
 Design of Image Exploring Agent using Genetic Programming*

Mario KÖPPEN, Bertram NICKOLAY

Fraunhofer Institute IPK-Berlin
Pascalstr. 8-9, 10587 Berlin, Germany

Phone: (++49)(0)30 390 06 200 Fax: (++49)(0)30 391 75 17
E-mail: {mario.koeppen|bertram.nickolay}@ipk.fhg.de

Key Word: image processing, genetic programming, agent design, image exploring agent, image understanding,
genetic optimization

* Proceedings of IIZUKA’96, Iizuka, Japan, pp. 549-552

Abstract

An essential goal of image processing is the detection
of image structures like objects, object boundaries,
shapes, regions or surface defects. This goal can be
reached by a combination of detection algorithms and
localization algorithms. Detection algorithms are able
to recognize the physical evidence of a structure
according to a given localization in the image.
Localization algorithms cope with the position of
image structures in images. Most of them are tracking
algorithms. Because of the limited recognition abilities
the main goal of the foregoing detection algorithm is
to enhance an image object. The image structure must
be transformed into a kind of information which is
suitable for the localization algorithm.
However, in many fields of image processing this
approach does not give satisfying results.
This paper introduces a new approach by replacing the
conventional localization algorithm by an image
exploring agent and by adapting its functional design
by means of genetic programming.

1. GENETIC PROGRAMMING
Genetic programming, a new discipline in the field of
genetic algorithms, was introduced to overcome some
problems concerning the use of conventional genetic
algorithms [1]. The main problem addressed was the
encoding of the optimization problem into a genom.
The problem to solve does not directly take part in the
evolutionary optimization. The optimal solution, as it
is served by a genetic algorithm, is a genom, that
1

represents the solution. It is not a program that solves
the problem. Genetic programming serves with the
problem solving program itself as result of the
evolutionary optimization. This is achieved by
optimizing expression trees rather than optimizing
genoms. Standard genetic operators (without the
mutation operator) can be used in a similar manner
than in conventional genetic algorithms. The crossover
operator e.g. is established by the exchange of subtrees
of the expression trees that are the operands of the
crossover operation (see figure 1). Finally, the optimal
expression tree realizes the optimal solution of the
problem and also a program for the application of the
solution.
This approach offers new possibilities in the field of
evolutionary computation. The aspect used in our
paper is the possibility to design algorithms by the
goal of its application, but not, as usual, by the needs
of the optimization procedure.

+

*

2 3

+

2 -

4

3 1

Crossover points

+

*

1

+

2 -

4

3 1

2 3

1

-

*

-

*

Fig.1 Crossover of expression trees

http://vision.fhg.de/ipk/koeppen

2. IMAGE EXPLORING AGENTS
An image exploring agent is assigned a specified
position and an orientation in the image. It consists of
two subparts, an evaluating part and a replacing part.
The agent works as follows (see figure 2):

Initialization:
Place the agent at a fixed position x0, y0 in the
image.

Action:
1. Calculate the value of the evaluation function

using the values of the image function in a definite
neighborhood of the current agent position x,y.

2. Change position and/or orientation of the agent
c = f(gi)

move(c)

g1

g2

g3 g4

x

y

Fig.2 Functionality of the image exploring agent. Localized at a definite
image position it has access to some neighboring greyvalues gi. The agent

calculates a value c from the gi and changes position and orientation according
to the value of c. The function f can be adapted by genetic programming.
according to the result of 1.
3. Repeat steps 1 and 2 until a given number of steps

is reached.

The emphasis here is that the specification of the
evaluation function can be adapted by genetic
optimization of its expression tree. The fitness value
of the evaluation function can be determined by letting
the agent follow its program for a fixed number of
steps. After that, the agent has completed a track in
the image. This track gives the suitability of the agent
for the operation goal, e.g. to find a certain position,
to meet as many dark greyvalues as possible or to find
an object boundary.
2

3. EXAMPLE: A CRACK DETECTOR
The methodology will be illustrated. The problem to
solve was to detect cracks in a greyscale image of a
textured surface. The evaluating function of the
designed agent is a calculation using the greyvalues in
a local, 11x11-neighborhood of the current agent
position, that results in a real from [0,1]. If the
evaluation result is a value below 0.5, the agent
changes its orientation by turning clockwise. If the
value is greater than 0.5, the agent goes one step
„forward“, i.e. along the current orientation. Care is
taken about keeping the agent inside the image
boundaries. Also if the agent gets „stuck“ by repeating
four turns (it will meet the same situation as at the
beginning and will continue turning) the agent is
turned to a random orientation and moved forward.
This simple approach will assign a track in the image
to every setting of the evaluation function and every
choice of a starting point. E.g. if the evaluation
function f is of kind:

f x y
g x y

g

(,)
(,)

max
=

with g(x,y) the greyvalue of the image at (x,y) and
maxg the maximum possible greyvalue, the agents
track will try to stay in regions with low greyvalues.

The fitness of the agent was defined by the amount of
dark greyvalues met along its track for 200 steps.
While performing 200 steps every step was counted
with „penalty“ value 1 which fulfilled one of the two
following conditions:

1. It was a turn (to force the agent to move through
the image).

2. It moved from a position with a greyvalue greater
than 100.

The fitness is the ratio of penalty counts to the
number of steps. Due to the above conditions the
fitness 0.0 is not reachable, but a low value (about
0.3) can be expected. The longer the track followed and
the more greyvalues along its track are beyond
greyvalue 100 the better the agent. This can be used as
a crack finding agent.
For applying genetic programming it is necessary to
define terminals and the function set. This is for
divide:

g(x+1,y-3)

squared: harmonic:

plus:
g(x-2,y)

g(x-4,x+4)

harmonic:
g(x-4,x+4)

g(x,y+1)

Fig.3 Best expression of a sample run of genetic programming
assigning a meaning to the nodes of the expression
tree.
As terminals of the trees neighboring positions of the
current agent position were chosen by randomly fixing
offset vectors (i,j). Also randomly fixed real constants
from [-1,1] were selected. The term „randomly fixed“
here means the values were selected by random number
generator if referenced for the first time while
initializing the population, after that they remained
constant for the following applications of genetic
operators.

The function set consisted of standard arithmetic
functions modified in a manner to ensure the domain
of the operations to be [-1,1]. These functions were:

divide: o = sign(i1i2) min(|i1/i2|,|i2/i1|) if i1i2≠0,
1.0 otherwise

harmonic: o = 2i1i2/(i1+i2) if i1+i2 ≠ 0, 1.0 otherwise
ifgte: o = i3 if i1>i2, else i4
3

iflte: o = i3 if i1<i2, else i4

max: o = max(i1,i2)
min: o = min(i1,i2)
minus: o = (i1-i2) / 2
negate: o = -i1

plus: o = (i1+i2) / 2
squared: o = i1

2

times: o = i1i2

with o the output of the node and ik, k=1,..,4 resp. the
input values of the preceding nodes or terminals.
After that, a randomly initialized population of
expression trees was genetically optimized by repeated
execution of the following genetic operators:

• Tournament selection
• Crossover
• Fitness proportionate selection

For our experiment a population of 500 expression
trees was optimized over 1000 generations. Due to
different runs different optimal solutions resulted. The
most interesting one was the expression shown in
figure 3.
This expression offered a surprising ability to detect
dark regions in images. Some runs of this agent are
shown in the pictures of figure 4. The design of this
expression is very different from what a human would
have designed to construct the agent.

4. SUMMARY
A new approach for the design of image exploring
agents by means of genetic programming has been
introduced. The approach is based on tracking image
positions forced by greyvalue calculations of the local
neighborhood. Depending on the result of the
calculation a turn or a step forward is performed. The
fitness goal of the genetic programming is to find
image regions with given properties. An example was

Fig.4 Track of the agent for performing 1000 steps. The agent starts at a random position S and tries to find
dark regions. All image positions it walked over are painted white in the figures.
given where the goal was to find dark regions of an
image which might comprise a crack.
The results are motivating to expand this agent
approach to the design of agents with other abilities,
e.g. to detect object boundaries, to count objects in
images or to find characters and read them.

References

[1] Koza, J.R., „Genetic Programming - On the
Programming of Computers by Means of Natural
Selection“, MIT Press, Cambridge, London, 1992
4

	Abstract
	1. GENETIC PROGRAMMING
	2. IMAGE EXPLORING AGENTS
	3. EXAMPLE: A CRACK DETECTOR
	4. SUMMARY
	References

