx=no channel is important for the fusiong

ð3Þ
where hi sets up the difference between important and not

important on channel i.
The resulting sets can be related to the different levels of

the fuzzy measure defined in the image space (see Fig. 2).
Hence the intersection F1 \ F2 is related to the coefficient
in the level 2, namely l(A1 [ A2), the sets Fi are related
to l(Ai), and the union of the complements to l(;). If the
goal to be achieved by partitioning the image space is the
increment of the flexibility of the fuzzy integral, the mono-
tonicity of the fuzzy measure has to be broken. This cannot
be achieved with just one measurable space as stated by Eq.
(2). Therefore the image space is divided in three different
subspaces Cj through the mapping X ! F ! Cj 8j ¼
1; 2; 3, where three different fuzzy measures lj can be
defined. Thus these fuzzy measures can break the monoto-
nicity condition by presenting l1

12 6 l2
1 and l1

12 6 l2
2.
U
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/0μ

μ μ

μ  X

1 2

μ12 F1 F2

Fi i 1 2

F1 F2
- -

Fig. 2. Relationship among feature sets and levels in the lattice structure
of a fuzzy measure which is used for deriving the expression of an ILFO.

Fig. 3. Set diagram for the generation of a label image to be used in an ILFO
following set and class definitions: Fi = {xi/presents computed feature} "i = 1,
�C1g; C3 ¼ fF 1 � C2; F 2 � C2; F 3 � C2g; C4 ¼ fF 1 [ F 2 [ F 3g. (a–c) Binary m
Venn diagram of the class definition. (e) Resulting label image.
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Information Fusion (2006), doi:10.1016/j.inffus.2006.08.003
E
D

P
R

O
O

F

The subspaces, where the different fuzzy measures lj are
localized, can be defined upon the following classes:

C1 ¼ fF 1 \ F 2g ) l1

C2 ¼ fF 1 � ðF 1 \ F 2Þ; F 2 � ðF 1 \ F 2Þg ) l2

C3 ¼ fF 1 [ F 2g ) l3

ð4Þ

The set difference of the second class assures the classes to
be disjoint, i.e. each point can just belong to one class. The
generalization of these definitions for three channels is
depicted in Fig. 3. The class definitions for a larger number
of classes can be defined in an analogous manner. Here the
number of classes m is determined by the number of levels
to be singularly considered in order to overcome the mono-
tonicity of the fuzzy measure (see Fig. 2), being m = n + 1
and n the number of information sources.

The former definitions can be also generalized by apply-
ing the Fuzzy Set Theory [10]. This is attained by applying
a tolerance factor e over the threshold h (see Fig. 4). In this
case, the classes Cj become fuzzy classes. Moreover the
points of the label image present so many membership
degrees as classes are defined, therefore becoming a fuzzy
label image. Hence, each point presents a membership
degree for each of the classes that will be denoted as fj,
"j = 1, . . .,m. The result of the ILFO is the linear combina-
tion of the fuzzy integrals for each class:

ILFO½h1ðx1Þ; . . . ; hnðxnÞ� ¼ f1Fl1 þ � � � þ fmFlm ð5Þ
, exemplary shown for three input channels. The process is based on the
2,3; C1 ¼ fF 1 \ F 2 \ F 3g; C2 ¼ fðF 1 \ F 2Þ � C1; ðF 1 \ F 3Þ � C1; ðF 2 \ F 3Þ
aps resulting from the binarization of the corresponding feature map. (d)

x

0.0

0.5

θ θ εθ ε

Fig. 4. Tolerance parameter e for the fuzzification of the feature images in
an ILFO with a fuzzy label image. The parameter turns the step function
centered on h (dotted line), which would have been used as threshold for the
generation of a crisp label image, into a ramp-shaped fuzzy membership
function (continuous line).
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where Flj states for any fuzzy integral (although the CFI
equation (1) is herein taken into consideration).

3.2. ILFOs’ framework

The following section presents the framework of a gen-
eric ILFO. The implementation of an ILFO is composed
by three different modules: LabImGen, which generates
the label image where the fuzzy measures are localized,
FuzMeCo, which constructs these measures, and FuzFus,
which implements the expression given in Eq. (5). Since
the implementation of the module FuzMeCo is application
dependent, just the implementation of the label image gen-
eration is elucidated in the following paragraphs. The
reader is referred to [5] for an extended description of the
generic framework.

The block diagram of the module used for the genera-
tion of the label image (LabImGen), which was formally
defined in Section 3.1, is shown in Fig. 5. The different
modules are described in the following paragraphs.

Through the FeatExt module a particular feature of the
image is analyzed and characterized. A numerically
expressed feature is extracted from each of the input chan-
nels in this feature stage. This feature characterizes the
importance of the channel for the fusion result. Examples
of such a characterization could be the extraction of a blur-
ring coefficient or of the areas with low luminance.

In the binarization stage, which is implemented through
the module denoted as Binar, each of the feature distribu-
tion maps is binarized with hi. The parameter hi represents
the point up to which the feature evaluated on the channel
xi is considered to be important enough in order to influ-
ence the fusion result. Thus the resulting binary maps rep-
resent this importance through a binary variable (see
Fig. 3a–c). Furthermore this module implements the set
definition of Fi as expressed by Eq. (3).

The purpose of the expert system (in the module Exp-
Sys) is the computation of the classes for the definition of
the different fuzzy measures as stated for instance in Eq.
(4). The expert system generates the binary images whose
true values indicate whether (and where) the feature is
important in the first channel, in the second channel, in
U
N

C

i1

in

fm1

fmn

bm1

bmn

FeatExt Binar

LabImGen

Fig. 5. Block diagram for the generation of a crisp label image in an ILFO. Sig
Binary class maps for different relationships. l: Crisp label image. Modules. F

Codif : Codification.
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the first and second one, and so forth, etc. Afterwards
these sets are grouped in the different classes by applying
the corresponding logical operators, i.e. AND, OR, and
NOT.

The last module Codif takes the binary maps of the for-
mer module as input. Codif generates the label image (see
Fig. 3e) by codifying the image points of each class j with
a grayvalue gj. The outgoing label image is used for the
computation of the ILFO as already described.

If a fuzzy label image is generated, the module Binar is
substituted by a fuzzification module that implements the
fuzzification of the feature images with the monotonic
increasing fuzzy membership function defined by the toler-
ance value e (see Fig. 4). The fuzzification module delivers a
set of fuzzy images to the expert system. Therefore the rule
system (ExpSys) becomes a fuzzy rule system. The treat-
ment of the fuzzy images resulting from the fuzzification
stage are operated in this case with T-norm, S-norm and
fuzzy complement operators [21].

The output of the procedure changes as well in this fuzzy
implementation. A set of fuzzy images, which constitute the
fuzzy label image, is delivered together with the crisp label
image (see Fig. 9 for an exemplary comparison between the
two approaches). The membership degrees contained in
these fuzzy images will be used as the real coefficients fj

in the linear combination expressed in Eq. (5).
4. Application of ILFOs in a framework for highlights
filtering

As formerly elucidated, the ILF paradigm can then be
applied in the implementation of the pre-processing frame-
work for the automated visual inspection of objects that
present highly reflective surfaces [5]. The presence of so-
called highlights, areas where the camera detector is satu-
rated, constitute the principal problem in the inspection
of these objects. Highlight areas are characterized by the
absence of visual information about the object structure.
Therefore a set of images, where complementary visual
information about the inspected object is contained, is gen-
erated in the image acquisition stage. Thence an ILFO is
br1

brm

l
ExpSys Codif

nals. ii: Input channels. fmi: Features maps. bmi: Binary feature maps. bri:
eatExt: Feature extraction. Binar: Binarization. ExpSys: Expert system.
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applied on the acquired images in order to suppress the
highlight areas.
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4.1. Image acquisition

Different images of the underlying object are taken with
a camera from the same position but with different adjust-
ments and illumination conditions. The image acquisition
stage attains the generation of an image set, where the
reflections appear in different positions and spatial exten-
sions. The less redundancy among these images, the better
result can be attained. Indeed the reflection areas with no
structure information cannot be filtered out and therefore
the underlying object information cannot be recovered [5].

The image acquisition is not trivial. Since the objects
being inspected present highly reflective surfaces, the reflec-
tion of the environment on them cannot easily be avoided.
Therefore the image acquisition stage should succeed by
protecting the camera, the lighting system, and the
inspected item from external lights. No other restrictions
concerning the surface structure1 neither the reflection
properties have been detected hitherto. Moreover three
equal infrared lighting sources have been used in the acqui-
sition of the input image set employed. Thus three images
are generated for each item being inspected in the work
presented herein. The generation of a larger image set
can improve the pre-processing result. Thus more complex
acquisition systems, similar to this used in the generation of
the Amsterdam Library of Object Images database [22],2

can be used in order to acquire a less redundant image set.
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E4.2. Generation of the label image

Once the image set has been generated, the label image
for the fusion is computed (LabImGen). This is attained
through the application on the input images of the modules
depicted in Fig. 5 (or its fuzzy implementation). In the fil-
tering of highlights the feature to be extracted characterizes
areas with high luminance values. Therefore the grayvalue
of the input channels can be used itself as feature. A thresh-
old hi is applied on the grayvalue input channels in order to
determine the spatial distribution of the highlights on each
individual channel xi.

A procedure used in the generation of the label image is
implemented for finding out the threshold hi on the feature
maps’ histograms, whereby the determination of this
parameter is automated. The selected algorithm is part of
the watershed transformation for the segmentation of mul-
tidimensional histograms [12]. It is based on the concept of
dynamic of histogram peaks [23], which can be applied on
1 Obviously the complexity of the 3D structure hinders the visibility of
all surfaces of an object, but this is not directly related to the highlights
filtering.

2 The database and some information about the employed acquisition
system can be found at http://www.science.uva.nl/~aloi/.
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the local extrema of an histogram in order to filter out the
less representative ones.

The application of this procedure can be described as
follows. First all the local maxima of the inverted histo-
gram are selected (see Fig. 8a). Thence the values of these
maxima are sorted in descending order. The dynamic of
each local maximum is computed by going through the his-
togram till the maximum that occupies the next position in
the sorted list has been reached. The dynamic value of the
outgoing local maximum equals the difference between its
value and the minimum value encountered in the way to
the next maximum. This operation is repeated for all local
maxima in the histogram. The peak with the largest
dynamic among those with the larger grayvalue is selected
as the threshold hi in the application on hand (see the exem-
plary value in Fig. 8a).

Once the highlights have been found for all the input
channels, the label image itself is generated by the corre-
sponding rule system and the posterior codification. The
label image codifies then all the different highlights combi-
nations: no highlights, highlight in the first image, highlight
in the first and second image, etc.
E
D4.3. Construction of fuzzy measures

A process for the determination of the fuzzy measures is
thence undertaken (FuzMeCo). The number of different
labels in the label image m fixes up how many fuzzy mea-
sures have to be constructed. genetic algorithms [13] and
Interactive genetic algorithms are employed [14] for this
purpose herein.
485
486
487
488
489
490
4.3.1. Genetic algorithms

The characteristic function of Evolutionary Computing
is the computation of a solution in non-linear optimization
problems [24]. Genetic algorithms have been successfully
used for constructing fuzzy measures [25–27]. The fuzzy
measure coefficients are first encoded by arrays of real
numbers. The general methodology of genetic algorithms
with standard operators [13] applies for this problem.
The iterative search is driven by a so-called fitness function,
which characterizes the optimality of the individual solu-
tions in each step.

In the here presented application of genetic algorithms
three different fitness functions fi(x), which were proposed
in [5], are evaluated. The first function (f1) presents the fol-
lowing expression:

f1ðxÞ ¼ 0:8r2
g þ

XN�1

i¼0

½0:75hbðgiÞ þ 0:2hdðgiÞ� ð6Þ

where N states for the number of pixels of the final image,
r2

g denotes the variance of the grayvalues, and hb and hd,
two fuzzy functions that count the number of pixels with
respectively a maximal and minimal grayvalue gi. The min-
imization of this function attains the minimization of the
number of pixels with extreme grayvalues. The weights of
e enhancement through intelligent localized fusion operators ...,

http://www.science.uva.nl/aloi/


F

491
492
493
494
495
496
497
499499

500
501
502
503
504
505

507507

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

524

525
526
527
528
529

530

531
532
533
534

1.0

15 200 255 gi

hd hb

h(g)

hb gi
0 : 0 g

i
200

gi 200
55

: 200 gi 255

hd gi
1 gi

15 : 0 gi 15
0 : 15 gi 255

Fig. 6. Fuzzy membership functions used for image quality assessment used in the fitness function (6). The fuzzy membership function hb(gi)/hd(gi)
accounts for the pixels with a low/large grayvalue gi. The lower/larger the grayvalue, the larger the weighting in the sum.
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the three factors were heuristically found. The used trian-
gular fuzzy membership functions, hb and hd, are depicted
in Fig. 6 beside their mathematical expressions.

The grayvalue distribution of the fused image is driven
to present �g ¼ 128 and rg = 64 by applying the second fit-
ness function (f2), which is mathematically expressed as

f2ðxÞ ¼ k�g � 128k þ 2krg � 64k ð7Þ
This expression drives the resulting image to present a
‘‘standard’’ histogram.

The third fitness function (f3) pursues a minimization of
the number of extreme grayvalues in the resulting image,
which is characterized by r2

g:

f3ðxÞ ¼ r2
g ð8Þ
T 535
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4.3.2. Interactive genetic algorithms

Interactive genetic algorithms are employed as an alter-
native to GAs for the implementation of FuzMeCo. The
application of interactive genetic algorithms allows evalu-
ating the final result directly by a user, avoiding the com-
plex determination of a fitness function [14].

The fitness computation is substituted by the presenta-
tion of the final image result for each individual to the user.
Thus the surface of the displaying monitor limits the num-
ber of individuals of the population. Populations of
between 10 and 20 individuals are used. The user interac-
tively selects the best results. These results are then used
for producing the next generation and the process is itera-
tively repeated. The number of generations is strong lim-
ited by the concentration capability of the user. Hence
the process takes about half an hour to be completed.
U
N

Fig. 7. Input images of the pre-processing stage of a system for the dete
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Once the values of the fuzzy measure coefficients have
been determined, the fuzzy integral is applied on each pixel
of the multi-dimensional image set with respect to the fuzzy
measure codified in the label image (FuzFus). The result is
an image, where the highlight areas have been filtered out.

5. Application results

In the following sections the performance of different
systems for the automated visual inspection is analyzed.
The systems attain the inspection of different objects that
present highly reflective surfaces, namely: automotive
headlamp reflectors, consumer goods with plastic bundles,
and electric bulbs. The framework formerly described is
applied for the pre-processing of the generated images.
The results related to the highlights filtering are presented.

5.1. Inspection of headlamp reflectors

The presence of mirror-like surfaces makes the auto-
mated visual inspection of automotive headlamp reflectors
extremely complex. Therefore the presented pre-processing
framework is applied. The images generated are shown in
Fig. 7. In the following, different aspects of the system
are analyzed in detail.

5.1.1. Generation of the label image trough peak dynamics

analysis
The process for the generation of the label image is auto-

mated by first applying the analysis of the peak dynamics
ction of structural faults on automotive headlamp reflectors (item I).

e enhancement through intelligent localized fusion operators ...,
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Fig. 8. Exemplary result of the computation of the peak dynamic (green dotted lines) of each local maximum (blue diamonds) on the inverted histogram
(red continuous line) of the image shown in 7c. (a) Resulting binarization. (For interpretation of references in colour in this figure legend, the reader is
referred to the web version of this article.)
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in the image histograms, which delivers the value of the
threshold hi for each input channel. The result of the peak
dynamics analysis and the corresponding binarization are
shown in Fig. 8.

The binary images obtained through the automated
parametrization, are depicted in Fig. 9a–c. Furthermore
the generation of the label image follows the mathematical
framework given in Section 3.1 both in its crisp and fuzzy
implementations. The resulting label image, and the fuzzy
label images for e = 50 can be seen in Fig. 9d–h.
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Fig. 9. Results of the binarization, the label image generation, and the fuzzy la
of the binarization, the label image generation, and the fuzzy label image gene
image in Fig. 7a with h1 = 243. (b) Binarization of image in Fig. 7b with h2 =
label image. Fuzzy label image with fuzzy membership functions characterizin
two channels, and (h) highlight in all three channels.

Please cite this article as: Aureli Soria-Frisch, Mario Köppen, Imag
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P5.1.2. Construction of the fuzzy measures through IGAs

An interactive genetic algorithm is used for the construc-
tion of the fuzzy measures leading to the avoidance of high-
lights in the fused image. The simulation is undertaken on
the images shown in Fig. 7. It pursues the performance eval-
uation of IGAs by comparing the results with those obtained
through the application of GAs, which are presented in Sec-
tion 5.1.3. The obtained results are shown in Fig. 10.

The interactive genetic algorithm strategy is tested with
different parameterizations and different types of fuzzy
bel image generation after automated determination of thresholds. Results
ration after automated determination of thresholds hi. (a) Binarization of
225. (c) Binarization of image in Fig. 7c with h3 = 227. (d) Resulting crisp
g areas with: (e) no highlight, (f) highlight in one channel, (g) highlight in

e enhancement through intelligent localized fusion operators ...,
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Table 1
Type and parametrization of different interactive genetic algorithms used
in the computation of the preliminary results depicted in Fig. 10

Fig. 10 GA type Gen PCross PMut El/PRepl MType

(a) Simple 20 0.8 0.1 Elitism k
(b) StSt 8 0.95 0.1 0.9 k
(c) StSt 9 0.7 0.048 0.9 k
(d) StSt 10 0.81 0.024 0.9 General

Gen: number of generations. PCross: crossover probability. PMut:
mutation probability. El: elitism. PRepl: replacement probability. MType:
fuzzy measure type. StSt: steady state.

Fig. 10. Results of the utilization of interactive genetic algorithms for the construction of fuzzy measures. Results of the utilization of interactive genetic
algorithms for the construction of fuzzy measures. Results obtained on images depicted in Fig. 7 for different types of interactive genetic algorithms and
different parametrizations (see Table 1).
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measures (see Table 1). The number of individuals is lim-
ited to 10 in order for all of them to fit in the displaying sur-
face of a 17 in. computer monitor. The diversity among the
individuals quickly decreases in each generation, i.e. the
individuals tend to be equal up to the fifth generation.
Although this shortcoming can be controlled (though can-
not be avoided) through the crossover and mutation prob-
abilities, this relationship does not seem to be deterministic.
The interactive determination becomes tedious for the user
up to the seventh generation. The utilization of an estima-
tion of the fitness of each individual, which can then be
modified by the user, improves the results (see Fig. 10c–
d). The convergence of the genetic search in this case suc-
ceeds in a smaller number of generations than in the case
where the user ‘‘blindly’’ gives the fitness of each individual
(see Fig. 10a–b). The interactive parametrization process
described in this section was undertaken by one user.
628
629
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631
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3 Interpreter languages are supposed to operate approximately 10 times
slower than compiling ones.
U
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5.1.3. Construction of the fuzzy measures through GAs

A second simulation pursues the determination of the
best GA’s parameterization in the construction of the fuzzy
measure. Thus a genetic algorithm with different crossover
and mutation probabilities are taken into consideration.
The genetic algorithm is of type steady state, i.e. a percent-
age of the population, which is determined by the probabil-
ity of replacement, is maintained over the different
generations. The analysis is conducted for the fitness func-
tions f1, Eq. (6), f2, Eq. (7), and f3, Eq. (8). The evolution of
these fitness functions for the best individual of the popu-
lation in each generation is analyzed for three values of
crossover probability and four of mutation probability.
Please cite this article as: Aureli Soria-Frisch, Mario Köppen, Imag
Information Fusion (2006), doi:10.1016/j.inffus.2006.08.003
E
D

P
R

O
OThe evolution of each fitness function reaching the absolute

minimum of all these combinations is depicted in Fig. 11.
Table 2 summarizes the best parameters resulting from

the application of each fitness function. The evolution of
the fitness function f1, Eq. (7), does not show any difference
among the different values of mutation probability up to a
particular number of generations (see Fig. 11b). In this case
the fuzzy measures were selected after a subjective evalua-
tion of the resulting images for the last generation.

The fuzzy measure coefficients obtained through the
GAs parameterized as stated in Table 2 are selected.
Thence the final results are computed (see Fig. 12) based
on this parametrization.

5.1.4. Computational cost of the framework’s application

and the influence of the tolerance factor (e) on it

The computational cost of the framework presented
herein has been analyzed on a computer with a PowerPC
G3 processor working at 400 MHz with an implementation
developed in Python, an interpreter programming lan-
guage.3 The result of this analysis is shown in Fig. 13.
The framework operates at approximately 0.1 ms per pixel,
if it uses a ‘‘crisp’’ label image. Thus an image of 256 · 256
pixels is pre-processed in approximately 6.5 s for this
configuration.

The execution time of the framework linearly varies with
the increment of the tolerance e (see Fig. 13a). Therefore a
trade-off among the value of this parameter and the quality
of the system’s output have to be undertaken. As it can be
observed by comparing Figs. 13b and 12f, a larger toler-
ance does not necessarily imply a better performance of
the system.

5.1.5. Generalization capability of the framework

Fig. 14 shows the input images generated over another
object as the one considered so far. An ILFO with the same
fuzzy measures found for the object considered up to now
is applied on these input images. The results obtained for
different fitness functions are depicted in Fig. 15. Taking
into consideration that the results are achieved by applying
e enhancement through intelligent localized fusion operators ...,
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Fig. 11. Convergence of the GA over different generations in the computation of the fuzzy measure coefficients of the ILFO applied for obtaining the
images depicted in Fig. 12(a–c). The convergence is shown for the best crossover-mutation combination of each considered fitness function fi(x) computed
for the best individual in each generation. (a) Fitness function f1 Eq. (6). (b) Fitness function f2 Eq. (7). (c) Fitness function f3 Eq. (8).

Table 2
Best parametrization of a steady state genetic algorithm for the construc-
tion of a fuzzy measure for different fitness functions fi.

Parameter f1 Eq. (6) f2 Eq. (7) f3 Eq. (8)

Crossover probability 0.7 0.9 0.8
Mutation probability 0.05 0.005 0.05
Replacement probability 0.9 0.9 0.9
Number of generations 80 63 65
Population size 40 40 40

Result in Fig. 12 (a), (d) (b), (e) (c), (f)
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the same conditions in the acquisition of the input images,
this simulation gives a clear idea of the generalization capa-
bility of the here presented framework.

5.1.6. Objective quality assessment of fusion results

The quality of the fusion results could be formerly
assessed from a subjective point of view (see Figs. 10 and
12). In this section different quality measures would be
applied on those results in order to objectively quantize
the performance of the framework presented herein. Three
different measures have been computed.
Please cite this article as: Aureli Soria-Frisch, Mario Köppen, Imag
Information Fusion (2006), doi:10.1016/j.inffus.2006.08.003
First the weighted fusion quality and the edge-dependent
fusion quality indices from [28] are taken into account.
These indices are based on the image quality index pro-
posed in [29], which reflects the local similarity and the
local luminance distortion between two images. This mea-
sure is adapted to the problem of image fusion in [28] by
applying some features of human perception. Hence the
dependence of the quality on the saliency of image elements
becomes a weighting factor in the weighted fusion quality
index. Moreover the importance of edge detection drives
the value of the edge-dependent fusion quality index.

On the other hand, the mutual information index [30] is
based on the computation of the mutual entropy among
different images. Therefore this index can be understood
as a statistical quality measure among image histograms,
where the spatial distribution of grayvalues does not play
any role. Nevertheless, this measure has been successfully
applied in the quality assessment of medical images’ fusion.
The values of the mentioned quality measures are summa-
rized in Table 3.

The numerical results confirm the subjective inspection.
Hence the best results were obtained for the GA parame-
terization in contrast with the IGA one. Furthermore the
e enhancement through intelligent localized fusion operators ...,
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Fig. 12. Final results of an automated system for the visual inspection of headlamp reflectors, where the fuzzy measures are constructed after a GA with
different fitness functions and parameterized according to Table 2. The results are obtained for two highlight tolerance (e) values (see Section 3.2). (a)
Fitness function f1 Eq. (6) and e = 0. (b) Fitness function f2 Eq. (7) and e = 0. (c) Fitness function f3 Eq. (8) and e = 0. (d) Fitness function f1 Eq. (6) and
e = 50. (e) Fitness function f2 Eq. (7) and e = 50. (f) Fitness function f3 Eq. (8) and e = 50.

Fig. 13. (a) Estimation of the dependence of the execution time (ms/pixel) of an ILFO based on the CFI with respect to the highlight tolerance (e) parameter
(see Section 3.2). (b) Effect of the tolerance variation (e) on the final results of the automated pre-processing system. Fuzzy measures are constructed after a
GA with the fitness function f3 (8) and parameterized according to Table 2. Highlight tolerance value e = 10 (compare with Fig. 12c and f).

Fig. 14. Input images (of a second object) of the pre-processing stage in a system for the detection of structural faults on automotive headlamp reflectors
(item II).
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Fig. 15. Final results of the automated pre-processing system, where the fuzzy measures are obtained with a training on the object depicted in Fig. 7. (a)
Fitness function f1 Eq. (6). (b) Fitness function f2 Eq. (7). (c) Fitness function f3 Eq. (8).

Table 3
Objective comparison of fusion results through the application of three different quality measures, namely the weighted fusion quality index (QW) [28], edge-

dependent fusion quality index (QE) [28], and the mutual information index (MI) [30], to some of the fusion results depicted in Figs. 10 and 12

GA Fig. 12 IGA Fig. 10

f1 Eq. (6) f2 Eq. (7) f3 Eq. (8)

e = 0 e = 50 e = 0 e = 50 e = 0 e = 50 Sim StSt

QW 0.8446 0.8456 0.7971 0.8101 0.8198 0.8368 0.8166 0.7742
QE 0.6838 0.6857 0.5803 0.6015 0.6529 0.6758 0.6270 0.5493
MI 0.2653 0.2643 0.2313 0.2323 0.4096 0.2580 0.2335 0.2617

Fig. 12a 12d 12b 12e 12c 12f 10a 10d

The corresponding ILFOs were parameterized by applying: first genetic algorithms (GA) w.r.t. the three fitness functions fi and two tolerance (e) values;
second two types of interactive genetic algorithms (IGA), namely based on a simple (Sim) and a steady state (StSt) GAs. Maximal values for each index are
shown in bold typing.
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fitness functions f1 and f3 perform better than f2. The
results of these two fitness functions are similar. It is worth
mentioning that following the numerical results the toler-
ance factor is more important, when using f1. In this con-
text the reader should take into account the increment in
the computational cost that is associated with an increment
of the tolerance value e (see Section 5.1.4).
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Fig. 16. Results of the extension of the framework presented herein for the pre
Input image set. (b) Label image. (c) Result of the application of an ILFO ex

Please cite this article as: Aureli Soria-Frisch, Mario Köppen, Imag
Information Fusion (2006), doi:10.1016/j.inffus.2006.08.003
5.2. Inspection of plastic bundled packages

The automated inspection of a consumer good is pre-
sented in this section (see Fig. 16). It shows the possible
extension of the framework presented herein for the
pre-processing of color images. The highlights are pro-
duced by the plastic bundle of the object. Three different
-processing of color images in a market basket recognition prototype. (a–c)
tended to color images.

e enhancement through intelligent localized fusion operators ...,
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Fig. 17. Input images of the pre-processing stage in a system for the detection of structural faults on halogen bulbs.
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images of the package are generated and depicted in
Fig. 16a–c.

The mentioned extension is achieved by applying an
ILFO to each of the color channels of the input image
set. First a mask is generated. The mask image, where
the fuzzy measures are localized, is depicted in Fig. 16d.
It is worth pointing out the limitation of the framework
w.r.t. to the inspection of free deformable objects (see
Fig. 16e). The pre-processing of such objects demands a
set of input images with larger cardinality. This increment
can reduce the number of redundant highlight areas among
the input images.

5.3. Inspection of halogen bulbs

The results obtained in the pre-processing of a structural
fault detection system, which was applied on halogen
bulbs, are described in the following. The input images of
the system are shown in Fig. 17a–c and f–h.

The generated mask images can be observed in Fig. 17d
and i. The obtained results are depicted in Fig. 17e and j.
The consequence of having redundant reflections on all
images of the input image set can be observed on the
depicted results. The reflection cannot be suppressed in
those areas where all images present one, since there is
no image information about the underlying structure. In
this case the redundant reflection, was caused by an exter-
nal light. The employed image acquisition module do not
use any protection against such influences. This one of
the shortcomings of the framework presented herein.

6. Conclusions

The framework for highlights filtering presented in [5]
has been systematically analyzed herein. Intelligent Local-
ized Fusion Operators, which generalize the employment
of the fuzzy integral for image fusion, are based on the local
definition of the fuzzy measures. Thus the formalization of
Please cite this article as: Aureli Soria-Frisch, Mario Köppen, Imag
Information Fusion (2006), doi:10.1016/j.inffus.2006.08.003
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Rthis operator, which is undertaken in this paper, allows

employing the operator as a pre-processing stage in different
automated visual inspection systems. Furthermore, the
results attained by such a pre-processing stage are
described. Particularly the utilization of peak dynamic anal-
ysis as binarization procedure, the employment of Interac-
tive genetic algorithms and of genetic algorithms for the
parametrization of the fuzzy integral, and the generalization
capability of the framework, have been analyzed.

The application of an histogram analysis based on the
concept of peak dynamics demonstrates to be a very help-
ful tool in the binarization of images corrupted by high-
lights and therefore in the automation of the procedure.
It is worth mentioning that the values of the threshold h
automatically obtained through the computation of the
peak dynamics are nearly the same as those heuristically
set in [5] through the visual analysis of the histograms.

The application of interactive genetic algorithms dem-
onstrated to be an interesting alternative to the application
of genetic algorithms. Nevertheless its usage should be
improved for obtaining satisfactory results. This fact was
numerically proven through the application on the result-
ing images of different quality measures employed in image
fusion. Since the best parameterization of the genetic algo-
rithms has been proposed herein, this methodology
remains hitherto the best option for automatically defining
the weighting parameters of the system. The application of
a fitness function minimizing the variance of the grayvalue
histogram outperforms other alternatives as demonstrated
both by the numerical analysis and the subjective evalua-
tion of the results obtained with this fitness function.
Therefore, its application allows the system to operate full
automated with a very good performance in the filtering of
highlights. The tolerance value e constitutes the only free
parameter in the system. Taking the tolerance e can become
helpful in the improvement of the results. Nevertheless a
performance trade-off between its computational cost and
the real improvement have to be undertaken in real appli-
e enhancement through intelligent localized fusion operators ...,
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cations. It is lastly worth pointing out that the results are
exclusively dependent on the acquisition adjustments, what
proves the generalization capability of the framework.

As it has been shown the performance of the pre-pro-
cessing system improves with the increment of the flexibil-
ity of the fusion operator. In this context Intelligent
Localized Fusion Operators offer novel possibilities for
solving challenging applications. The performance of the
pre-processing system can be improved by taking a more
systematic and controlled acquisition of images into con-
sideration. The utilization of a special illumination station
can allow the generation of a larger multi-dimensional
image set with less redundancy among the images of the
input image set. Furthermore the reflections of the environ-
ment on the object surfaces can be avoided in this fashion
as well. This is the most immediate goal to be attained in
the future in order to improve the pre-processing capability
of the system.

Acknowledgements

The author wants to thank: Jing Zhou, who completed
some of the here presented results, Daniel Kotow, who
ported part of the functionality of GALib to Python, and
Gemma Piella, who computed the quality measure of the
resulting images. My acknowledgement goes to the anony-
mous reviewers as well, whose comments on the manu-
script resulted very helpful in order to improve the
original text. The implemented software makes use of the
GAlib genetic algorithm package (http://lancet.mit.edu/
ga/), written by Matthew Wall at the MIT, and Python
as prototyping language (http://www.python.org).

References

[1] P. Burt, R. Kolczynski, Enhanced image capture through fusion, in:
Proc. 4th Int. Conf. Computer Vision, ICCV, Berlin, Germany, 1993,
pp. 173–182.

[2] S. Yi, R.M. Harlick, L.G. Shapiro, Optimal sensor and light source
positioning for machine vision, Computer Vision and Image Under-
standing 61 (1) (1995) 122–137.

[3] F. Puente León, J. Beyerer, Datenfusion zur gewinnung hochwertiger
bilder in der automatischen sichtprfung, Automatisierungstechnik 45
(1997) 480–489.

[4] S. Mann, Intelligent Image Processing, Wiley Interscience, New York,
2002.

[5] A. Soria-Frisch, Avoidance of highlights through ILFOs in auto-
mated visual inspection, in: M. Nachtgael, D. Van der Weken, D.
Van De Ville, E.E.E. Kerre (Eds.), Fuzzy Filters for Image Process-
ing, Springer-Verlag, 2003, pp. 356–371.

[6] J. Beyerer, F. Puente León, Suppression of inhomogeneities in images
of textured surfaces, Optical Engineering 36 (1) (1997) 85–93.

[7] M. Sugeno, The theory of fuzzy integrals and its applications, Ph.D.
thesis, Tokyo Institute of Technology, 1974.

[8] A. Soria-Frisch, Soft data fusion in image processing, in: R. Roy, M.
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