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Abstract—In the relational approach to fairness, fairness
is considered as a social choice that coincides with the
maximum set of a fairness relation. Here we consider the
application of this approach to achieve general fairness in
collaborative systems. The approach is based on posing
additional conditions on the fairness relation based on
representation of collaboration among agents by a social
graph, and various social types of agents. The relation can
be used for the formal analysis of various collaboration
scenarios by justifying tractable sizes of maximum sets of
corresponding collaborative fairness relations. As an example
result, the introduction of cliques of larger size appears to
be in favor of achievability of collaborate fairness.

Keywords-collaborative systems; fairness; maxmin fair-
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I. INTRODUCTION

These days we can witness a growing impact of the
networking paradigm in various fields of economic, cul-
tural and political activities, including social networks,
hardwired network infrastructure, power grids, distribution
of trade goods, road traffic, regional accessibility, large-
scale institution schedules etc. This has also stated new
challenges and demands on the general problem of sharing
and distributing goods. It is a situation where the global
maximization approach demonstrates more and more weak
points, especially with regard to the parallel fulfillment
of a particular conflicting suite of additional demands
like proportionality, envy-freeness, equity and efficiency,
commonly put together under the term fairness.

Commonly, fairness is seen as an issue of a set of agents
in a joint state (for example, a state reflecting the shares
of a good allocated to the agents), justifying their present
situation by mutually referring to each other’s state. In this
approach, the notion of stability appears where some states
appear in a fixed relation to all other feasible states, and is
often accompanied by the provision of two functions: an
utility function, expressing the value of a share for each
agent separately, and an aggregation function, fusing the
values of utilities (or raw states) into a single real value
that can be employed for direct numerical comparisons.
Typical examples here are Jain’s Fairness Indicator, or
the Gini Index. However, these approaches unanimously
refer to maximization by having all states equal, and
measure the deviation from such a state on more or less
incomparable scales.

The interplay of proportionality and envy-freeness can
be seen as an extension of this rather simple approach,
not referring to aggregation and not requiring equality.
A proportional fair sharing is a state where all n agents,

according to their own utilities, receive at least 1/n of the
total value of a good [1]. An envy-free state is seen as a
state where no agent receives more than the other, always
seen in his or her own micro-universe of pre-assigned
utility values. It often comes out that proportionality is
under-specified while envy-freeness is over-specified, i.e.
that it is rather easy to provide proportional fair sharings,
but the number of choices can be too high, while it might
be impossible to yield envy-freeness. In combination with
the additional consideration of efficiency (where one state
can only be improved if declining at least one other state),
equity (where shares of same value are transferable be-
tween agents) and majority (maximization of the ordered
aggregation of states) [2] one gets both: a challenging
mixture of demands on new optimization approaches, and
a mixture of demands that easily can become more and
more conflicting and only be applicable to a restricted set
of sharing scenarios.

In this context, we want to promote a relational ap-
proach to fairness, where we essentially compare among
different state vectors and not among components of a
same state vector, and consider fairness as a social choice
among all feasible state vectors. A generic approach to
social choice was introduced by Suzumura [3]. For this ra-
tionalization approach to social choice, social preference
is expressed in terms of a set-theoretic relation R among
states. Given a set X of states, a relation R is a subset
of X ×X . Furthermore, one assumes that a social choice
is formalized as a social preference function that assigns
to each subset A of X a (non-empty) subset of A. Then,
given a relation R we can consider extreme elements of X:
greatest elements that are in relation to all other elements,
or maximal elements to which no other element of X is in
relation. Then, for short, a social choice is rationalizable if
there is a relation R such that the social choices coincide
with extreme elements of R itself. A model of a society
then is expressed in terms of so-called axioms, and it is
explored how these axioms entail specific properties of the
social choice relation.

We are considering the application of this approach to
model fair states as rationalizable social choices, while
using a fairness relation for rationalization of the choices.
In comparison to the social choice approach, there are
only two differences: (1) we are not going to use specific
axioms, but provide the specific relations itself in order
to model the economic context, (2) we are focusing on
maximal elements instead of greatest elements. Item (2)
refers to an understanding of a fairness relation between



two states x ≥R y as follows: agents in state y would
“envy” agents in state x (by pure state comparison, or the
unfair manner of transition from x to y). Therefore, the
maximum set can be characterized as a set of envy-free
states.

The most prominent fairness relations are Pareto domi-
nance, maxmin fairness [4] and proportional fairness [5].
Assuming two states x, y ∈ X they are formally given as:

Definition 1. Pareto dominance: x ≥p y if for all i xi ≥
yi.

Definition 2. Maxmin fairness: x ≥mmf y if for all i
with xi < yi there exists a j such that (1) xj ≤ xi and
(2) xj > yj .

Definition 3. Proportional fairness: x ≥pf y if and only
if

n∑
i=1

yi − xi

xi
≤ 0 (1)

Here we use a ≥-notation for the relation, in order to
express a meaning of “at least as good” - the corresponding
“better”-relation, using >-notation is per suggestion of
Suzumura [3] expressed as asymmetric part of such a
relation:

P (R) = {(x, y)|(x, y) ∈ R ∧ (y, x) 6∈ R} (2)

We cannot discuss all details of the relational approach
here and wanted to just cover the basics. For more details,
see the provided references as well as [6]. We only want
to mention two more properties of relations in general and
their implication for fairness, since we will have to refer
to them in this paper.
A relation R is said to be cycle-free if there is no sequence
xi with i = 1, .., k and k ≥ 2 of states such that x1 ≥R

x2, x2 ≥R x3, . . . , xk−1 ≥R xk and xk >R x1. Note that
>R stands for the asymmetric part of a ≥R-relation. The
advantage of a cycle-free relation is that each finite set
has a non-empty maximum set. For each finite set, it also
allows to introduce a ranking of elements: rank 1 are all
elements of the maximum set, rank 2 are the elements of
the maximum set after removal of the rank 1 elements
from X , then removing rank 1 and rank 2 elements from
X and selecting the maximum set gives rank 3 elements
etc.
The adual of a relation is defined as

(x, y) ∈ Ra ↔ (x, y) ∈ R ∨ (y, x) 6∈ R (3)

and for a given ≥R-relation expressing “at least as good”
will express “at least as efficient” since, in extension to
R it also refers to non-membership. A typical example is
Pareto-efficiency, seen as a state where an agent can only
improve its state if another agent’s state becomes declined
— this is actually the adual relation to Pareto dominance.

The relational approach to fairness reveals opportunities
for elaborated modeling of fairness situations. As an
example, the extension to multi-fairness was presented in
[7]. The reason for this are the fairly generic ingredients
of the approach: it only needs to specify the sets X and R,

where the latter one is a means for comparing two states,
however provided.

Groups of agents also undergo social relations and this
can have an influence on judgments about fairness of
a state or between states. Networking issues have been
regarded to collaboration for various aspects. Many works
focus on the issue of community detection and evaluation.
Clique percolation is presented as a means for the analysis
of network dynamics under collaboration in the seminal
paper [8] with a result that stability of large cliques is
related to their dynamic change, while small cliques have
to remain unchanged. Follow-up studies identified commu-
nities from evaluation of log files [9] or general evaluation
of graphs [10]. The focus on procedural collaboration
beyond identification of collaboration can be found in
other works like collaborative tagging [11] with regard to
the modeling of folksonomy, and collaborative filtering,
e.g. for recommendation systems or spam filtering [12].
For networking control, collaboration has been considered
especially with regard to trust in communication [13]. An
example for collaborative radio spectrum access is studied
in [14] and for collaborative file access in P2P networking
in [15]. In [16] a packet forwarding fairness protocol is
proposed that identifies a malicious (i.e. considered as
acting unfair) node by communicating node reputation
among neighboring nodes in a wireless mesh network.

However, the question about a collaborative fairness,
taking social relations among agents into account, did not
find much attention so far. One example is the proposal of
a time-stamp based approach to achieve data consistency
as well as fair resource sharing and jitter compensation
in a collaborative virtual environment [17]. But there,
fairness is seen as the unbiased treatment of waiting
request in a queue, based on imposing expected delays
to each such request. It means there is no strict formal
concept of fairness itself. In [18] we can find a study
demonstrating the evolution of unfairness in complex
cooperation networks by highly connected collaborators
contributing little while extracting high payoffs. Also here,
we do not see any formal specification of fairness. One
reason for such shortages can be seen in the weak point
of the utility and single-state based approaches. The only
choice to represent dependable justifications among agents
then would be the provision of epicycles over epicycles
of conditional utility functions, which seems both: hard
to specify, and hard to employ. The relational approach
to fairness does not need such a specification, and can
be based on the manner of judging between two states
(considering structural information of a social network)
alone. For short: it does not need numbers for comparison
but procedures.

The main contribution of this paper is the provision
of such a judgment procedure, taking a fairness relation
and a social network of relationships into account. This
gives raise to a formal definition of collaborative fairness
as a refinement of a fairness relation, where additional
constraints are derived from fairness among peers. Then,
we can study and analyze various features of the social



network, the ambition of agents etc. The definition of col-
laborative fairness based on a social graph, an allocation
of social types of agents, and a base fairness relation
will be provided in Section II. Then we demonstrate
computational means for comparing various forms of
collaborations with regard to achievability of fairness. The
main indicator will be the estimated size of maximum sets,
judging a scenario where the maximum sets are becoming
large as intractable with regard to collaborative fairness.
More details on this approach, and a number of examples
will be provided in Section III. The paper concludes with
an Outlook section, as we feel that the presented approach
offers a lot of flexibility and potential extensions to study
more refined models of collaboration.

II. FORMAL APPROACH TO COLLABORATIVE
FAIRNESS

We consider a task of resource sharing of dividable or
individable goods G among a group A of agents. The
utility of an allocation of goods to agents is represented
as a state vectors x. The dimension of a state vector
is the same as the number of agents n = |A| and all
state vectors are restricted to a feasible domain S as a
subset of R+

n (we exclude allocations where some agents
receive no share of any available good). For example, the
goods can be channels of a base station in a wireless
network schedule, traffic rates in a wired network with link
capacity constraints, relays in a cooperative networking
architecture, or queues with limited buffer capacity in a
network of processors. The states then can represent traffic
rates.

So far, this is the “standard” way of expressing quality
of resource sharing. In addition, we have a directed social
graph Gs representing a relation between agents. The
relation aRsb between two agents a and b can be, for
example, understood as “a cares for b” in a sense related
to the utility of goods that are allocated to b. At the same
time, and only then there is an edge from node a to node
b in the social graph Gs.

The question now is about a fair allocation of goods,
taking the social graph into account. Generally, when
speaking about fairness, we have to utilize viewpoints of
one agent on behalf of other agents - agent a judges the
advantage of a situation not only based on his or her
own advantages, but also on accompanying advantages or
disadvantages sensed by other agents. With regard to the
social graph, we will relate this perspective to the agent’s
“peers,” i.e. the set of all agents to which he or she is in
social relation (and there is a directed link in the social
graph). Then we consider an agent to be “altruistic” in the
sense that an agent will give up an attempted improvement,
if there is a concomitant disadvantage for his or her
peers. Stability of a state then is achieved whenever an
improvement for an altruistic agent results in a decline
for his or her peers.

We may also assume that our small society of agents
can become “infected” by a few “envy” agents. Here, a
decline of an envy agent is only possible if there is also

a decline for his or her peers.
With regard to the social graph, in addition to random

graphs, we will also consider the appearance of cliques in
the social graphs, with the following property: Each agent
of a clique is connected to all other agents of that clique,
and only to them.

Now we want to introduce a relation that, given a set
of states S, a social graph Gs, a typing T of all agents
as either altruistic or envy1 and a “base relation” R will
represent the collaborative fairness between states x and
y from S. We also need a few more formal notations: by
Gi we indicate the set of all peers of agent i, and by R|I
with index set I ⊆ {1, . . . , n} we indicate the relation R
reduced to sub-vectors with components indexed by I . For
example, having 7 agents, I = {1, 3, 4} and if taking the
proportional fairness relation as R:

x ≥R|I y ↔ y1 − x1

x1
+

y3 − x3

x3
+

y4 − x4

x4
≤ 0 (4)

Finally, Ia indicates the index set of all altruistic agents,
and Ie of all envy agents (thus, Ia ∩ Ie = ∅ and Ia ∪ Ie =
{1, . . . , n}), and we write T = (Ia, Ie).

Using this notation, we may now state the definition for
collaborative fairness.

Definition 4 (Collaborative Fairness). For two states x
and y it is said that x is collaborative fair against
y (alternatively (R,Gs, T )-collaborative fair), x ≥cf y
(or x ≥cf(R,Gs,T ) y) if and only if the following three
conditions are met:

(1) x ≥R y

(2) ∀i ∈ Ia : (yi > xi)→ x ≥R|Gi
y

(3) ∀i ∈ Ie : (xi > yi)→ x ≥R|Gi
y

(5)

Surely, this definition needs a few explanatory words.
While loosing a little bit formal rigor, one may read “x >R

y” likewise as “compared to x, y appears unfair” or “x
declines towards y” or “y envies x” and the corresponding
≥R-relation with an additional “at most” modifier. In this
sense, condition (1) says that the collaborative fairness is
a refinement of a base relation R. Condition (2) considers
all altruistic agents and would read as: whenever there is
an improvement for an altruistic agent, there is a decline
for the agent’s peers; or: the peers would envy x; or: the
improvement would appear as unfair to the agent’s peers.
By maximizing the collaborative fairness, we are also
seeking a state where each improvement for an altruistic
agent appears unfair to his or her peers.

Then, condition (3) expresses a related concern of
envy agents (as an anti-thesis to collaboration, effectively
disturbing the collaboration): whenever there is a decline
for an envy agent, there must be a decline for the agent’s
peers as well.

Alternatively we can rewrite the conditions (2) and (3)
in Def. 4 by taking the logical equivalence A → B ≡

1The case that an agent is both, which is logically possible, will not
be considered here in order to keep the focus on the grouping aspects.



¬A ∨B ≡ ¬(A ∧ ¬B) into account

(1) x ≥R y

(2) ¬∃i ∈ Ia : (yi > xi) ∧ x 6≥R|Gi
y

(3) ¬∃i ∈ Ie : (xi > yi) ∧ x 6≥R|Gi
y

(6)

By putting the definition this way, we also ensure a
number of properties.

1) x ≥cf(R,Gs,T ) y implies x ≥R y, which follows
directly from condition (1) in Def. 4.

2) Whenever x Pareto dominates y and Pareto domi-
nance implies R then also x ≥cf y. Thus, it fulfills
(1), but also condition (2) since there is no yi > xi.
Condition (3) then is fulfilled for all envy agents
since Pareto dominance implies Pareto dominance
for each reduction to a subset of indices.

3) Whenever R is cycle-free the corresponding col-
laborative fairness relation is cycle-free as well.
Otherwise, since collaborative fairness implies R,
from a cycle of the ≥cf -relation a cycle of R
would follow. Thus, it also ensures the existence of
maximal elements and ranks for any finite sets of
states.

4) If there are no altruistic and envy agents at all,
collaborative fairness equals R. The same holds if
the social graph is empty, i.e. the agents have no
peers.

We conclude the discussion of the definition by the
provision of an example.
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Figure 1. Social graph of six agents a1 to a6. Agents a1 to a4 form
a clique of altruistic agents (notation ai : a) and there is an additional
altruistic agent e6 and an envy agents a5 (notation ai : e).

Consider as an example proportional fairness for states
of 6 agents, where agents 1 to 4 are altruistic and be-
long to one clique, agents 5 is envy with peers a3, a6
and agent a6 is altruistic with peers a2, a3. Figure 1
shows the corresponding social graph. This means T =
({1, 2, 3, 4, 6}, {5}). Then, if we compare two states x
and y and we assume a situation, as an example, where
x1 < y1, x4 < y4, x6 < y6 and for all other i xi > yi, the
relation x ≥cf y is tested by validating x ≥pf y and

y2 − x2

x2
+

y3 − x3

x3
+

y4 − x4

x4
≤ 0

∧ y1 − x1

x1
+

y2 − x2

x2
+

y3 − x3

x3
≤ 0

∧ y3 − x3

x3
+

y6 − x6

x6
≤ 0

∧ y2 − x2

x2
+

y3 − x3

x3
≤ 0

Here, the first line is a consequence of x1 < y1, i.e. the
first altruistic agents notes an improvement in y and checks

if there is a disadvantage for his or her peers (agents 2, 3
and 4). The second line is a consequence of x4 < y4 in a
similar manner. The third line is following from x5 > y5.
Agent 5 notes a disadvantage for him or her in y and
confirms that there is an disadvantage in y for his or her
peers as well. The fourth line follows like the first and
second line from x6 < y6 and the fact that a2, a3 are the
peers of agent 6. If all of these tests are positive, state y
is not considered as alternative to x.

III. RELATIONAL ANALYSIS OF COLLABORATION

The proposed approach to collaborative fairness allows
for an analysis of a rich set of configurations with regard
to different structures of social graphs and distribution of
social types of agents. Now we consider an indicator value
and the way to obtain it, in order to also have a computable
means for comparison. This can be achieved by studying
the expected size of maximum sets of collaborative fair-
ness relations.

Table I gives an impression for the bounds of maximum
sets for base relations. We remind on the fact that always
Pareto dominance implies collaborative fairness, while
collaborative fairness implies its base relation. Thus, the
maximum set of a collaborative fairness for a (finite) set
of states is a subset of the Pareto set, and the maximum
set of the base relation is a subset of the maximum set
of the collaborative fairness relation. This follows directly
from the specification of maximum sets. Then, the sizes
of maximum sets for collaborative fairness relations are
also bound between the sizes for the base relation and the
sizes for Pareto dominance.

For obtaining the values shown in Table I, 1000 states as
elements of (0, 1]n (dimension n is the number of agents)
were randomly sampled and the size of the maximum
sets for the corresponding relation was evaluated. The
experiment was repeated 30 times. The cell values in
the table (as well as in all following tables) show the
distribution of the maximum set sizes:

av (min− q25 −med− q75 −max)

where av is the average value, min,max are the minimum
and maximum sizes appearing in the 30 repetitions, med
the median value, and q25, q75 are the 25%- and 75%
quantiles resp.

We can see from Table I the well-known fact that
Pareto dominance becomes highly inefficient with increas-
ing dimensions. Even for the rather small number of 12
agents, nearly all states are maximal. This is related to the
exponential decay of the relation occurrence (see [19] for
related discussion and proofs). On the other hand, maxmin
fairness (with about linear decay) and proportional fairness
appear with rather small maximum sets.

Now we continue the same analysis for various con-
figurations of collaborative fairness. To get a general
picture, except cliques we do not consider any other
specific structure of social graphs here. Even then, we
can consider a large number of cases and need some
restrictions. Especially two cases are of interest, dubbed as



Dimension Pareto dominance Proportional Fairness Maxmin Fairness
8 541.3 (453 - 522 - 540 - 569 - 622) 4.5 (1 - 2 - 3 - 6 - 10) 5.6 (2 - 5 - 6 - 6 - 8)
12 914.7 (880 - 903 - 916 - 927 - 948) 13.8 (1 - 5 - 12 - 16 - 41) 7.2 (5 - 6 - 7 - 8 - 10)
20 957.5 (940 - 947 - 950 - 955 - 1000) 43.5 (6 - 21 - 38 - 60 - 110) 11.1 (7 - 10 - 11 - 12 - 15)

Table I
ESTIMATED SIZES OF MAXIMUM SETS FOR THE BASE RELATIONS.

Agents/Size of Clique Envy = 0 Envy = 1 Envy = 5
Proportional Fairness

8/0 13.33 (3 - 8 - 11 - 18 - 38) 19.20 (3 - 12 - 15 - 23 - 56) 35.67 (11 - 25 - 34 - 45 - 83)
8/2 11.87 (2 - 8 - 12 - 16 - 26) 30.73 (10 - 17 - 26 - 39 - 97) 58.40 (19 - 47 - 54 - 65 - 142)
8/4 11.77 (2 - 8 - 11 - 16 - 24) 16.83 (7 - 11 - 16 - 20 - 38) 40.47 (13 - 34 - 39 - 52 - 76)
8/8 4.13 (1 - 2 - 4 - 6 - 12) 4.83 (1 - 3 - 4 - 7 - 10) 14.7 (2 - 10 - 15 - 20 - 31)
12/0 48.20 (12 - 33 - 44 - 62 - 91) 55.13 (28 - 44 - 50 - 66 - 93) 90.57 (47 - 69 - 94 - 106 - 138)
12/2 46.9 (22 - 37 - 44 - 53 - 114) 85.4 (44 - 68 - 82 - 109 - 142) 108.5 (44 - 73 - 107 - 124 - 288)
12/4 44.57 (20 - 34 - 40 - 52 - 128) 54.0 (32 - 41 - 50 - 65 - 87) 100.4 (29 - 76 - 100 - 121 - 162)
12/12 12.10 (2 - 6 - 12 - 17 - 25) 12.43 (2 - 7 - 12 - 17 - 29) 26.27 (4 - 18 - 22 - 34 - 53)
20/0 189.9 (49 - 155 - 198 - 228 - 291) 203.5 (92 - 155 - 206 - 235 - 342) 253.6 (104 - 169 - 246 - 320 - 508)
20/2 209.9 (53 - 190 - 210 - 256 - 304) 270.3 (118 - 205 - 285 - 330 - 386) 285.1 (106 - 222 - 287 - 344 - 424)
20/10 154.9 (29 - 126 - 150 - 201 - 232) 176.0 (73 - 123 - 179 - 226 - 321) 208.8 (71 - 161 - 206 - 262 - 313)
20/20 37.53 (6 - 17 - 28 - 60 - 86) 45.23 (6 - 21 - 43 - 65 - 92) 70.8 (17 - 50 - 78 - 96 - 134)

Maxmin Fairness
8/0 25.00 (12 - 18 - 22 - 29 - 52) 40.67 (13 - 22 - 28 - 37 - 365) 79.43 (38 - 55 - 62 - 76 - 529)
8/2 17.87 (9 - 15 - 18 - 22 - 25) 51.87 (26 - 42 - 50 - 55 - 109) 117.9 (50 - 77 - 89 - 108 - 416)
8/4 23.83 (13 - 19 - 22 - 27 - 76) 41.93 (21 - 34 - 40 - 45 - 93) 78.47 (37 - 69 - 78 - 91 - 115)
8/8 5.17 (2 - 4 - 5 - 6 - 8) 8.10 (5 - 7 - 8 - 9 - 12) 25.10 (18 - 22 - 25 - 29 - 33)
12/0 62.23 (34 - 53 - 56 - 71 - 118) 72.93 (45 - 64 - 72 - 80 - 123) 122.8 (52 - 103 - 124 - 142 - 196)
12/2 64.43 (25 - 52 - 64 - 77 - 98) 123.7 (47 - 95 - 121 - 146 - 232) 161.4 (95 - 132 - 162 - 186 - 231)
12/4 76.57 (38 - 63 - 79 - 85 - 146) 109.9 (69 - 96 - 106 - 125 - 161) 166.6 (97 - 148 - 164 - 190 - 243)
12/12 7.33 (5 - 6 - 8 - 8 - 11) 9.60 (6 - 8 - 10 - 11 - 13) 23.70 (15 - 20 - 24 - 28 - 34)
20/0 294.1 (184 - 237 - 294 - 331 - 481) 306.0 (222 - 262 - 312 - 329 - 406) 386.3 (179 - 336 - 389 - 441 - 540)
20/2 303.5 (225 - 284 - 301 - 323 - 394) 380.9 (290 - 348 - 393 - 411 - 489) 421.2 (225 - 350 - 426 - 477 - 611)
20/10 182.6 (124 - 150 - 184 - 201 - 253) 197.4 (123 - 177 - 196 - 211 - 316) 262.4 (151 - 228 - 266 - 288 - 350)
20/20 10.83 (8 - 10 - 11 - 12 - 14) 12.50 (6 - 11 - 13 - 14 - 16) 23.70 (15 - 21 - 23 - 26 - 32)

Table II
ESTIMATION OF MAXIMUM SET SIZES OF 1000 RANDOM STATES, 30 REPETITIONS: MIXED SOCIETY RESULTS.

mixed society and sorted society. In general, mixed society
refers to a set of agents were a clique of size m coexists
with a random social graph of the agents outside of the
clique. Then, sorted society refers to the subdivision of
the whole set of agents into cliques of same size m. The
setup for a mixed society of n agents, clique size m and
e envy agents in detail:
• The first m agents comprise a clique of altruistic

agents.
• The remaining n−m agents select a random subset

of peers from all available agents (except themself)
and their social type is set to altruistic as well.

• e different agents are randomly selected, and their
social type is changed to envy. The selection does not
differentiate between agents belonging to the clique
or not.

The set up of a sorted society is as follows:
• The agents are divided into n/m groups of same size

(we use values for m that divide n).
• Within each group, each agent is connected to each

other agent, thus comprising a clique, and the social
type is set to altruistic.

• The selection of envy agents is the same as for the
mixed society case.

Then, we restrict the values of n,m, e to study a few
special cases. The number n of agents was varied between
moderate sizes 8, 12 and 20. The clique size varied
between small, median and full. In addition, for the mixed
society case we also consider the case m = 0 which means
no cliques appear, and the social graph is a random graph.
The number of envies was kept rather small, we considered
the cases e = 1 and e = 5 only. We used proportional
fairness and maxmin fairness as base relations.

To obtain estimates for maximum set sizes we followed
the same procedure as for the base relation. For each
configuration, 1000 random states with components from
(0, 1] were sampled, the maximum set was computed
(based on 1 Mio. pairwise comparisons of states by the
corresponding collaborative fairness relation) and its size
was stored. Then, average and quantiles were computed
for 30 repetitions of the procedure. The results are shown
in Table II for the mixed society and Table III for the
sorted society.

From these results, a number of observations can be
made. In the following, we will consider a case with a
smaller estimate of the maximum set size as more effective
in the sense that it allows for a more tight specification
of a fair state as maximal state of the corresponding



Agents/Size of Clique Envy = 0 Envy = 1 Envy = 5
Proportional Fairness

8/2 13.57 (7 - 11 - 14 - 16 - 26) 34.07 (18 - 27 - 34 - 39 - 59) 133.03 (68 - 94 - 140 - 169 - 192)
8/4 11.57 (5 - 9 - 12 - 13 - 20) 19.23 (10 - 15 - 18 - 21 - 39) 54.40 (30 - 44 - 51 - 67 - 80)
8/8 4.00 (1 - 2 - 3 - 5 - 11) 6.10 (1 - 4 - 6 - 8 - 15) 13.33 (2 - 9 - 12 - 16 - 35)
12/2 51.47 (25 - 47 - 52 - 59 - 75) 88.77 (60 - 70 - 94 - 107 - 116) 302.0 (202 - 274 - 292 - 329 - 414)
12/4 55.77 (35 - 43 - 56 - 66 - 89) 77.80 (38 - 68 - 72 - 92 - 114) 178.7 (128 - 161 - 175 - 193 - 263)
12/12 10.43 (2 - 5 - 10 - 15 - 24) 18.73 (7 - 14 - 17 - 25 - 37) 28.50 (6 - 17 - 29 - 36 - 56)
20/2 259.0 (168 - 232 - 264 - 280 - 354) 343.9 (240 - 309 - 350 - 384 - 437) 606.5 (491 - 567 - 592 - 653 - 707)
20/10 113.1 (38 - 85 - 126 - 141 - 191) 139.2 (47 - 111 - 137 - 176 - 206) 204.3 (98 - 178 - 210 - 237 - 293)
20/20 34.70 (4 - 13 - 40 - 49 - 75) 45.86 (9 - 25 - 46 - 67 - 87) 60.76 (8 - 29 - 58 - 87 - 125)

Maxmin Fairness
8/2 16.37 (12 - 14 - 16 - 18 - 23) 47.6 (35 - 41 - 46 - 52 - 64) 173.8 (115 - 137 - 176 - 200 - 244)
8/4 21.50 (15 - 19 - 21 - 24 - 30) 40.87 (27 - 35 - 42 - 47 - 53) 111.1 (78 - 104 - 114 - 121 - 129)
8/8 5.00 (3 - 4 - 5 - 6 - 8) 8.27 (5 - 7 - 8 - 10 - 14) 25.73 (13 - 22 - 26 - 29 - 38)
12/2 52.93 (42 - 48 - 54 - 58 - 64) 109.8 (76 - 99 - 110 - 120 - 132) 330.8 (227 - 272 - 332 - 358 - 466)
12/4 98.07 (70 - 90 - 100 - 107 - 124) 141.6 (105 - 128 - 144 - 152 - 167) 314.8 (270 - 289 - 316 - 340 - 366)
12/12 6.80 (4 - 6 - 7 - 8 - 9) 9.60 (6 - 8 - 10 - 11 - 13) 26.07 (13 - 21 - 25 - 31 - 41)
20/2 252.0 (210 - 241 - 248 - 264 - 297) 350.4 (312 - 337 - 350 - 360 - 411) 649.0 (515 - 606 - 644 - 697 - 755)
20/10 124.5 (102 - 113 - 125 - 132 - 143) 143.0 (118 - 131 - 140 - 155 - 175) 219.6 (171 - 208 - 222 - 233 - 270)
20/20 11.00 (7 - 10 - 11 - 12 - 14) 12.80 (10 - 11 - 13 - 14 - 17) 23.37 (10 - 20 - 23 - 27 - 35)

Table III
ESTIMATION OF MAXIMUM SET SIZES OF 1000 RANDOM STATES, 30 REPETITIONS: SORTED SOCIETY RESULTS.

collaborative fairness relation. Then, a case where the
maximum set sizes grow rapidly can be considered as
intractable, at least with regard to achieving fairness
efficiently.

• Even for the same number of agents, the maximum
set sizes vary strongly with the different configura-
tions. We can find values close to the lower bound
given by the base relation as well as values up to
50% of the sample size. We can confirm a strong
influence of the social graph and the distribution of
social types. We can also confirm the suitability of
the maximum set size as indicator for achievability
of fairness.

• Generally, the maximum sets become larger for in-
creasing number of agents. We can observe the same
tendency as for the base relations, which means
that fairness among an increasing number of agents
becomes more and more intractable (with the smallest
increase for maxmin fairness).

• There are no strong differences in size relations
between the mixed society case, where a single clique
co-exists with a random social graph, and the sorted
society case, where all agents are grouped into cliques
of same size. This indicates that the effectiveness
of fairness is mostly driven by the share of agents
organized into cliques.

• The maximum sets tend to become smaller for in-
creasing size of cliques, while reaching the lower
bound if there is only a single clique. It can be under-
stood as that fracturing a society into a larger number
of cliques makes it harder to achieve collaborative
fairness, while large and few cliques diminish the
influence of collaboration on fairness aspects.

• The maximum set sizes for maxmin fairness exceed
the sizes for proportional fairness: they tend to be-
come larger where proportional fairness as base rela-

tion produces larger sets, and smaller in the opposite
case. It can be seen as a reflection of the “all-or-none”
aspect of maxmin fairness, which basically judges
from the value of the agent with lowest state. Between
the extreme cases, proportional fairness seems to be
the better mediator.

• The introduction of even a few envy agents has
a strong influence on achievable fairness. In cases
where the maximum sets are already large, they
become rapidly larger. We can find cases where a
single envy can double the size of maximum sets,
esp. for small clique sizes.

• The growth of envy agent influence with increasing
number of envies seems larger for small cliques
in the sorted society. We assume, with regard to
fairness, that envies do not only disturb the clique
to which they belong, but also all other cliques, and
that smaller cliques are more affected by envies than
larger cliques.

The observations can be summarized into a sort of “recipe”
for the design of collaborative structures.
Size of cliques: The size of cliques has strong influence
on effectiveness of specifying a fair state in collaboration.
Small cliques can make fairness intractable, while large
cliques render the collaboration aspect void. A smaller
number of larger cliques seems to be a good trade-off
between both extremes.
Number of cliques: The influence seems to be less strong
than the size of cliques. This can be understood by the in-
bound character of a clique and the justification of fairness
independent of any other clique.
Envy agents: It has to be noted that fairness does not
necessarily refer to effectiveness in the sense that all agents
receive allocations that are as high as possible, but to the
aspect of a balanced allocation. Therefore, the impact of
envy agents is not the one of a “selfish” agent who would



only focus on large shares and not care for peers. The
envy agent will accept a decline only if all his peers face a
decline as well. This attitude can disrupt fair collaboration
more effectively than plain selfish behavior (which simply
stands out of any collaboration).

IV. OUTLOOK

In the sections before, we have provided a specification
of a collaborative fairness relation, and the use of this
relation to analyze various structures of collaboration.
In some sense, this might not seem to be sufficient for
practical applications, and we also need to provide a
perspective how to tackle related issues in more detail.
This will be done in the following subsection.

A. Further analysis of collaborative structures

Feasible states: So far, no assumptions were made
about the collaborative task itself. In fact, the only ref-
erence was given to random state vectors. This was to
learn about general feasibility of the approach. In a specific
context, like eLearning, eCommerce, eGovernment, the
feasible state vectors will be domain-specific, and the
estimates of maximum set sizes can become strongly
influenced. Same holds for the general change to discrete
and bounded domains. However, the formal approach will
be the same, and based on the specification of R alone.

Calibration: We have already demonstrated how differ-
ent social graphs influence achievability of collaborative
fairness. Based on this, some social graphs appear to be
more attractive than others. However, a critique might
be that a social structure is not a matter of design, but
a matter of grown relations among individuals, often
based on their personal history. This is true, but the
organization of collaboration will always provide some
flexibility. Confining a set of agents at some location will
surely increase the establishment of social relations among
these agents. Splitting students in a class into groups by
a teacher will enforce the same. Thus, relational analysis
might help to identify the goal situations of a promoted
social relationship.

Another aspect appears with regard to the social graph.
Beyond cliques and purely random graphs, social graphs
can provide a lot of structural properties. These properties
can refer to the existence of substructures like dominated
sets, or global measures like diameter, connectivity, assor-
tativity etc. Relational analysis will allow for characteri-
zation of social graphs in the sense of another calibration
as well.

Refined agent models: In Def. 4 the set of conditions is
not fixed, one could add other roles as social types as well.
Without elaborating much on this point, we just mention
possible approaches:
• A teacher is characterized as taking care for fairness

among his or her peers, without dependency on self-
improvement. Thus, the further condition could be
like ∀i ∈ It : x ≥R|Gi

y and relational analysis could
help to answer the question if its better to allocate one
teacher per clique, or one teacher for all cliques.

• A leader, which does not consider the relation but its
adual, in order to take the more broad perspective of
efficiency than just “betterness” into account.

• A lurker that represents a combination of the altruis-
tic and the envy social type: its state can only be
increased if the peers are not declining, and only
decline if peer’s states are declining as well.

These are just examples, presented here without valida-
tion. However, the perspective of extending Def. 4 might
have become clearer.

Detection: Another relevant task with regard to col-
laboration is the detection and identification of counter-
collaborative attitudes. We have seen how strongly a
single envy agent can influence the maximum set size
indicator. But this was not just a qualitative claim, it was
also quantitative, i.e. the relation analysis also allows to
numerically express the influence of such attitudes, and in
return, a given real-world situation can be fitted to such
model cases.

B. Limitations

We will conclude the paper by noting that the presented
approach also has some limitations. Some of them ap-
peared already throughout the exposition of this paper.
• On first glance, the number of agents appears to be

rather limited. While real-world social networks can
have millions of members, here using the approach
for more than 20 agents appears already infeasible.
However, taking the aspect of ranking into account
(see corr. comment about cycle-free relations) one
can apply the same framework, but focus on finding
states of a rank that is as low as possible (low means
that the number of the rank is small). The effect
of increasing problem scale then is that it is just
getting more and more unlikely to find elements of
rank 1, but nevertheless a good rank can be possible.
However, the maximum set size criterion would have
to be modified as well. Independently, in a specific
case maximum sets might be easier to find then for
the general case of pure random sampling.

• Increasing the number of different social types gives
additional restrictions on the relation occurrence, thus
also expanding maximum sets by making the relation
sparser. Therefore, care should be taken about not
“overloading” the formal specification. Alternatively,
the conditions can be handled in other logical con-
structs than just AND-ing.

• For the computation of maximum sets, only in few
cases exact algorithms with linear complexity are
known (for example, Bottleneck Flow Control to
achieve maxmin fairness [4][20]). Exhaustive search
requires the comparison between all possible pairs of
states, thus the computational effort increases with
the square of the number of states. This is commonly
considered as still tractable, but in specific cases it
can easily become an obstacle. However, in [21] it
was shown that nevertheless, No-Free-Lunch does not
hold for that kind of search and we can consider



some algorithms to be more efficient in searching
maximum sets, while probably being still not known.
Last but not least, meta-heuristic approaches [22]
are a general family of algorithms to approximate
maximum sets to any level of desired accuracy.

• Maximum sets will usually include more than one
element, so it seems to be a disadvantage to not
having a uniquely specified solution at the end.
Usually, reference is taken to a decision maker to
select from such sets. In case of a fairness relation,
the good point is that a decision maker can still decide
on global optimality, since this criterion has not been
used in the approach so far. This is in contrary to
e.g. selecting from Pareto fronts in multi-criterion
decision-making, where the selecting criterion cannot
be used anymore.
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