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1 Introduction

In multi-valued evaluations we assume that a number of
agents all evaluate a state by multiple means. This can
appear in a resource sharing task, where each agent valuates

his or her share under various aspects, or in a multi-
resource sharing job scheduling, where each job consumes
a number of resources varying for each particular job-
issuing user. The basic representation here is a multi-valued
vector (or multi-vector) where each component is a vector
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itself, expressing the various evaluation values of a resource
allocation in an ordered manner. We can give two examples
for such a representation. At first, assume a multi-resource
sharing in a job scheduling. For example, a datacenter
admits customer jobs that consume CPU and memory. For
each customer, the number of CPUs and amount of memory
consumed by each job might differ. Within a time frame,
a total number of CPUs and a total amount of memory
(the resources) are available to a number of customers. An
allocation is the assignment of the number of jobs (not
necessarily an integer number) to each customer that they
can perform. These numbers of jobs determine the CPU
and memory needs of each customer. So a component of
the multi-vector is a vector of two components: CPU usage
and memory usage. At second, we might consider a single
resource sharing, but under different value aspects. For
example, in the specification of a routing in end-to-end user
traffic in a data network, the same routing gives raise to
different evaluations like delay time, number of hops, and
traffic rates and thus, each component of a multi-vector
would represent the agents’ particular evaluations and be a
vector of three components. Note that the first and second
aspect cannot be combined. For example, delay time cannot
be modeled as a sharable resource. In general, we can also
consider a mixed representation, where each single resource
is evaluated in a resource-dependent number of ways.

The decision problem here is to find a suitable
allocation, with regard to some criterions of optimality,
efficiency, or fairness. Obviously this will much depend
on the manner in which these criterions are specified.
Various notions of fairness have been provided, starting
with fairness measures like Jain’s fairness index proposed
in Jain et al. (1984), maxmin fairness, and following Kelly
et al. (1998) proportional fairness, α-fairness etc. Fairness
is often studied within a close application context, for
example in Dianati et al. (2005) an utility-based framework
to evaluate the degree of fairness of resource allocation
schemes in wireless access networks is proposed, Bredel
& Fidler (2009) studies a fairness model of an ideal fair
queuing system and its realization through the Distributed
Coordination Function in IEEE 802.11, Srinivasan &
Somani (2003) presents a protocol for near-optimal channel
utilization, circumventing unfair delay characteristics, and
Uchida & Kurose (2009) discusses information theoretic
aspects of fairness. More on the tradeoff between fairness
and efficiency can be found in Tang et al. (2006) and
Zukerman et al. (2005), while further sharing objectives like
potential delay minimization were introduced in Massoulié
& Roberts (2002). Guarantees of fair bandwidth allocations
were the topic of Bonald & Massoulié (2001). These studies
on fairness were focusing on single resource usage only,
and extensions to multi-valued or multi-resource problems
are not straightforward.

Recently, Dominant Resource Fairness (DRF) has been
proposed in Ghodsi et al. (2011a) and Ghodsi et al.
(2011b). There, maxmin fairness is extended to the case
of distribution of several resources like CPU time and
memory on a per-job basis at the same time. For each
agent (task), the maximal share of a resource is selected,

and maxmin fairness is sought for these so-called dominant
shares. It corresponds to a mapping of a multi-valued
vector to a standard vector, where the maximum shares
replace the corresponding evaluation vectors. The method is
compared to the popular asset fairness and the Competitive
Equilibrium from Equal Incomes (CEEI) approach of
microeconomics theory (see Varian (1974), Young (1994),
Moulin (2004)) by a catalogue of criteria for such resource
sharing regimes. In asset fairness, an equal valued share
for each resource has to be identified. Then, assigning
equal shares to each agent is formulated as a combinatorial
optimization problem. In CEEI, all n agents start from
an equal share of 1/n and then start to perform mutual
transactions in order to achieve a Nash equilibrium.

Dominant Resource Fairness appears to be an attractive
solution for multi-resource allocation, esp. with regard to
its simple linear-complexity allocation algorithm (following
the pattern of the bottleneck flow control algorithm)
and fulfilling several fairness-relevant properties like
sharing incentive, strategy-proofness, envy-freeness, Pareto
efficiency, and more. The approach found a continuation
in Joe-Wong et al. (2012), where the whole multi-valued
vector that represents an allocation is fused into a single
fairness measure value. The goal is to find an allocation
that maximizes such a fairness measure. The composition
of such fairness measures follows an axiomatic theory of
fairness as it was considered in Lan et al. (2010) and
provides a number of parameters of a general expression.
The paper proposes the use of the same function expression
for dominant resources (so-called Fairness on Dominant
Shares, FDS) or jobs (so-called Generalized Fairness on
Jobs, GFJ).

This function expression has the general shape

Fβ,λ(x)= sgn(1− β)×

×

(
n∑

i=1

(
µixi∑n

k=1 µkxk

)1−β
) 1

β
(

n∑
i=1

µixi

)λ

which depends on two parameters β and λ as well as
n weights µi to compute the “amount of fairness” of
an allocation expressed by vector x. The influence of
parameter choices on the fairness-efficiency tradeoff is
intensively investigated in Joe-Wong et al. (2012).

We give a critical discussion of three special aspects,
where these approaches show weaknesses:

1. All approaches focus on the fusion (or aggregation)
of multiple informations about the agents evaluations
into single numeric values. These values then represent
“states of wealth” that can be used for direct comparison
between the outcomes of different allocations. This is a
very convenient way, comparable to the common method
of averaging to compare two series of data. However,
single values cannot represent mutual relations between the
single components of multi-vectors. Moreover, we miss an
important aspect of subjective decision making, for example
expressed in the seminal paper of Kahneman and Tversky
on prospect theory (Kahneman & Tversky (1984)) “People
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do not normally think of relatively small outcomes in
terms of states of wealth but rather in terms of gains,
losses, and neutral outcomes (such as the maintenance of
the status quo).” Comparison of gains and losses followed
by a preference decision is a pair-wise relation, and it
might not always be possible to reduce this to a numerical
comparison. Achieving neutrality in comparison is even
impossible.

2. There is no explicit reference to the total resource
usage. The customer is represented by the maximum
demand of a resource, while no information about the other
resources is involved. Thus, it also cannot be judged on
the total resource utilization of an allocation, taking only
maximal demands into account. Therefore, the additional
investigations into the fairness-efficiency tradeoff were
necessary.

3. These approaches can only be applied to exhaustible
resources. Where there are just different aspects of a
resource sharing, as for example for delay time, “dominant
resource” does not make sense.

In this paper, we will provide a framework to handle all
these aspects in a natural and flexible manner. In particular,
we promote the use of a strict set-theoretic relation based
framework to represent maxmin fairness, and from this gain
access to a formal treatment of fairness within multi-valued
evaluations. By adding sufficient constraints to the relations,
it becomes possible to incorporate the aspect of resource
utilization, as well as non-sharable allocation aspects (like
delay). Moreover, the proposed framework will include
DRF as well as FDS and GFJ as special cases, for the latter
two at least in theory.

The use of relational mathematics in fair division
problems is more common. In Bouveret & Lang (2005),
authors study a fair division problem of indivisible goods
without money transfers. Here, in addition to the agents
and goods, to each agent a preference relation is assigned.
The fair division problem then is formulated as the task to
achieve Pareto-efficiency and envy-freeness. The innovation
in this work is the transition to propositional logic and
formal language theory, and also allows for example for
analysis of complexity of the fair division problem. Here,
we will follow the concept that each agent valuates by
his or her own preference relation and then extend Pareto
efficiency to multi-maxmin fairness in the same way as
Pareto-equilibrum is extended to the maxmin fair state by
giving an extra focus on agents that already receive less
than other agents. Thus we assume that it is possible to
handle the accompanying problems within the framework
of relational mathematics alone.

In Section 2 we summarize relational frameworks that
will be used to reconsider maxmin fairness in Section
3. Section 4 applies the relational framework to maxmin
fairness and provides corresponding definitions. Then,
section 5 will provide a study on the application of the
concept to a multi-resource sharing study problem.

The main contributions of present work can be seen
in the formal specification of a multi-fairness, directly
following maxmin fairness (and including maxmin fairness
as a special case) with design flexibility according to

specification of agent relations, and the demonstration of
this design flexibility and its implications.

2 Relational Framework

In this section, we will provide the abstract relational
framework, without considering a specific relation.

Given a set A, the set-theoretic representation of a
relation R between elements of A (sometimes called the
domain of that relation) is given as a subset of A×A.
Thus, if an ordered pair (x, y) of elements x, y ∈ A belongs
to R it is understood that “x is in relation R to y.” We
will use infix notation for such a relation and write x ≥R y
alternatively to (x, y) ∈ R ⊆ A×A.

The reason for using this symbol, with reference to
the common larger-or-equal relation among real numbers,
will become clear in a moment. Just note that elements of
relations are ordered pairs. It means there is a difference
between an element in first position and in second position.
If the pair obtained from swapping first and second position
does not belong to the same relation, the position is
meaningful, and indicates a kind of prevalence of the
first element against the second element. This aspect is
represented by two well-known properties that relations can
take (x and y are general elements of A):

• Symmetry: From (x, y) ∈ R follows (y, x) ∈ R.

• Asymmetry: From (x, y) ∈ R follows (y, x) ̸∈ R.

Then, we can decompose any relation into a symmetric and
asymmetric part.

Definition 1 Given a relation R over domain A. The
asymmetric part P (R) of R is a relation over the same
domain A which is given point-wise as

(x, y) ∈ P (R)←→ (x, y) ∈ R ∧ (y, x) ̸∈ R (1)

It appears that R− P (R) is a symmetric relation, as it
contains all pairs (x, y) of R where (y, x) also belongs to
R (this might include reflexive cases (x, x) ∈ R).

Definition 2 Given a relation R over domain A. The
symmetric part I(R) of R is a relation over same domain
A which is given point-wise as

(x, y) ∈ I(R)←→ (x, y) ∈ R ∧ (y, x) ∈ R (2)

Then, generally P (R) ∩ I(R) = ∅ and P (R) ∪ I(R) = R.
Now, among all possible relations over a given domain

A, we can define an equivalence between relations R1 and
R2 in case P (R1) = P (R2). It can be easily seen that this
is an equivalence relation (with the domain being the set
of all relations with same domain A), and thus, the set of
relations can be decomposed into equivalence classes that
are disjoint and whose union is the set of all these relations.
Each such class contains a single asymmetric relation, the
shared asymmetric part of each relation within a class. For
this relation, we will use the notation x >R y. The only
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exception is the class where the only asymmetric relation is
the empty set (this class contains all equivalence relations,
but also other symmetric relations), here we do not have
any comparison aspect.

Example: Given set A = {a, b, c} and a relation R =
{(a, a), (a, b), (b, a), (c, b), (c, c)}. We see that P (R) =
{(c, b)} and I(R) = {(a, a), (a, b), (b, a), (c, c)}, P (R) and
I(R) are disjoint and especially R = P (R) ∪ I(R). The
relation R′ = {(b, b), (c, b)} belongs to the same class as R
since it has the same asymmetric part P (R′) = {(c, b)}.

Now, for any relation R we can consider extreme
elements. At first, we have to restrict R to its asymmetric
part, and then define (using infix notation):

Definition 3 Given a relation R between elements of a
domain A. Then, the maximum set M(R) of R is the set of
all x′ ∈ A such that there is no y ∈ A with y >R x′ (or:
no y ∈ A with (y, x) ∈ P (R)).

It appears that maximality is solely defined on a set-
theoretic base, and no reference to other mathematical
structures is needed. As soon as we have a relation and a
domain, there are also maximal elements.

However, such maximum sets can be empty (for
example, for symmetric relations). The question if there is
a sufficient condition ensuring non-empty maximum sets is
answered by the following theorem. We define a relation as
cycle-free (or outbound) if for any subset {x1, x2, . . . , xk}
of elements from A from x1 >R x2 ∧ x2 >R x3 ∧ · · · ∧
xk−1 >R xk follows xk ̸> x1 (note that we refer to the
asymmetric relation here, using the >R-symbol). Then:

Theorem 1 From R with finite domain being cycle-free
(and R ̸= ∅) follows M(R) ̸= ∅.

For a proof, see e.g. Suzumura (2009), Theorem A(3).
This property of cycle-free relations is also base for a
general ranking of elements of A by R. Intuitively, we take
the maximum set of A as elements of rank 1. Then, we
consider A1 = A−M(R). The relation R restricted to this
subset of A must be cycle-free as well, and we can find its
non-empty maximum set, giving elements of rank 2. This
can be continued until all elements are ranked.

Example: Take same set A = {a, b, c} and relation R =
{(a, a), (a, b), (b, a), (c, b), (c, c)} as in the example before.
From P (R) = {(c, b)} follows that a and c both are
maximal elements (no element of A is in relation R to
them). Removing a and c from A gives the set A′ = {b}
and R restricted to this set (i.e. not considering any pair
containing a or c in either position) is R|A′ = ∅. Then,
its asymmetric part is the empty relation as well, and no
element is in relation to b. Thus, b is maximal in A′ and of
rank 2.

We conclude this section by taking note of the fact that
all definitions so far are based on elementary set theoretic
concepts. Thus, having an arbitrary relation, no matter over
which domain, we also have a concept of asymmetric
part, maximality, the potential property of cycle-freeness
and ranking. Thus, the relational framework, given any
(symbolic or numeric) domain A and corresponding

relations, allows to assess a meaning of “optimality” by
considering maximal elements of (cycle-free) relations.

3 Maxmin Fairness

We may now consider more relevant examples of relations,
especially relations with domain Rn (sometimes called
vector-relations, or vector inequalities). The simplest way
to expand the concept of “≥” from R1 to Rn is the
Pareto-dominance relation. We can understand it as n-fold
application of element-wise comparison by the real-valued
≥-relation.

Definition 4 Given two vectors x and y from Rn with
components xi and yi respectively. Then x ≥p y iff for all
i = 1, . . . , n it holds that xi ≥ yi.

Remark: Note that the common definition of Pareto-
dominance requires also at least one component of x
to be truly larger than the corresponding component of
y. However, by using the framework presented in the
foregoing section, we do not need to make this comparison.
This relation is simply the asymmetric part of the Pareto
dominance relation. From transitivity of the real-valued size
relation, cycle-freeness of Pareto dominance follows easily.

For fair division of sharable goods, maxmin fairness is
defined as a state where no agent can be made better off
without making another already equally or worse off agent
even more worse off. Maxmin fairness has been shown to
maximally utilize resource sharing, for example for end-to-
end user traffic rates in a communication network, where
the maxmin fair state can be achieved by the Bottleneck
Flow Control algorithm, originally proposed in Bertsekas &
Gallager (1992).

Definition 5 Given a feasible space A ⊆ Rn. For two
elements (vectors) x and y from A it is said that x maxmin
fair dominates y (x >mmf y) iff for each i with yi > xi

there is at least one j ̸= i such that (1) xi ≥ xj and (2)
xj > yj .

Technically, this definition appears rather inconvenient.
We can specify a test of maxmin fairness in a more simple
form, following these steps (we will call it Algorithm-I):

1. For a pair (x, y) derive the set S of indices from
{1, . . . , n} where xi ̸= yi.

2. Find the minimum value m = minS xi among all i ∈
S.

3. Select the index set I = {i | i ∈ S ∧ xi = m}.

4. x ≥mmf y iff minI yi < minI xi.

Example: Figure 1 gives an example for the evaluation
of the case x = {3, 4, 3, 3, 6} and y = {3, 6, 2, 4, 5}. Both
vectors differ in the components S = {2, 3, 4, 5} and the
smallest x-component among these is 3. Thus, I = {3, 4}
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Figure 1 Alternative test for maxmin fairness relation.

and we see that the minimum value of y-components with
index from I is 2 < 3. Thus, x ≥mmf y.

Remark: Note that this way, the naming of maxmin can
become more clear. But it has to be noted that this is not
the same as maximizing the minimum (as e.g. compared to
the minmax strategy in game theory). Reason is that the
comparison is referring to differing components only.

We can convince ourself that both, Def. 5 and
Algorithm-I represent the same relation. (1) Def. 5 →
Algorithm-I: Assume the opposite, x ≥mmf y but for all
i ∈ I xi ≤ yi. However, xi = yi is not possible since I ⊆
S (elements of I were selected among indizes, where
corresponding components of x and y differ), thus yi >
xi. According to the definition of maxmin fairness, then in
each case i ∈ I there must be a j such that xj ≤ xi and
xj > yj . But xi is already the minimum value among all
components with indices from S and therefore xi = xj or
j ∈ I . Then xj > yj is in conflict to the assumption xi <
yi. (2) Algorithm-I → Def. 5: We have at least one index j
where yj < m. Now for any i with yi > xi (and thus i ∈ S)
this j has both properties: xj ≤ xi since xj = m and xj =
m > yj . Thus, both definition and algorithm are equivalent.

Going a little bit further, we note that permuting the
components of both vectors x and y in the same way does
not affect the definition of maxmin fairness (neither does it
Algorithm-I). Then we can also rewrite Algorithm− I as:

1. Sort the components of x in non-decreasing order.

2. Sort the components of y in the same order as x in
the foregoing step.

3. If and only if the sorted vector x lexicographically
comes after the sorted y then x ≥mmf y.

Example: Take again x = {3, 4, 3, 3, 6} and y =
{3, 6, 2, 4, 5}. The components of x in sorted order are
{3, 3, 3, 4, 6}. A permutation giving this order would be
(13425) (due to multiple occurrence of 3, there are other
ways as well but this will not affect the procedure).
Applying this permutation to y gives {3, 2, 4, 6, 5} which
comes lexicographically after sorted x (first component is
the same, but the second is smaller).

We note that maxmin fairness is an antisymmetric
relation, i.e. from x ≥mmf y and y ≥mmf x follows x =
y. Thus, the asymmetric part of Rmmf is obtained

by removing all pairs (x, x). Also foregoing discussion
shows that from x ≥mmf y follows that mini xi ≥ mini yi.
However, the case of equality makes the validation of
cycle-freeness rather complex. We shifted the proof to the
Appendix.

As last point we want to comment on the relation
of Dominant Resource Fairness to the maxmin fairness
relation. In Ghodsi et al. (2011a) DRF has been provided
as an allocation algorithm, thus also here it is not primarily
given as maximal element of a relation. However, the
relation to maxmin fairness is straightforward. If agent i
consumes the share µij of the available resource j then we
assign an index i′ to each agent, where µi′j is maximal.
This is the dominant share of agent i. Then, an allocation
of resources to agents is characterized by the vector of all
dominant shares, and DRF corresponds with the maximum
set of the maxmin fairness relation for the vector of
dominant shares. Without going into detail we note that
this is not the only relation serving the DRF allocation, for
example, the leximin relation between dominant shares will
give the same result.

4 Multi-Maxmin Fairness Relations

We consider a multi-objective distribution problem, where
an operator distributes a number of items (their number
does not matter here) to a number n of agents (or users). A
specific distribution ∆ is characterized by m measurements
and thus, it is represented by assigning an m-dimensional
objective vector to each agent. By (xi)[∆] we denote the
objective vector assigned to agent i. Its components, i.e. the
single measurement values for each agent, are indicated by
(xi)j [∆] (we will not give the argument ∆ if it is clear
from context). For example

X =

8
6
9

5
3
3

2
2
8


represents an allocation of items to 3 agents, where for

each agent the quality of the allocation is represented by
three, possibly competing, measured objectives. So, the 3rd
measurements qualifies the allocation represented by this
multi-vector to agent 1 by the value 9, the highest among
the measurements among all agents.

In order to compare two such multi-vectors, and thus
specifying a set-theoretic relation between allocations, we
propose a two step procedure. In the first step, we compare
for resource fairness. It means that for an allocation
of resources, we aggregate the single agent allocations
into a single value (typically by taking the sum, or the
maximum in case the objective refers to a non-sharable
aspect like delay time) for each objective (resource). Then
we obtain two vectors of resource aggregation values, one
for each comparison multi-vector. The first requirement is
that these resource aggregation vectors have to be in a
maxmin fairness relation. The second requirement refers
to a generalization of the maxmin fairness relation for
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the multi-vectors themselves that will be detailed in the
following. We say that the two multi-vectors are in multi-
maxmin fairness relation (MMMF) to each other if both of
these conditions are fulfilled.

By the first condition, we also ensure that this MMMF
relation is cycle-free and thus guarantees a ranking among
the elements of each finite set of multi-vectors. Otherwise,
a cycle of the MMMF relation would imply a cycle of
the maxmin fairness relation that is used to compare the
resource aggregation vectors. This is not possible (we again
refer to the Appendix for the proof).

Now we have to explain how to generalize maxmin
fairness to the case of multi-vectors. We will present
a rather natural way to extend mamxmin fairness in a
manner that (1) such multiple observables can be taken
into account, and (2) each agent can follow his or her own
interpretation of “better off” and “worse off.” For doing
so, we start with an observation on the formal structure of
Definition 5.

There, the use of >,≥ is not confined to the use of
the same relation. Essentially, three relations are taken into
account when justifying maxmin fair dominance:

x1 x2 · · · xi

≥
&.· · · xj

>

��

· · · xn

y1 y2 · · · yi

>

OO

· · · yj · · · yn

These relations are between yi and xi (a possible
improvement for agent i), xj and xi (agent j, who is
already equally or worse off compared to agent i) and xj

and yj (again, agent j, who is made even more worse
off, and thus would becomes an “envy” in state y). So,
one relation is according to the model of agent i, and two
according to the model of agent j. But there are three more
relations, ensured by transitivity of the larger relation for
real numbers: xi > yj , yi > yj and yi > xj . These three are
also seen from the perspective of agent j.

If we now replace the real number relations by “agent-
specific” transitive vector relations >i and >j , we get the
following scheme:

x1 x2 · · · xi

≥j

&.· · · xj

>j

��

· · · xn

y1 y2 · · · yi

>i

OO
>j

99ttttttttttt
· · · yj · · · yn

Here, we have four relations that exactly corresponds
to the relations of former scheme, and two others follow
by transitivity (of >j-relation): yi >j yj and xi >j yj . Now
we can define multi-maxmin fairness:

Definition 6 For two given multi-vectors X and Y of same
dimension with corresponding objective vectors (xi) and
(yi), we say that X is multi-maxmin fair dominating Y
(X ≥mf Y ) iff for each i with (yi) >i (xi) there is at least
one j ̸= i with the following properties:

1. (xi) ≥j (xj)

2. (yi) >j (xj)

3. (xj) >j (yj)

Note that in some cases, the test for the second
condition can be skipped, for example if all agents use
the same transitive preference relation. Then, in case all
agents use the maximum component of their evaluation
vectors to compare with other evaluations, this definition
gives Dominant Resource Fairness as a special case (when
skipping above step 1, i.e. the resource aggregation test).

However, in the foregoing section we provided an
alternative definition for maxmin fairness by Algorithm-
I. This can be used as a base to specify another multi-
vector version of maxmin fairness. In this case it will lead
to a different relation, and also, in addition to the agent
relations Ri we will also need a “master relation” R0

which is at least cycle-free (so it can be Pareto dominance,
maxmin fairness, proportional fairness, or leximin). Then
we take advantage of the fact that R0 allows to rank
the vectors composing the multi-vector x. We proceed in
analogy to Algorithm-I and specify an alternative multi-
maxmin fairness RmmmfI as follows:

1. Determine the least ranked components of multi-
vector X according to relation R0. Their indices
comprise the index set S.

2. Determine the subset of indices I of S where vector-
components of multi-vector X and Y differ.

3. If and only if for at least one i ∈ I (xi) >i (yi) then
X ≥mmmfI y.

Note that in case of a single objective, i.e. m = 1 and if
we use the real-valued “≥” relation for all agents as well as
master relation, this algorithm is equivalent to Algorithm-I
and thus RmmmfI is equivalent to maxmin fairness.

In the following, we will only consider maxmin fairness
as master relation R0.

Now we have two versions of the MMMF relation,
further qualified by various choices for the agent relations.
In the following, we will restrict this to some relevant cases
and introduce a suitable nomenclature. A MMMF relation
will be specified by the pattern “Ab” where A is either
“I” or “P”: “I” means that we use the MMMF relation
based on maxmin fairness tested by Algorithm I, and “P”
for maxmin fairness according to Def. 5 (i.e. in predicate
form, therefore “P”). Then, “b” refers to the preference
relation used by all agents. In particular we consider
“p” for Pareto-dominance, “t” where all agents compare
(evaluation) vectors by the total sum of all components, “i”
if agent i compares by the i-th objective, and “m” where
all agents compare by the maximum component. Then,
“Pm” for example expresses DRF with the additional test
of resource aggregation fairness: MMMF is tested by (1)
maxmin fairness for the resource aggregation vectors, and
(2) generalized maxmin fairness according to Def. 6, using
the comparison of maximum components as relations >i.



7

Example: Consider two multi-vectors X and Y , where
agent i is focussing on the i-th objective alone (i.e. relation
MMMF-Pi):

X =

3∗

7
10

10
9∗

10

 5
3
3∗



Y =

2∗

5
6

 8
2∗

8

 5
8
5∗


At first we test maxmin fairness for the resource

aggregation vectors. For the first multi-vector, this gives
the vector (18, 19, 23), (15, 15, 19) for the second. The
first even Pareto-dominates the second, and this implies
maxmin fairness among them. Thus, the first condition is
fulfilled. Now we test for the generalized maxmin fairness.
By >m(i) we denote a comparison by the i-th component
(these components are labeled by a star * above). We see
that for agents 1 and 2, there is no improvement in Y :
neither (y1) >m(1) (x1) (i.e. (y1)1 > (x1)1 or 2 > 3) nor
(y2) >m(2) (x2) (i.e. (y2)2 > (x2)2 or 2 > 9) holds. But
for i = 3, there is an improvement: (y3) >m(3) (x3) (i.e.
(y3)3 > (x3)3 or 5 > 3). So, we have to look if there
is a j ̸= i fulfilling properties (1) to (3) of Definition
6. The choices for j are 1 or 2. In fact, j = 1 has
these properties: (1) (x3) ≥m(1) (x1) (i.e. (x3)1 ≥ (x1)1 or
5 ≥ 3); (2) (y3) >m(1) (x1) (i.e. (y3)1 > (x1)1 or 5 > 3);
and (3) (x1) >m(1) (y1) (i.e. (x1)1 > (y1)1 or 3 > 2). So,
for this example, agent 1 is “envy” about the potential
improvement for agent 3, or X >mf Y .

Finally we want to remark that between all possible
instantiations of MMMF there can be various dependencies.
For example, MMMF-Pp will imply MMMF-Pm as well as
MMMF-Pt (if all components of a vector are larger then
the corresponding components of another vector, then also
sum and maximum of all components will be larger). Then,
the maximum set of MMMF-Pp will be a superset of the
MMMF-Pt and MMMF-Pm relations.

5 Application to Multi-Resource Sharing

In this section, we discuss the concept of multi-maxmin
fairness for a specific model multi-resource sharing task. At
first, we consider the same example that was used in Ghodsi
et al. (2011a) and Joe-Wong et al. (2012). A datacenter has
to process jobs for two customers. For one job, customer
1 needs 1 CPU and 4 GB RAM and customer 2 needs 3
CPUs and 1 GB RAM. In total, 9 CPUs and 18 GB RAM
are available. Jobs have to be allocated to each customer in
a fair but also efficient manner.

The starting point, like it is taken in Ghodsi et al.
(2011a) is to see after the relative resource consumptions.
For one job, customer 1 consumes 1/9 of the available
CPUs and 4/18 = 2/9 of the available RAM. Thus, RAM
is the dominant resource for customer 1. For customer 2,
it is CPU: one job consumes 3/9 = 1/3 of the available
CPUs and 1/18 of the available RAM.

The idea behind Dominant Resource Fairness (DRF)
is to allocate jobs such that the increase of a dominant
resource for one customer would result into a necessary
decrease of the dominant resource allocated to another
customer who has already same or less. It means to seek
maxmin fairness in dominant resource consumption, while
ignoring all other resource consumptions. For this example,
the solution is to allocate 3 jobs to customer 1 and 2 jobs
to customer 2. In this case, customer 1 consumes 2/3 of
the available RAM (and 1/3 of the available CPUs) and
customer 2 2/3 of available CPUs (and 1/9 of the available
RAM). Thus, each customer would receive 2/3 of her or his
dominant resource share, while in that moment the resource
CPU is fully consumed: 1/3 is allocated to customer 1 and
2/3 to customer 2. Any attempt to increase a dominant
resource share would cause a decrease of the dominant
resource share of the other.

Note that this solution can be easily found in a
systematic way, following a procedure similar to Bottleneck
Flow Control. In Ghodsi et al. (2011a), the approach is
extended to the case where some actual job demands are
possibly lower and remaining resources are allocated among
other customers, using the same algorithm iteratively. Also,
in general, the number of jobs is not necessarily an integer,
i.e. fractional job allocations are assumed to be possible.

60 1 2 3 4 5

3

1.5

1.6

1.8

2

2.2

2.4

2.6

2.8

Jobs User 1

Jo
bs

 U
se

r 
2

Pp (64%)

Pp (68%)

Pp (69%)

Pp (74%)

Pp (75%)

Pp (80%)

Pp,Pt (83%)

Pp,Pt (86%)

DRF,Pp,Pt,Pm (89%)

Pp,Pt,Pm (92%)

Pp,Pt,Pm (95%)

Pp,Pt,Pm (98%)

Pp,Pt,Pm,Ip,It,Im (99%)

Figure 2 Maximum sets of example problem for various
multi-maxmin fairness relations. The values in
brackets indicate the total resource allocations. Green
dots indicate where the concepts of optimality in
Dominant Resource Fairness and Multi-Maxmin
Fairness differ.

If we want to solve the same example problem in the
presented relational framework, we have to express pairwise
comparison between allocations by a multi-maxmin fairness
relation, including the specification of the domain of the
relation. For example, we can sample all possible values of
the number of jobs allocated to customer 1, indicated by α1

between 0 and the maximum possible value 4.5 (where the
resource RAM is fully given to customer 1) in steps of 0.1,
and the number of jobs α2 given to customer 2 between 0
and 3 (where all CPUs are given to customer 2) in steps
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of 0.1 as well. All feasible allocations by pairs (α1, α2)
constitute the domain of the relation.

Figure 2 shows maximum sets for various multi-maxmin
fairness relations. Here, we used multi-maxmin fairness
in predicate and in algorithm I form, where each agent
has the preference relation Pareto dominance, total sum
or maximum component. In all cases, the aggregation was
done by summing up the relative resources and comparison
was done by using maxmin fairness. The maximum sets
were found by exhaustive search, i.e. comparing each
allocation with each other and selecting the allocations to
which no other is in relation (belonging to the asymmetric
part of the relation, to be precise). We can see that multi-
maxmin fairness given in predicate form and where all
agents use Pareto dominance as their preference relation
(Pp) provides the largest maximum set, containing the
maximum sets of all other relations, including the DRF
point (3, 2).

On the other hand, multi-maxmin fairness in algorithm
I notation, no matter which preference relation is used,
all have maximum sets with one element, which is the
allocation of 4.1 jobs to customer 1 and 1.6 jobs to
customer 2. This point is included in the maximum sets
for all multi-maxmin fairness relations, so it seems to
have some relevance. Here we show the related allocations
(rounded values). For the DRF point we have

A(3, 2) =

((
0.33
0.66

)(
0.66
0.11

))
and for the MMMF point (MMMF should mean selected

by any multi-maxmin fairness):

A(4.1, 1.6) =

((
0.455
0.911

)(
0.533
0.088

))
.

If we compare the job allocations ADRF = (3, 2) and
AMMMF = (4.1, 1.6) we can see a number of advantages
of the allocation (4.1, 1.6).

At first, in the total resource allocation for AMMMF the
available resources CPU AND RAM are nearly completely
allocated to customers (99%) where the DRF allocation
leaves 11% of the resources unallocated. Also the total
number of jobs is larger for the MMMF allocation: 5.7
versus 5 for DRF.

Second, this is achieved by abandoning the principle
to allocate the dominant resource of each customer in a
maxmin fair manner. However, it happens to a degree
where the disadvantage for the loosing party is smaller than
the gain for the winning party. Customer 2 receives 20%
less jobs (2 to 1.6), while customer 1 receives more than
30% more jobs (3 to 4.1).

Third point: since (3, 2) does not belong to maximum
sets of multi-maxmin fairness in algorithm I notion, there
must be allocations in relation to it. For example, the
allocation (4.0, 1.6) is in relation Ip to the allocation (3, 2).
The multi-vector of the former allocation is

A(4, 1.6) =

((
0.44
0.88

)(
0.53
0.09

))
.

The total for each resource gives the vector (0.97, 0.97)
and this maxmin fair dominates the same aggregation for
the DRF point with (1.0, 0.77): the increase in first resource
CPU from 0.97 to 1 in the DRF allocation is accompanied
by a decrease from same or less 0.97 to 0.77 for the
second resource RAM. So it fulfills the first condition of
multi-maxmin fairness. For the second condition, we have
to rank the component vectors of A(4, 1.6) by maxmin
fairness. The vectors are not in relation to each other, so
both have the rank 1, which is then also the least rank. One
of them, (0.44, 0.88) Pareto-dominates the corresponding
vector (0.33, 0.66) of the DRF allocation. Thus, also the
second condition is fulfilled and the DRF allocation (3, 2)
is not maximal indeed. It might be noted that the MMMF
allocation itself is not in relation to the DRF allocation.

These arguments show that there is good reason to
give 4.1 jobs to customer 1 and 1.6 (only) to customer
2, especially to increase the total resource utilization while
maintaining fairness.

Now we also conduct an experiment to see how much
this example refers to the general case. For the experiment,
we consider one more customer, and assume the resource
consumptions to be random values between 0 and 1 for
each resource (with a granulation of 0.1 for numerical
convenience). For each of the MMMF relations, 100
random settings of resource demands have been tested. For
each setting, the three job allocations where set between
0 and 10 in steps of 0.1, but only feasible allocations
were kept (this gives between 200 and 3000 feasible
allocations, depending on the resource demands). Among
them, the maximum sets were computed as well as the DRF
allocation. Among the maximal elements, the largest total
resource utilization was computed.

Table 1 Average largest total resource utilization for maximum
sets of 100 random multi-resource problems (Range
indicates 20% and 80% quantiles, Ratio means ratio to
DRF allocation).

Relation Average Range Direct Ratio
DRF 88.26 82 - 96 1.0
MMMF-Pt 96.25 96 - 100 1.13
MMMF-Pm 97.76 99 - 100 1.11
MMMF-Pp 97.94 99 - 100 1.13
MMMF-It 96.8 98 - 100 1.12
MMMF-Pm 96.27 98 - 100 1.13
MMMF-Pp 96.7 99 - 100 1.13

Table 1 shows some average results for total resource
utilization. The first row shows the result for DRF, the
following rows for the variants of MMMF. It clearly
demonstrates the higher resource awareness of the proposed
multi-maxmin fairness. In all cases, maximal elements of
multi-maxmin fairness relation achieve 11% to 13% larger
resource utilization, if compared to the DRF allocation,
and the 100% values of the 80%-quantile show that in at
least 20% of the cases the fair allocation is such that the
resources are fully consumed. This also includes the case
MMMF-Pm which corresponds to DRF enhanced by the
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resource aggregation test. The fact that the 20%-quantile
is larger than the average gives some indication that there
are sometimes strong outliers, but nevertheless, there is no
single case where a higher resource utilization was achieved
by DRF. We also want to mention that between the MMMF
themselves there are no significant differences.

6 Summary and Future Work

The extension of maxmin fairness to the case of multiple
objectives (different observations of the allocation of
a shared resource) and multiple agent models (agent-
specific relations between the objective vectors) has been
introduced. It is first based on aggregate resource fairness
as a global test, followed by a maxmin fair component-wise
comparison. Maximal elements of the resulting relation
then give possible allocations. The approach has been
demonstrated for a multi-resource sharing task and it could
be clearly shown how the fairness-efficiency tradeoff is
handled by this approach, giving fair solutions were nearly
or even all resources are consumed. The use of a strict
relation-theoretic frameworks makes clear that this does not
happen per accident but as a consequence of the systematic
design of the relation.

There are many open issues that are subject of further
research. A primary target is the extension to larger
scenarios. The reason to consider only a rather small
number of agents in the examples here was the increased
effort to find maximal elements. This effort grows with
the square of the size of the relation domain. Here, the
approach to use meta-heuristic approaches will be subject
of further developments. Independently, the application to
other multi-resource sharing tasks where each resource has
several evaluations — its way has already been paved in
the formal framework that was presented here — has to be
studied in more detail.
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Appendix: Proof that maxmin fairness is cycle-free

To study properties of maxmin fairness, we can use a
“prototype notation” regarding the fact that the check for
maxmin fairness between two vectors x and y is solely
based on size comparisons and inequality between real
numbers, and not affected by permuting the components
of x and y together. Thus, instead of x ≥mmf y we can
consider a typical vectors for x, y and their element-wise
relations without loosing generality of results. Thus, for
vector x we can write

x: 1+ 2+ 3+ 3+ ≥ 4+ . . .

assuming that we have resorted the components of x in
non-decreasing order. Then, we replace the xi by “typical”
values like integers 1, 2, . . . . Each value can appear one
or more times, indicated by the following +-sign. Such
repetitions can be separated, for example, we have separated
the sequence of 3-values above in two groups. Then ≥ 4+
followed by the dots means that all following elements are
all larger or equal to 4.

If we write two or more vectors in tabular form, we
indicate component-wise correspondence. So a group of
1+ above another group of 1+ means that the number of
repetitions is the same. Now we can specify a prototype
notation for x ≥mmf y in case that x ̸= y as follows.

index: i
x: 1+ 2+ 3+ 3 3+ > 3+ . . .
y: 1+ 2+ 3+ < 3 ∗ ∗ . . .

Since x ≥mmf y it follows that there is at least one
component xi = minx̸=y where yi < xi. Here, it is the
component of x with value 3, in other words minx ̸=y = 3.
Before this component, x and y have equal components.
After this component, x-components must be larger or equal
3, and y-components can be freely chosen (indicated by the
∗).

We can see how this notation works by proving the
following lemmas. In the following, minx ̸=y indicates the
smallest component of vector x among all components that
differ from the corr. component of vector y.

Lemma 1 If x ≥mmf y and x ̸= y then minx ̸=y >
miny ̸=x.

P: We see in above prototype notation that for index i
yi ̸= xi and thus miny ̸=x ≤ yi < 3 = minx ̸=y . □

Lemma 2 If minx ̸=y > miny ̸=x and y ̸= z, y ≥mmf z then
also minx̸=z > minz ̸=x.

P: The fact that minx ̸=y > miny ̸=x can be represented in
prototype notation as

index: i
x: 1+ 2+ 3+ > 3+ . . .
y: 1+ 2+ 3+ 3+ 4+ 5+ . . .

Here we have sorted the components of y in non-decreasing
order. Then, for index i the first time a component of x is
different and so miny ̸=x = 3. We have also sorted such that
all components where both, x and y have the value 3 appear
before i. Then, all components of x with an index larger or
equal i must be larger than 3. Assume a component has a
value a smaller or equal 3, then for sure it will be different
from the corresponding component of y due to the sorting
of y components. It would follow that minx ̸=y ≤ a ≤ 3 =
miny ̸=x in contrary to minx ̸=y > miny ̸=x.

Now we need to consider the first appearance of an
index j where zj < miny ̸=z . Its existence follows from
y ≥mmf z and z ̸= y. There are three cases: j > i, j =
i and j < i. In all cases we assume the opposite to the
claim to be true, i.e. minz ̸=x ≥ minx̸=z and conclude with
a contradiction.

Case 1: j > i. Then, the prototype scheme looks like

index: i j
x: 1+ 2+ 3+ > 3+ . . .
y: 1+ 2+ 3+ 3+ 4+ 5 6 . . .
z: 1+ 2+ 3+ 3+ 4+ < 5 ∗ . . .

which means, according to y ≥mmf z that for indices
smaller j yj = zj . Then it follows that zi = 3 ̸= xi >
3 and therefore minz ̸=x ≤ 3. Since we have assumed
that minz ̸=x ≥ minx̸=z then also minx ̸= z ≤ 3. But only
components of x with an index k smaller i can have a value
smaller or equal 3 (in order to be minx ̸=z), and for all these
components xk = zk.

Case 2: j = i. The prototype scheme looks like

index: i
x: 1+ 2+ 3+ > 3 > 3+ . . .
y: 1+ 2+ 3+ 3 3+ . . .
z: 1+ 2+ 3+ < 3 ∗ . . .

and similar to case 1 we have zi ̸= xi thus minx ̸=z ≤
minz ̸=x < 3, raising the same contradiction since only
components with xk = zk can have a value xk < 3.

Case 3: j < i. The prototype scheme is now
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index: j i
x: 1+ 2+ 3 3+ > 3 > 3+ . . .
y: 1+ 2+ 3 3+ 3 3+ . . .
z: 1+ 2+ < 3 ∗ ∗ ∗ . . .

In this scheme we have also resorted such that for k <
j xk = yk = zk < 3. We see that for index j z and x
have differing components, and therefore minz ̸=x < 3. By
assumption then also minx̸=z < 3. But only for k < j there
can be xk < 3 in contradiction to xk = zk for k < j.

In all three cases the assumption minx ̸=z ≤ minz ̸=x

leaded to a contradiction. Thus minx ̸=z > minz ̸=x. □

Using both lemmata, the following can be easily shown.

Theorem 2 Maxmin fairness over any subset of R+
n is a

cycle-free relation.

P: Assume we have a sequence of k vectors with
x1 ≥mmf x2 ≥mmf · · · ≥mmf xk. W.l.o.g. we can assume
that in this sequence, no two consecutive vectors are
equal. Then from Lemma 1 we know that minx1 ̸=x2 >
minx2 ̸=x1 . Since x2 ≥mmf x3 and x2 ̸= x3 by Lemma 2
follows that minx1 ̸=x3 > minx3 ̸=x1 . Repeated application
of the same transition then gives minx1 ̸=xk

> minxk ̸=x1 .
But now, if xk >mmf x1 this would imply minxk ̸=x1 >
minx1 ̸=xk

which is not possible. □


