
Unsorting the Proportional Fairness Relation
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Abstract—Typical problems related to the application of pro-
portional fairness are sparsity of the relation with increasing
dimension, and the operator confusion problem. Here, we propose
a new fairness relation derived from proportional fairness to
handle these problems. The design principle behind this relation is
relational unsorting: if there is a relation x(R)y between elements
x and y from n-dimensional Euclidian space, the unsorted
relation x(uR)y holds whenever there is a permutation x∗ of
the elements of x for which x∗(R)y holds. We apply this concept
to proportional fairness, study the properties of the new relation,
contrast with another relation based on over-sorting proportional
fairness, and provide simulations to demonstrate the ease of
ordered proportional fairness for meta-heuristic search.
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I. INTRODUCTION

Proportional fairness has been shown to maximize the total
utility of rate control for elastic traffic in a resource sharing
communication network [1][2]. The proportional fair state is
characterized as a state vector x of n positive-valued traffic
rates such that for any other state y ∈ Rn+ the inequality

n∑
i=1

yi − xi
xi

≤ 0 (1)

holds. However, the total utility does not take an operator
confusion problem into account. If the operator “forgets” the
assignment of the traffic indices i to the real users, the utility of
different assignments might not be justified anymore. Taking
a very simple example: if for two users the assignment x =
(0.3, 0.2) appears to be proportional fair against the assignment
y = (0.3, 0.18) (since 0.18 < 0.2), and the operator forgets
who was user 1 and who was user 2 afterwards, then for the
other possible assignment x = (0.2, 0.3), proportional fairness
does not hold (0.1/0.2 + (−0.12)/0.3 = 0.1 > 0). Related
issues of global optimization and fairness, while taking user
aspects into account, have already been discussed in [3][4].
To handle these issues, we are considering a replacement
of the index order of users by ranked order according to
the assigned rates. Here, we propose an ordered proportional
fairness relation and explore the mathematical implications of
this formal change, as well as implications for the structure
of related optimization. As a result, we will show that within
the framework of ordering theory, we can identify a general
operation between relations, for which the transiton from pro-
portional fairness to ordered proportional fairness appears to be
a special case. Moreover, it is demonstrated that this relation

assists meta-heuristic approaches to find its efficient elements,
and thus allows for a flexible design of corresponding search
algorithms to widen the field of practical applications.

The following Section II will provide the definitions of the
proposed relations, and discuss a number of basic properties.
Then, in Section III, Monte Carlo simulation results for the
proposed relation will be presented. The paper concludes with
a discussion in Section IV.

II. ORDERED AND ANTI-ORDERED PROPORTIONAL
FAIRNESS

A. Definitions

We represent proportional fairness as a proportional fair
dominance relation defined as follows:

Definition 1. A point x ∈ Rn+ is proportional fair dominating
another point y ∈ Rn+, written as x >pf y, if and only if

n∑
i=1

yi
xi
≤ n (2)

Then, the best state of this relation, i.e. the state x such
that x >pf y for any other y of the feasible space, is generally
considered as the proportional fairness state.

We will study a modification of the proportional fairness
relation, where the elements of x and y are sorted before the
condition given by Eq. (1) (also called indicator expression
in the following) is tested. In the following, a subscript a(i)

indicates the i-th largest element of a set A of real numbers
ai.

Definition 2. A point x ∈ Rn+ is ordered proportional fair
dominating another point y ∈ Rn+, written as x >opf y, if and
only if

n∑
i=1

y(i)

x(i)
≤ n (3)

For completeness, we also consider a dual relation:

Definition 3. A point x ∈ Rn+ is anti-ordered proportional
fair dominating another point y ∈ Rn+, written as x >aopf y,
if and only if

n∑
i=1

y(i)

x(n−i+1)
≤ n (4)



B. Basic properties

At first, we will clarify the relations between proportional
fairness, ordered proportional fairness, and anti-ordered pro-
portional fairness. This can be summarized in the following
theorem.

Theorem 1. For any x and y from Rn+, x >pf y implies
x >opf y and x >aopf y implies x >pf y.

Proof: For seeing this, we need to interpret the fairness
conditions as OWA operators. For definition and basic prop-
erties, see the Appendix. In fact, when keeping x fixed, the
condition for ordered proportional fairness can be also written
as

OOWAw(y) ≤ n (5)

where the weight vector w has components wi = 1/x(i), and
therefore are non-decreasing. The condition for proportional
fairness can be rewritten as

OWAw∗(y) ≤ n (6)

where the weight vector w∗ has components w∗i = 1/xi
and is a permutation of w. So, by Lemma 1 (Appendix),
the value of the indicator expression for checking ordered
proportional fairness is always smaller than or equal to the
value of the indicator expression for proportional fairness. If
OWAw∗(y) ≤ n, then also OOWAw(y) ≤ n must hold, and
it follows that proportional fairness implies ordered propor-
tional fairness. In a similar way, by using the Anti-Ordered
Weighted Averaging (see Appendix), it can be also seen that
anti-ordered proportional fairness implies proportional fairness.

The theorem can also be summarized by the inequality
n∑
i=1

y(i)

x(i)
≤

n∑
i=1

yi
xi
≤

n∑
i=1

y(i)

x(n−i+1)
(7)

which indicates that proportional fairness is “bounded” by the
two new proportional fairness relations.

These relations can be used to better understand the part
of space dominated by a point. We recall that the part of
Rn+ that is proportional fair dominated by a point x∗ can be
seen as the part of Rn+ below the tangential hyperplane on the
hypersurface given by

∏
xi =

∏
x∗i . Figures 1 and 2 show

the areas dominated by the point (4, 1) in the case n = 2.
In this example, it can be seen that a point y is ordered

proportional fair dominated by (4, 1) iff (4, 1) >pf y or
(1, 4) >pf y, and y is anti-ordered proportional fair dominated
by (1, 4) iff (4, 1) >pf y and (4, 1) >pf y1. From Theorem 1
it can be understood that this is a general characterization of
the dominated space.

For given points x and y from Rn+, we fix y and consider
the set Xp of all points that are generated by permutations
of the elements of x. Then, if for at least one x∗ ∈ Xp the
relation x∗ >pf y holds, by Theorem 1 x∗ >opf y follows,

1Note that the blue dashed line shows the curve x · y = 1 · 4, and the
dominated parts are bounded by tangents to this curve
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Fig. 1. Set of points ordered proportional fair dominated by the point (4, 1).
It can be seen as the set of points proportional fair dominated by the point
(4, 1) (black dot in the figure) or proportional fair dominated by its mirror
point (1, 4) (yellow dot in the figure).
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Fig. 2. Set of points antiordered proportional fair dominated by the point
(4, 1). It can be seen as the set of points proportional fair dominated by the
point (4, 1) (black dot in the figure) and proportional fair dominated by its
mirror point (1, 4) (yellow dot in the figure).

and then x >opf y, since x has the same components like x∗,
only sorted in non-increasing order. Therefore, the value of the
indicator expression for ordered proportional fairness does not
change. On the other hand, if x >opf y while the components
of x are not sorted, must correspond to x∗ >pf y for the
x∗ ∈ Xp where for all i x∗i = y(i). In summary, the fact that
at least one element of Xp proportional fair dominates y is a
necessary and sufficient condition for x >opf y.

In a similar way, if there is any x∗ ∈ Xp where x∗ is not
proportional fair dominating y, then x∗ >aopf y is also not
possible, as otherwise, x∗ >pf y would follow. But x∗ >aopf



y and x >aopf y mean the same thing, because x∗ is just a
permutation of x. On the other hand, there must be one sorting
x∗ of the components of x that corresponds to the inverse
sorting of the components of y, and for this, x∗ >aopf y and
x∗ >pf y are formally the same. Thus we can also see that
it is necessary and sufficient for x anti-ordered proportional
fair dominating y that all elements of Xp are proportional fair
dominating y.

We remark that all three relations are not complete, i.e.
there are pairs (x, y) where neither x >r y nor y >r x holds.
However, as will be demonstrated below, ordered proportional
fairness can be seen as a “nearly complete” relation.

Like proportional fairness, also ordered proportional fair-
ness and anti-ordered proportional fairness are not transitive.
It suffices to provide counterexamples: for ordered proportional
fairness, consider the three points x = (47, 43), y = (36, 53)
and z = (5, 91). Then we have for the values of the indicator
functions Ixy = 53/47 + 36/43 = 1.96 ≤ 2, Iyz = 1.86 ≤ 2
but Ixz = 2.05 > 2. So this is a case where x >opf y and
y >opf z but not x >opf z.

For anti-ordered proportional fairness, we can consider x =
(63, 36), y = (41, 47) and z = (9, 68). Then Ixy = 47/36 +
41/63 = 1.96 ≤ 2 and Iyz = 1.85 ≤ 2 but Ixz = 2.03 > 2,
thus x >aopf y and y >aopf z but not x >aopf z.

However, both relations are not cyclic (also like proportional
fairness), which means that there is no sequence of m points
xi such that xi >opf |aopf xi+1 for i = 1, . . . , (m − 1) and
xm >opf |aopf x1. For proportional fairness, this can be verified
by the fact that x >pf y implies that x has also a larger
product of components2,

∏
i xi >

∏
i yi and thus a point with a

smaller product of components than
∏
i xi can never dominate

x. This implies that for x >pf y and y >pf z the products of
components of z is smaller than

∏
i xi, and z cannot dominate

x. The same fact can be seen for any lengths of transitivity
sequences in a similar manner.

The fact that also anti-ordered proportional fairness is cycle-
free follows directly from Theorem 1. If there would be a
cycle for the anti-ordered proportional fair dominance relation,
this would imply the same cycle for the proportional fair
dominance relation, which cannot exist.

For the case of ordered proportional fairness, it needs to
consider the specific sorting of the components in the indicator
expressions. Since in all cases the components are ordered in
a non-increasing manner, the singular terms in the indicator
expressions are all ordered in the same way. It means if we
compare x and y we have an order for the terms y(i)/x(i)

which is the same order as for the terms z(i)/y(i) in the
comparison of y and z and z(i)/x(i) in the comparison of x to
z. Thus, the indicator expressions are formally identical to the
expression for proportional fairness, just with all components
of all points sorted by size. Then also here, cycle-freeness
of proportional fairness implies cycle-freeness of the ordered
proportional fairness.

2Note that two different points with the same product of components can
never dominate each other.

C. Links to other relations

As a preparation, we provide a number of related defini-
tions.

Definition 4. For any x and y from Rn it is said that x
(strictly) Pareto dominates y, written as x >p y, if and only if

∀ixi ≥ yi ∧ ∃jxj > yj (8)

(note that there can be a corresponding definition using <
and ≤). A stronger version of this definition:

Definition 5. For any x and y from Rn it is said that x totally
Pareto dominates y, written as x >tp y, if and only if

min[xi] > max[yi] (9)

We also consider the definition for lexicographic minimum
relation.

Definition 6. For any x and y from Rn it is said that x lexmin
dominates y, written as x >lm y, if and only if for the largest
i such that x(i) 6= y(i) the inequality x(i) > y(i) holds.

Last but not least, we consider two extensions of the
ordered and anti-ordered proportional fairness, in analogy to
the corresponding extension of proportional fairness to α-
fairness:

Definition 7. A point x ∈ Rn+ is ordered α-fair dominating
another point y ∈ Rn+, written as x >oα y, if and only if

n∑
i=1

y(i) − x(i)

xα(i)
≤ 0 (10)

Definition 8. A point x ∈ Rn+ is anti-ordered α-fair dominat-
ing another point y ∈ Rn+, written as x >aoα y, if and only
if

n∑
i=1

y(i) − x(n−i+1)

xα(n−i+1)

≤ 0 (11)

Now we can make some additional statements:
1) If the components of x are stronger differing, the or-

dered proportional fair dominance relation resembles the
lexmin relation, while the anti-ordered proportional fair
dominance relation resembles the total Pareto dominance
relation.

2) If the components of x are becoming more similar,
both, the ordered proportional fair dominance relation
and the anti-ordered proportional fair dominance relation
resemble the proportional fair dominance relation.

3) Pareto dominance implies ordered proportional fair dom-
inance, since Pareto dominance implies proportional
fair dominance. However, there is no relation be-
tween Pareto-dominance and anti-ordered proportional
fair dominance. Only total Pareto dominance implies
anti-ordered proportional fair dominance.

4) Since the space that is ordered proportional fair domi-
nated by a point x is usually not convex, even in case
of convex feasible subspaces of Rn+ the maximum set
(i.e. set of non-dominated points) of this relation can



have more than one element (in contrary to proportional
fairness, maxmin fairness etc.).

III. MONTE CARLO SIMULATIONS

In addition to basic mathematical properties, the important
additional practical application aspect is the tractability of
the accompanying search problem: given a feasible set of
vectors from a specific problem domain, how can we find the
maximum sets (also called set of maximal, efficient, or non-
dominated elements) for a given relation? In a recent work
[5], we have already investigated the options to use meta-
heuristic search algorithms, and demonstrated their efficiency.
But the study also illustrated the important aspects of the
relations itself, in order to pose a tractable search problem,
and with regard to the chance of random occurrence of a
relation between two random points. It can be easily seen that
a sparse relation inhibits the initial explorative stage of such
algorithms. Therefore, we want to focus on this aspect when
evaluating the newly proposed relations, and provide a number
of related Monte Carlo simulations to estimate corresponding
probabilities and probability distributions.

A. Probability of occurrence

In this part, we want to study the probability of occurrence
of relations between random vectors with increasing dimension
n. It is known to fall exponentially for the Pareto dominance
relation, and can be expected to be 0.5 for complete relations
like lexmin. Other estimates might be harder to find, so we
sampled 100,000 pairs x and y of random points from (0, 1)n

and counted the number of occurrences of the relation x >R y
for various relations. Table I gives an overview of the results
for dimensions up to 100.

The exponential decay of the Pareto dominance relation >p
can be confirmed, for dimensions 15 onwards it is virtually
not present anymore (a large hindrance for meta-heuristic
approaches to multi-objective optimization with larger number
of objectives). Proportional fairness >pf also decreases, but it
might be a conjecture if this refers to an exponential decay
as well. As can be expected from its relation to total Pareto
dominance, which is even stronger than Pareto dominance, also
anti-ordered proportional fairness decays strongly with increas-
ing dimension, but nevertheless slower than Pareto dominance.
The maxmin fairness falls about linearily with the dimension,
which can be also rather easily estimated. Then, ordered
proportional fairness stays nearly constant at a value around
40%. This means that ordered proportional fairness is close to
a complete relation having 50%, and it is even possible that
the probability is converging (at least, it seems to decay very
slowly). This can be related to the fact that this relation has a
much larger dominated space by a point x than for example
proportional fairness. In fact, it is fusing an exponentially
increasing number of proportionally fair dominated spaces (one
for each permutation of the components of x), and this can
“compete” with the exponential decrease of the volume of
spaces proportionally fair dominated by a point with increasing
dimension.

TABLE I
FREQUENCY OF OCCURRENCE OF VARIOUS RELATIONS WITH INCREASING

DIMENSION n AMONG 100,000 RANDOM SAMPLES FROM (0, 1)n .

n >p >pf >opf >aopf >mmf

1 50021 50021 50021 50021 50021
2 25032 40344 46784 33868 33587
3 12523 33203 45101 23520 25044
4 6159 27852 43984 16826 19433
5 3067 23305 43117 11920 16675
6 1404 20300 43155 8521 14133
7 652 17266 42304 6237 12682
8 434 14960 41943 4693 10901
9 282 13209 41794 3530 10374

10 117 11219 41512 2614 8527

11 25 9705 41575 2057 7697
12 39 9029 41217 1558 7329
13 17 7461 41198 1219 7698
14 24 6704 41252 931 7905
15 11 5769 41119 743 5766
16 2 5001 40845 581 6416
17 0 4494 40785 477 5534
18 0 3792 40508 406 5552
19 0 3586 40758 337 5876
20 0 3103 40853 274 5092

25 0 1630 40865 122 4108
30 0 994 40628 51 2916
35 0 739 40704 18 2793
40 0 510 40766 6 2475
45 0 344 40858 1 2102
50 0 217 40744 2 2274

60 0 91 40566 0 1729
70 0 23 40735 0 2208
80 0 6 41165 0 862
90 0 40 41779 0 1422
100 0 0 41720 0 687

We also studied conditional properties, to indicate the rela-
tion between ordered proportional fairness, the maximization
of product of components, and the maximization of the small-
est component. The reason is that in case of convex feasible
spaces, the proportional fairness has a best element, which is
also maximizing the product of its components. This cannot
be expected from the ordered proportional fairness as well, as
the subspace dominated by a point is not always convex, but a
relation to component product maximization might still exist.

This is confirmed by the result shown in Fig. 3. There, a
number of conditional probabilities p(>1 | >2) have been
sampled from random vectors from (0, 1)n (100,000 samples
in each case). The used relations were ordered proportional
fairness >opf , lexmin >lm and a further relation >prod
which holds between x and y iff

∏
i xi >

∏
i yi. The case

p(>prod | >opf ) is not shown, since ordered proportional
fairness always implies a larger product of components (this
is the case for proportional fairness, and ordered proportional
fairness always corresponds to a particular case of proportional
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Fig. 3. Sampled conditional probabilities that a random vector x from
(0, 1)n >1-dominates another random vector y given that x >2 y, where
the relations >1 and >2 are among the relation of having larger product
of components(>prod), lexmin, and ordered proportional fairness (100,000
samples for each dimension n). The case p(>prod | >opf ) is not shown,
since this is always 1.

fairness). So, this value is always 1.
Two things can be seen in the result: the first is that the

probabilities seem to converge, or at least decay very slowly
with increasing dimension. Which of these is the case might
be subject of further investigation (as it includes the rather
fundamental question if the chance that a larger product of
components implies a larger minimum of the components and
vice versa is converging to a value around 0.65 for large
dimensions). We can also see that the “mutual information”
between ordered proportional fairness and component product
maximization is rather high, highest in the cases shown here.
It also confirms that the mutual information between ordered
proportional fairness occurrence and lexmin is comparable to
the component product maximization, while the values itself
are differing (for large n, the chance that from x >opf y
also mini[xi] > mini[yi] follows is about 60%, which is
smaller than the same chance for having a larger product of
components, while the chance that from a larger minimum of
x compared to y also x >opf y follows is higher than for the
product, with a value of about 75%).

In summary, we see that ordered proportional fairness is
rather independent from proportional fairness, but stronger
related to maximization of the product of components.

B. Distribution of fairness indicator values

The following experiment was performed: 10000 times
pairs of random vectors x and y with n = 50 components
each from (0, 1) were generated, and the ordered proportional
fairness, anti-ordered proportional fairness, and proportional
fairness indicator values were computed (i.e. the values that
are compared with the dimension in the definition of the
relations). Then, 20 bins were defined for the frequency
of values of the proportional fairness indicator between the
ordered proportional fairness indicator and the anti-ordered
proportional fairness indicator.
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Fig. 4. Distribution of proportional fairness indicator values between ordered
proportional fairness and anti-ordered proportional fairness indicator values for
10000 random samples of dimension 50.

Figure 4 shows that the distribution resembles a normal
distribution.

IV. DISCUSSION

In comparison, ordered proportional fair dominance rela-
tion seems to be the more interesting relation, compared to
anti-ordered proportional fair dominance relation, for several
reasons: it can mediate between proportional fairness for cases,
where components of x become more similar, and the lexmin
dominance relation, where one component becomes much
smaller than the other. Also, since the part of the space
dominated by x is (much) larger than the part of the space
proportional fair dominated by x, meta-heuristic approaches
can find the maximum set elements of this relation (much)
more easily. If the main concern is still about proportional
fairness: also here, ordered proportional fairness is helpful,
since the maximum (efficient, non-dominated) set of ordered
proportional fairness is a subset of the maximum set for
proportional fairness, so at least a few proportional fair states
can be found, and then more easily.

The given arguments also show that ordered proportional
fairness can be seen as extension of proportional fairness “up to
a permutation”. This is formally the same “transformation” of
a relation that leads from maxmin fairness to lexmin fairness.
Thus, we have also achieved a formal way to expand any
relation r as a subset of the direct product of two sets An

and B by a procedure of un-sorting: x >u(r) y holds iff there
is at least one permutation of the elements of x such that
x >r y holds. We can do similarily for the processing of over-
sorting and requiring x >r y for all permutations. Applied to
other relations, over-sorting applied to Pareto-dominance, as
well as maxmin fairness, gives total Pareto dominance, and
un-sorting gives a relation that has up to our knowledge not
been studied so far, based on the comparison x(i) ≥ y(i). We
can go the other way as well, and seek for known relations
r different de-sorting relations d(r) such that un-sorting d(r)
gives r. Without giving much details here, in at least one case,
the exponential OOWA [6] can serve as r to yield a new
relation that has some resemblance to a bounded version of
proportional fairness. In summary, we have to acknowledge the



fact that fairness relations are probably not sparse but establish
a rich category with numerous mutual relationships.
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APPENDIX

Proof for minimizing property of the Ordered Ordered
Weighted Averaging

We recall the definition of the Ordered Weighted Averaging
operator.

Definition 9. Given a point x from Rn and a set of weights
w ∈ Rn, the Ordered Weighted Averaging (OWA) of x by w
is defined as

OWAw(x) =
n∑
i=1

wix(i) (12)

where x(i) denotes the i-th largest component of x.

The Ordered-Ordered Weighted Averaging operator is a spe-
cial case of the OWA operator, where additionally the weights
are sorted in non-decreasing order, i.e. in the corresponding
expression, the largest x(1) is multiplied with the smallest
weight etc.

Definition 10. Given a point x from Rn and a set of weights
w ∈ Rn, where the weights are sorted in non-decreasing order
(i.e. w1 ≤ w2 ≤ · · · ≤ wm), the Ordered-Ordered Weighted
Averaging (OOWA) of x by w is defined as

OOWAw(x) =
n∑
i=1

wix(i) (13)

where x(i) denotes the i-th largest component of x.

For this operator, we will show:

Lemma 1. Given a set of n weights w in non-decreasing order,
and any permutation w∗ of these weights. Then for any x ∈ Rn

OOWAw(x) ≤ OWAw∗(x) (14)

Proof: We will use bracketed subscripts to refer to the
different orderings. By x(i) we indicate the i-th largest element

of x, by w(i∗) the i-th element in the permutation w∗ of the
weights. In this notation

OWAw∗(x) =
n∑
i=1

w(i∗)x(i) (15)

and

OOWAw(x) =
n∑
i=1

wix(i) (16)

We also define

hi = x(n−i+1) − x(n−i+2) (17)

for i > 1 and h1 = x(n). Then

x(i) =
n−i+1∑
k=1

hk (18)

and

OWAw∗(x) =
n∑
i=1

[
w(i∗)

n−i+1∑
k=1

hk

]

=
n∑
i=1

[
hi

n−i+1∑
k=1

w(k∗)

]

≥
n∑
i=1

[
hi

n−i+1∑
k=1

wk

]

=
n∑
i=1

[
wi

n−i+1∑
k=1

hk

]
= OOWAw(x)

since the weights are sorted in non-decreasing order and thus,
the sum of the first k weights will be always smaller or equal
to the sum of the first k permuted weights.

In a similar way, we can consider an Anti-Ordered Weighted
Averaging operator (AOWA) by requiring the weights to be
sorted in non-increasing order, and show that for any permu-
tation w∗ of the weights

AOWAw(x) ≥ OWAw∗(x) (19)

holds.


