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Abstract—In this paper we provide an extension of maxmin
fairness to the case of multiple objectives and different agent
preferences by the definition of the maxmin multi-fairness re-
lation. This generic relation is based on a formal modification
of maxmin fairness according to its implicit comparisons and
includes maxmin fairness as a special case. The application of
this multi-fairness relation to a selfish, to a collaborative and
to a mixed community of agents is presented, as well as a case
study on a specific task of fair division of indivisible goods by
numerical simulations. All studies demonstrate the suitability of
the proposed relation for investigative tasks in shared resource
problems, as they are abundant in network design and control.
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I. INTRODUCTION

For fair division of sharable goods, maxmin fairness is
defined as a state where no agent can be made better off
without making another already equally or worse off agent
even more worse off. Maxmin fairness has been shown to
maximally utilize resource sharing, for example for end-to-
end user traffic rates in a communication network, where the
maxmin fair state can be achieved by the Bottleneck Flow
Control algorithm [1]. It can be rationalized as greatest or
maximal element of the maxmin fairness dominance relation,
in the same spirit as Pareto dominance relation can rationalize
Pareto efficiency.

Definition 1. Given a feasible space A ⊆ Rn. For two
elements (vectors) x and y from A it is said that x maxmin
fair dominates y (x >mmf y) iff for each i with yi > xi there
is at least one j 6= i such that (1) xi ≥ xj and (2) xj > yj .

However, in practice, resource division is often not the
result of a direct manipulation of the resource, but the result
of an allocation or assignment. For example, in user end-to-
end traffic in communication networks, the shared resource are
links and nodes along with their capacities, but links and nodes
cannot be directly assigned to users. This can only be achieved
by assigning a routing, i.e. a set of paths linking users, and
shared links and nodes will automatically follow. But such an
allocation or assignment will also need observables, in order to
be represented to the agent. To follow up the communication
network example, in addition to putting boundaries onto traffic
rates, there are also hop counts and delay times, once a routing

is specified. We see that this situation cannot be represented
by Definition 1.

The other point: different agents might consider the mean-
ing of “better off” and “worse off” differently. The above
specification of a maxmin fairness state is transparent to such
differences, but Definition 1 does not reflect different agent
preferences as well. Especially when there are several observ-
ables availabe, thus making the agent justification a multi-
criterion task, it needs a clear specification of the meaning
of these terms.

We will present a rather natural way to extend mamxmin
fairness in a manner that (1) multiple observables can be taken
into account, and (2) each agent can follow his or her own
interpretation of “better off” and “worse off.” For doing so, we
start with an observation on the formal structure of Definition
1.

There, the use of >,≥ is not confined to the use of the
same relation. Essentially, three relations are taken into account
when justifying maxmin fair dominance:
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These relations are between yi and xi (a possible improve-
ment for agent i), xj and xi (agent j, who is already equally or
worse off compared to agent i) and xj and yj (again, agent j,
who is made even more worse off, and thus would becomes an
“envy” in state y). So, one relation is according to the model
of agent i, and two according to the model of agent j. But
there are three more relations, ensured by transitivity of the
larger relation for real numbers: xi > yj , yi > yj and yi > xj .
These three are also seen from the perspective of agent j.

If we now replace the real number relations by “agent-
specific” transitive vector relations >i and >j , we get the
following scheme:
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Here, we have four relations that exactly corresponds to
the relations of former scheme, and two others follow by
transitivity (of >j-relation): yi >j yj and xi >j yj .



We will take this observation as a base to define a maxmin
multi-fairness among multi-vectors. The implications of this
approach will be investigated in the following. Section II will
provide the formal definitions, and also introduce suitable
agent relations >i. Then, section III will provide a study on
different settings for the agent relations in an unbiased feasible
space, while section IV is focusing on a specific resource
sharing problem. We will discuss related work and provide
a conclusion in the last two sections of this paper.

The main contributions of present work can be seen in
the formal specification of a multi-fairness, directly following
maxmin fairness (and including maxmin fairness as a special
case) with design flexibility according to specification of agent
relations, and the demonstration of this design flexibility and
its implications.

II. DEFINITIONS

We consider a multi-objective distribution problem, where
an operator distributes a number of items (their number does
not matter here) to a number n of agents (or users). A specific
distribution ∆ is characterized by m measurements and thus, it
is represented by assigning an m-dimensional objective vector
to each agent. By (oi)[∆] we denote the objective vector
assigned to agent i. Its components, i.e. the single measurement
values for each agent, are indicated by (oi)j [∆]1 (we will not
give the argument ∆ if it is clear from context). For example

X =
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represents an allocation of items to 3 agents, where for

each agent the quality of the allocation is represented by three,
possibly competing, measured objectives. So, the 3rd measure-
ments qualifies the allocation represented by this multi-vector
to agent 1 by the value 9, the highest among the measurements
among all agents.

Now we also assume that to each agent i two individual
vector relations >i and ≥i are assigned. There, the relations
both are subsets of A×A with A ⊆ Rn, and ≥i is understood
as the extension of >i by an equivalence relation. Thus, by
virtue of these relations, each agent is able to compare each
objective vector with each other (means: not only her “own”
objective vector). Basically there are no other requirements on
these relations except transitivity. Now we can define generic
(maxmin) multi-fairness:

Definition 2. For two given multi-vectors X and Y of same
dimension with corresponding objective vectors (xi) and (yi),
we say that X is multi-fair dominating Y (X >mf Y ) iff for
each i with (yi) ≥i (xi) there is at least one j 6= i with the
following properties:

1) (xi) ≥j (xj)
2) (yi) >j (xj)
3) (xj) >j (yj)

1We do not use the notation oij to make clear that the set of objective
vectors is not primarily a matrix.

By this definition we realize the comparison between two
multi-vectors exactly the way as it was discussed in the Intro-
duction. For convenience, we also introduce a few definitions
that will be of help to specify the agent-relations >i and ≥i.

Definition 3. Given two objective vectors (x) and (y), we say
that (x) is (strictly) Pareto dominating (y) ((x) >p (y)) iff
for each i (x)i ≥ (y)i and at least one j (x)j > (y)j holds.
Correspondingly, (x) ≥p (y) iff (x) = (y) or (x) >p (y) (or
alternatively: for each i (x)i ≥ (y)i).

Definition 4. Given two objective vectors (x) and (y), we say
that (x) is marginal dominating (y) by index i ((x) >m(i) (y))
iff (x)i > (y)i. Correspondingly, (x) ≥m(i) (y) iff (x)i ≥ (y)i.

Given an index set I = (i1, i2, . . . , ik) (where any il ∈
{1, 2, . . . ,m}) and an objective vector (x), we consider the
sub-vector of dimension k of (x) by I as the vector composed
of all components of (x) with indizes from I . The notation is
(x)I

Definition 5. Given two objective vectors (x) and (y), we
say that (x) is subset-Pareto dominating (y) by index set I
((x) >p(I) (y)) iff (x)I >p (y)I . Correspondingly, (x) ≥p(I)

(y) iff (x)I ≥p(I) (y)I .

Obviously, >m(i) corresponds with >p({i}). By marginal
dominance, we refer to a situation where an agent or the
operator is comparing two allocations by the i-th objective
alone. By subset-Pareto dominance, an agent or the operator
compares by a subset of the objectives.

To give an example, consider two multi-vectors X and Y ,
where agent i is focussing on the i-th objective alone (i.e. >i

is >m(i) and ≥i is ≥m(i)):
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By the star *, we have indicated the value used in com-

parisons >i and ≥i for each agent’s objective. We see that
for agents 1 and 2, there is no improvement in Y : neither
(y1) >m(1) (x1) (i.e. (y1)1 > (x1)1 or 2 > 3) nor
(y2) >m(2) (x2) (i.e. (y2)2 > (x2)2 or 2 > 9) holds. But
for i = 3, there is an improvement: (y3) >m(3) (x3) (i.e.
(y3)3 > (x3)3 or 5 > 3). So, we have to look if there is
a j 6= i fulfilling properties (1) to (3) of Definition 2. The
choices for j are 1 or 2. In fact, j = 1 has these properties:
(1) (x3) ≥m(1) (x1) (i.e. (x3)1 ≥ (x1)1 or 5 ≥ 3); (2)
(y3) >m(1) (x1) (i.e. (y3)1 > (x1)1 or 5 > 3); and (3)
(x1) >m(1) (y1) (i.e. (x1)1 > (y1)1 or 3 > 2). So, for this
example, agent 1 is “envy” about the potential improvement
for agent 3, or X >mf Y . It can also be seen that this is an
example for a 2-cycle, since also Y >mf X holds (agent 3 is
an envy for both improvements, the one of agent 1 from 2 to
3, and the one for agent 2 from 2 to 9).

Finally, we recall the concept of a maximum set (or non-
dominated set, or set of maximal elements). We provide the
simpler definition of Sen [2], as it is sufficient for the present



analysis. For a more precise definition, which allows to specify
rationalizability of a social choice, see [3]:

Definition 6. Given a relation >r as subset of A× A. Then,
the maximum set of >r, Mr is given by all a∗ ∈ A where
there is no other a ∈ A, a 6= a∗ with a >r a∗.

In the following section, we will analyze the proposed
generic multi-fairness with regard to different settings for the
agent relations.

III. COMPARATIVE STUDY ON USER PREFERENCE
SCENARIOS

A. Exclusive Marginal Preference Relations

In this setting, each agent is focusing exclusively on a single
objective, thus n = m, >i≡>m(i) and ≥i≡≥m(i). We want
to investigate the frequency of the relation occurrence among
unbiased multi-vectors, and their maximum sets. Therefore,
we perform random sampling of multi-vectors by uniform
sampling all components of all objective vectors from [0, 1].
Table I gives some results for increasing number of agents
(and objectives). Pairs s1 and s2 of multi-vectors were sampled
10,000 times. It is shown how often the >mf relation with that
setting of the agent relations appears between s1 and s2, but
also, how often there was a 2-cycle between s1 and s2.

TABLE I
FREQUENCY OF MULTI-FAIRNESS RELATION AND CONFLICTS FOR THE

CASE THAT ALL USER FOCUS ON DIFFERENT OBJECTIVES AMONG 10,000
PAIRS (s1, s2) OF RANDOM SAMPLES OF DIMENSION n.

n s1 >mf s2? s1 >mf s2 ∧ s2 >mf s1?
2 3382 145
3 2570 143
4 2374 159
5 2306 149
7 2933 467
10 2215 286
15 2911 542
20 3612 933
50 7966 6339
100 9883 9796

It can be clearly seen that with increasing n the relation
becomes more and more abundant. For large n, nearly each
random multi-vector is in relation to any other random multi-
vector. However, for n below around 20, it appears to be a
rather constant ratio (about 30%). The meaning is that for
“selfish” agents, who all focus on their own objective, the
chance of having an envy is approximating 1 for increasing
number of agents. The number of value-based comparisons is
fixed (we check four relations for testing multi-fairness) but the
number of candidate envies is increasing. In such a community,
it appears hard to achieve fairness.

Table II provides the corresponding analysis of the maxi-
mum sets for increasing number of objectives, or users. For
the evaluation, a set of 100 random multi-vectors was sampled
100 times, and the maximum sets of the 100 multi-vectors
were evaluated according to the minimum size, maximum size,
average size, and number of cases where the maximum set was
empty (as a consequence of the presence of 2-cycles). Also

here, below 10 objectives, the relation appears to be efficient
with regard to specifying a maximal state, but then, the size
of maximum sets decreases rapidly, and the relation becomes
less and less able to specify a fairness state among the agents.
Since the relation becomes abundant, it becomes more and
more likely that each random multi-vector is dominated by
any other multi-vector.

TABLE II
ANALYSIS OF THE SIZE DISTRIBUTION OF MAXIMUM SETS Mmf OF 100
RANDOM VECTORS OF DIMENSION n, SAMPLED 100 TIMES. CASE: ALL

USERS WITH DIFFERENT OBJECTIVE.

n min |Mmf | = 0? max average
2 1 0 9 3.7
3 2 0 11 5.61
5 2 0 10 6.47
10 0 3 9 3.83
20 0 79 2 0.29

B. Shared Sub-Pareto Dominance Relations

In this setting, we consider agents who are each focusing
on two objectives, and share exactly one objective with exactly
one other agent. So this can be considered a more collaborative
community. Formally, all agents compare by sub-Pareto domi-
nance relation: >i becomes >p({i,i+1}) for i = 1, . . . , (n− 1)
and >n≡>p({n,1}) (and correspondingly for the ≥i relations).
The same evaluations as for the former case were performed.
Results for frequencies are given in Table III and for the
maximum sets in Table IV.

TABLE III
FREQUENCY OF MULTI-FAIRNESS RELATION AND CONFLICTS FOR THE
CASE THAT ALL USER FOCUS ON TWO OBJECTIVES, TWO USERS SHARE

ONE OBJECTIVE, AMONG 10,000 PAIRS (s1, s2) OF RANDOM SAMPLES OF
DIMENSION n.

n s1 >mf s2? s1 >mf s2 ∧ s2 >mf s1?
2 5654 2497
3 4377 1250
4 3326 658
5 2581 354
7 1539 231
10 748 4
15 224 0
20 115 0
50 8 0
100 8 0

We note a completely different behavior to the former “self-
ish” setting of marginal objectives: with increasing number of
users, the relation becomes sparse, and also the 2-cycles are
rapidly vanishing. It has to be related to the fact that Pareto
dominance is not a total relation, i.e. there are pairs of vectors
x and y where neither x >p y nor y >p x holds.

The sparseness of a relation has the advantage that empty
maximum sets become more and more unlikely, as can be
easily seen in Table IV, but also the disadvantage that they
will increase in size, and thus that the relation allows less and
less to specify a fair state. For 20 agents, about 50% of random
multi-vectors already belong to the maximum set.



TABLE IV
ANALYSIS OF THE SIZE DISTRIBUTION OF MAXIMUM SETS Mmf OF 100
RANDOM VECTORS OF DIMENSION n, SAMPLED 100 TIMES. CASE: ALL

USERS WITH TWO OBJECTIVES, TWO USERS SHARE ONE OBJECTIVE.

n min |Mmf | = 0? max average
2 0 95 1 0.05
3 0 87 2 0.15
5 0 31 3 1.02
10 7 0 19 11.41
20 36 0 55 45.08

C. Mixed-Marginal Preference Relations

As a third setting, we consider the sharing of two marginal
relations among all agents by different ratios. It means that
there are n user, two objectives, and for a ratio r, n·r (rounded)
agents use the relations >m(1) and ≥m(1), and the remaining
agents use the relations >m(2) and ≥m(2). Results of the same
analysis as in the cases before are given in Table V for the
frequency and in Tables VI, VII and VIII for the maximum
sets, all for three choices of the ratio r of agents using objective
1 to agents using objective 2.

TABLE V
FREQUENCY OF MULTI-FAIRNESS RELATION AND CONFLICTS FOR THE

CASE THAT A SHARE r OF USERS FOCUSSES ON ONE MARGINAL
OBJECTIVE, (1− r) ON A SECOND, AMONG 10,000 PAIRS (s1, s2) OF
RANDOM SAMPLES OF DIMENSION n. “REL?” STANDS FOR THE TEST

s1 >mf s2 AND “2-CYCLE?” FOR THE TEST s1 >mf s2 ∧ s2 >mf s1 .

r 0.1 0.3 0.5
n rel? 2-cycle? rel? 2-cycle? rel? 2-cycle?
2 3374 0 3350 129 3344 126
3 2498 0 2545 97 2571 117
4 1957 0 2137 75 2180 82
5 1810 63 1934 65 1931 68
7 1359 25 1620 66 1572 67

10 1176 37 1431 75 1447 64
15 952 35 1116 64 1287 74
20 778 23 1029 57 1126 72
50 465 8 797 34 861 34
100 391 0 679 20 729 33

The frequency of occurrence clearly shows that this relation
is a good trade-off between the former two cases, the relation
neither becomes abundant nor sparse. However, for larger
number of users, the relation frequency is also decreasing,
but more slowly than in case of sub-Pareto dominance. The
number of 2-cycles seems also to decrease with large n. An
interesting observation is that for the case r = 0.1 (where the
multi-fairness is more close to “standard” maxmin fairness,
as the majority of agents is focusing on the same objective)
this value has a maximum for around 10 agents. For different
values of r, nevertheless, there are no extreme differences
between these frequencies.

The evaluation of the maximum set sizes confirms this
picture of a “trade-off” relation. There is no strong dependency
from r and the sizes of maximum sets are moderate, between
1 and 10 in most cases. As the average size is always close
to the average of maximal and minimal size appearing in the
100 samples, it also indicates a more normal distribution of
maximum set sizes. We also note that except one case, the

TABLE VI
ANALYSIS OF THE SIZE DISTRIBUTION OF MAXIMUM SETS Mmf OF 100
RANDOM VECTORS OF DIMENSION n, SAMPLED 100 TIMES. CASE: 10%

OF USERS FOCUS ON ONE OBJECTIVE, 90% ON A SECOND OBJECTIVE.

n min |Mmf | = 0? max average
2 1 0 2 1.48
3 1 0 3 2.02
5 1 0 9 5.24
10 1 0 14 6.23
20 3 0 14 7.92

maximum set was always non-empty.
Thus, sharing of the same objectives (or comparison rela-

tion) among agents, more or less independent of the sharing
ratio, appears the optimal way to use the proposed multi-
fairness in order to solicit a fair distribution state.

TABLE VII
ANALYSIS OF THE SIZE DISTRIBUTION OF MAXIMUM SETS Mmf OF 100
RANDOM VECTORS OF DIMENSION n, SAMPLED 100 TIMES. CASE: 30%

OF USERS FOCUS ON ONE OBJECTIVE, 70% ON A SECOND OBJECTIVE.

n min |Mmf | = 0? max average
2 0 1 7 3.46
3 1 0 8 4.01
5 1 0 10 5.04
10 1 0 8 4.97
20 1 0 7 4.51

TABLE VIII
ANALYSIS OF THE SIZE DISTRIBUTION OF MAXIMUM SETS Mmf OF 100
RANDOM VECTORS OF DIMENSION n, SAMPLED 100 TIMES. CASE: 50%

OF USERS FOCUS ON ONE OBJECTIVE, 50% ON A SECOND OBJECTIVE.

n min |Mmf | = 0? max average
2 1 0 8 3.6
3 1 0 10 4.01
5 2 0 12 5.44
10 1 0 11 5.71
20 1 0 9 3.81

D. Discussion

The evaluations for different settings have shown that in
fact multi-fairness can behave much differently, and depends
strongly on the type and distribution of agent relations. While
the qualitative results might be rather obvious for the various
settings (for example that under a condition where each agent
is focusing on his own objective, envy-free fairness is hard to
achieve), the additional specification of a relation allows for
further quantitative analysis (to continue the example: however,
for a limited number of agents, below 10, fairness can be
sufficiently achieved). This can be seen as an advantage of
the proposed concept.

The appearance of 2-cycles (not to mention k-cycles with
k > 2) is a clear disadvantage. For maxmin fairness, such
cycles are impossible. However, the analysis has also shown
that the effect on the existence of maximal elements is also
strongly differing, and that there are settings where the chance
to have an empty maximum set is practically 0. Moreover, the
relation appears to be scalable, means that there are ways to



modify the representation of agent preferences, expressed by
their relations, in order to enforce sparseness of the relation
and thus to increase the size of maximum sets.

IV. CASE STUDY: WIRELESS CHANNEL ALLOCATION

In order to further demonstrate the investigative potential
of the proposed generic multi-fairness, we provide a study on
the problem of allocation users to channels and timeslots in
a wireless communication network. Here, a set C of m cells
ci with i = 1, · · · , m is given. Each cell represents a channel
number and a timeslot, but with regard to the combinatorial
nature of the problem, we will ignore this matrix structure
and focus on a linear array of cells. There are n users U =
{ui | i = 1, · · · , n} who want to employ the wireless network.
However, each user can employ each cell differently - behind
this we can find the physical circumstances of the network, the
device and its motion that can be summarized into an utility
factor (sometimes also called channel coefficient) represented
by a factor fij (usually a real from [0, 1]). Multiplication of the
available bandwidth (assumed to be equal for all cells) with
that factor gives the usable bandwidth for the particular user
ui, if the cell cj is allocated to her. The task of the operator is
to assign exactly one user to each available cell, i.e. to specify
a mapping a : C → U by which cell ci is assigned to user
a(ci) (we will call it allocation a and being represented as
an ordered m-tupel of users). Then, a user ui will receive a
total utility Fi as sum of the utility factors of all cells that are
assigned to her:

Fi(a) =
∑

j,a(cj)=ui

fij (1)

There are nm possible allocations, and the task is to
describe an efficient procedure to select one allocation among
all allocations under given circumstances2. This is the Wireless
Channel Allocation (WCA) problem, which appears to be a
special case of distribution of indivisible goods (one cell can
only be assigned to one user). Several approaches to this
problem have already been presented, for example based on
auction systems [4] or by direct application of a relational
concept of maxmin fairness [5]. It can be seen that global
optimization can produce unwanted situations. For example, if
the operator is considering to maximize the total bandwidth
usage, i.e.

∑
i Fi(a), then the solution is to assign the cell to

one of the users with largest utility factor:

a(ci) = uj where j = arg max
k

[fki] (2)

However, in cases like

F = {fij} = {{0.1, 0.2}, {0.3, 0.4}}

this could lead to the selection of the same user for all
cells (user 2 in this example). Then, all other users would not
receive any bandwidth.

2Note that we are using the term efficient here in the sense of efficient cause:
the environmental situation, abstracted by the model and its parameters, should
always be sufficient to entail a unique allocation.

An agent with total utility 0 can be considered as an envy
agent (or envy for short), so the goal of the WCA becomes
to find an envy-free allocation. We can use maxmin fairness
to select an allocation, as well as the proposed maxmin multi-
fairness. The latter would allow to take user preferences into
account. For studying this option, we consider a small scaled
problem, because otherwise an exhaustive analysis would not
be possible due to the combinatorial explosion of larger-scaled
problems.

Assume there are 6 cells, and 3 users. Thus there are
36 = 729 possible allocations. Two users have a preference
for sending traffic more early, so the total utility achieved in
the first three cells is weighted higher than for the remaining
three cells. User 3, on the other hand, is fine with sending
traffic later (maybe also by the consideration that more users
will compete for the first cells). We assume that the preference
is expressed by a weighted average with weights 0.8 and 0.2.
So we can specify two objectives:

Li(a) =
∑

j,a(cj)=ui,j≤3

fij (3)

Hi(a) =
∑

j,a(cj)=ui,j>3

fij

(oi)1(a) = 0.8Li(a) + 0.2Hi(a)
(oi)2(a) = 0.2Li(a) + 0.8Hi(a) (4)

Users 1 and 2 are comparing allocations with regard to the
marginal-larger (or marginal-≥) relation by the first element,
and user 3 does the same by the second argument of the
objective vector. So we have specified everything needed to
find the maximum set of the corr. multi-fairness relation.
Then, we want to explore the trade-off for each user caused
by taking her preferences into account, by comparison with
the corresponding objectives for the maximum set of maxmin
fairness (which does not take any preferences into account).
The evaluation is as follows:

1) A random instance of a WCA problem for 6 cells and
3 users was created 500 times. Each time, the utility
factors fij for each user and each cell were taken as a
uniform random number from [0, 1].

2) For each instance, the maximum set Mmmf of maxmin
fairness was computed, i.e. the set of all allocations a∗
such that there is no other allocation a with F (a) >mmf

F (a∗).
3) For each such a∗, the objective vectors (oi) for all three

users were computed.
4) For each WCA instance, the maximum set Mmf of

multi-fairness with above specification of the relations
was computed.

5) For all WCA instances, the objective vectors for each
element of Mmmf were compared to the objective
vectors for each element of Mmf with regard to the
following criteria (with ammf an allocation from Mmmf

and amf an allocation from Mmf ): the gain in objective



TABLE IX
RESULTS FOR COMPARING THE MAXIMUM SETS OF MAXMIN FAIRNESS

AND MULTI-FAIRNESS (VECTORS INDICATE THE CORR. VALUES FOR USERS
1, 2 AND 3), WEIGHTS ARE 0.8 AND 0.2.

Criterion Value
Number of comparisons 5744
How often could users im-
prove their objective? (62%, 60%, 87%)

How much could users
gain for their objective? (0.061, 0.041, 0.318)

How often did users have
a loss in total utility? (68%, 68%, 48%)

How large was the loss in
total utility? (0.239, 0.251,−0.005)

Empty maximum set for
multi-fairness 6 times

1 for users 1 and 2, or objective 2 for user 3, in amf

against ammf ; the count of occurrences of the event that
objective 1 for users 1 and 2, or objective 2 for user 3
in amf is larger or equal to the corresponding objective
in ammf ; the loss in total utility (i.e. objective 1 plus
objective 2) in amf against ammf for each user; the
count of occurrences of the event that there is such a
loss; the number of cases where the maximum set of the
multi-fairness was empty.

6) The sum of all these values where divided by the sum
of |Mmmf | × |Mmf | to get their average over the 500
random WCA instances.

The results of these evaluations are shown in Table IX.
The results indicate a trade-off: users have a chance to

improve their preferred objective, but may loose in total utility.
The evaluation of the results in more detail:
• The maximum sets are rather small in all cases. 5744

comparisons indicate an average size of about 3 elements.
Unfortunately, in a few cases, the multi-fairness does not
allow for specifying maximal elements.

• Users 1 and 2 have a roughly 60% chance to improve
their objective (i.e getting a larger allocation in the first
3 cells), while user 3 has a higher chance, close to 90%.
This indicates that users 1 and 2, who share the same
objective, in fact compete for their objective. If both, user
1 and user 2, have a chance of 60%, then this means that
in 84% of the cases (i.e. with probability 1− (1− 0.6)2),
user 1 or user 2 will improve, and this value is close to
the value for user 3 (who does not share her objective).

• The fact that user 3 does not share the objective seems
to give other benefits as well: the average gain for user
3 is about 5 times larger than for users 1 or 2, it looses
less frequently in total utility, and the average loss in total
utility is close to 0.

To validate the last observation, the corresponding results
for the weights 0.6 and 0.4 instead of 0.8 and 0.2 are given in
Table X. Now all user start to focus on more similar objectives,
and in general, the relation selects in a manner more similar
to the maxmin fairness, in particular:
• The maximum sets are getting smaller, and the number

of empty maximum sets is increasing.

TABLE X
RESULTS FOR COMPARING THE MAXIMUM SETS OF MAXMIN FAIRNESS

AND MULTI-FAIRNESS (VECTORS INDICATE THE CORR. VALUES FOR USERS
1, 2 AND 3), WEIGHTS ARE 0.6 AND 0.4.

Criterion Value
Number of comparisons 3028
How often could users im-
prove their objective? (67%, 67%, 74%)

How much could users
gain for their objective? (0.007, 0.001, 0.039)

How often did users have
a loss in total utility? (44%, 45%, 43%)

How large was the loss in
total utility? (0.051, 0.054, 0.033)

Empty maximum set for
multi-fairness 38 times

• The gains in objective values get close to 0 (but are still
larger for user 3).

• The benefits for user 3 are getting smaller: the chance of
loss in total utility is now about 50% for all users, while
the amount of loss is nearly 0 in all cases.

So we can confirm a tendency towards maxmin fairness for
increased similarity of the objectives3.

In summary, the evaluation of the example case allows for
a better understanding of fairness with regard to competing
user preferences: user 3 has a clear benefit from her focus on
a different (actually exclusive) objective, while users 1 and 2
have to share the benefits as a result of the focus on the same
objective. There is also a trade-off for including preferences:
a higher chance of increase in an objective is accompanied
by a higher chance of loss in the total of objectives. Last but
not least, both facts also confirm the further characterization
of fairness relations as extremality relations.

V. RELATED WORK

The most closest topic that has been treated in related
works is the fair distribution of multiple resources. Recently,
Dominant Resource Fairness (DRF) has been proposed [6][7].
There, maxmin fairness is extended to the case of distribution
of several resources like CPU time and memory demand at the
same time. For each agent (task), the maximal share of any
resource is selected, and maxmin fairness is seeked for these
so-called dominant shares. The method is compared to the
popular asset fairness and the Competitive Equilibrium from
Equal Incomes (CEEI) approach of microeconomics theory
[8][9][10] by a catalogue of criteria for such resource sharing
regimes. In asset fairness, an equal valued share for each
resource has to be identified. Then, assigning equal shares
to each agent is formulated as a combinatorial optimization
problem. In CEEI, all agents start from an equal share of
1/n and then start to perform mutual transactions in order
to achieve a Nash equilibrum. The main difference of these
approaches and the present one is that resources of multiple
qualities can be independently manipulated and that agent
intervention is possible in this process. In present approach,
the objectives represent different aspects of the same resource

3With the exception of the larger number of empty maximum sets.



sharing. For example, in the specification of a routing in
end-to-end user traffic in a data network, the same routing
gives raise to different objectives like delay time, number of
hops, and maxmin fair traffic rates. An infrastructure property
like delay cannot be subject of a resource sharing alone,
since a delay cannot be “shared” or distributed among agents.
However, it can be combined with other sharable resources,
put under the same umbrella as an additional objective in
the presented relation-based framework. Moreover, objectives
cannot be manipulated independently. The disadvantage here
is that agents cannot directly intervene in the process, and
therefore, our focus was giving to the central agency of an
“operator”. But therefore, we also do not have the problem
of deception by agents, probably collaborating, giving wrong
information about their demands in order to yield higher shares
of resources. It also has to be noted that DRF can be seen as a
similar formal extension of the leximin relation, by using the
comparison of maxima of objective vectors as agent specific
relation - thus, the DFN approach could basically follow the
same design principle as our approach. Otherwise, we are not
aware of any other direct attempt to generalize maxmin fairness
to the case of multiple objectives.

The use of relational mathematics in fair division problems
is more common. In [11], Bouverte et al. study a fair division
problem of indivisible goods without money transfers. Here, in
addition to the agents and goods, to each agent a preference
relation is assigned. The fair division problem then is formu-
lated as the task to achieve Pareto-efficiency and envy-freeness.
The innovation in this work is the transition to propositional
logic and formal language theory, and also allows for example
for analysis of complexity of the fair division problem. In
comparison, our approach extends Pareto efficiency (which
often appears to be not achievable) to maxmin multi-fairness
in the same way as Pareto-equilibrum is extended to the
maxmin fair state by giving an extra focus on agents that
already receive less than other agents. Thus we assume that
it is possible to handle the accompanying problems within
the framework of relational mathematics alone. Complexity
analysis and a formal “logic of fairness” are beyond the scope
of the present approach, but have to be seen as important
questions for future research.

VI. SUMMARY, CONCLUSIONS, AND FUTURE WORK

The extension of maxmin fairness to the case of multiple
objectives (different observations of the allocation of a shared
resource) and multiple agent models (agent-specific relations
between the objective vectors) has been introduced, and the
implications for various settings of this multi-fairness have
been explored. The specific settings were (1) the “selfish
community” where each agent is exclusively focusing on a
single objective (and where the multi-fairness comes out to
be hard to achieve with increasing number of agents), (2)
the “collaborating community” where each agent shares an
objective’s preference with exactly one other agent, and where
fairness comes out to be abundant and underspecified, and
(3) the mixed setting, where a ratio of agents shares one

objective, and the other agents share another objective: this
appears to be the trade-off between settings (1) and (2) and
allows for efficient specification of fairness. Furthermore, the
multi-fairness was also studied on a specific resource sharing
task, the Wireless Channel Allocation problem, with a problem
scale that allowed for an exhaustive analysis. The trade-off
between overlapping user-preferences, as well as between
individual user preferences and the indifferent situation of
maxmin fairness could be demonstrated as well. Multi-fairness
allows for a quantitative analysis of qualitatively given user
preferences in a convenient way.

One main point has been left open: the task of finding the
maxmimum set of the relation in the general setting. Here,
only random sampling and exhaustive search have been used
as means for investigation. Given the complexity of the search
problem, we cannot expect that easy and tractable algorithms
like the Bottleneck Flow Control for maxmin fairness can be
found soon. Instead of this, we promote the use of meta-
heuristic search algorithms, as the potential of these algorithms
has already been demonstrated for the case of searching
the maxmimum set of the Pareto dominance relation by so-
called Evolutionary Multi-objective Algorithms, and also been
demonstrated for the case of maxmin fairness [12].
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