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Abstract—Due to its simplicity and its easy comprehension,
Jain’s fairness index is still among the most popular measures
to compare justness of allocations. However, it was already
argued in the original paper that while the way of computing
the index is well established, it is not immediately clear to
which metric to apply the computation. Thereby, metric stands
for a specific choice of a system observable. Here we study
the extension of Jain’s index to multiple metrics at once. We
propose a set of per-entity allocation features to represent
justness of an allocation, and to derive corresponding vectors
of feature-wise taken Jain’s fairness indices. The features
give a numerical representation of fulfilling common fairness
properties like proportionality, envy-freeness and equity of
an allocation. Then, maximizing the smallest index gives an
efficient procedure for allocation of goods. We study this
procedure for the problem of allocating wireless channels in
a multi-user setup and compare the influence of the various
feature choices on the efficiency of the solution.

Keywords-fairness, Jain’s fairness index, wireless channel
allocation, leximin relation

I. INTRODUCTION

These days the networking paradigm became of crucial
importance for the modeling and performing of many socio-
economic interactions. Along with the spread of this insight
among researchers and engineers, the study of related limited
resource distribution and allocation problems gained mo-
mentum as well. Such problems around the central theme
of fairness, justness and efficiency have been explicitly
formalized and studied in the economics field for more than
50 years (see e.g. [1]), while at the same time many historical
references to related considerations, e.g. in the bible or
talmud could be identified (see the excellent monograph of
Peyton H. Young for cases [2] or [3] for a more recent
textbook). However, it appears to be a problem field with
many aspects, many solutions, and also many fundamental
drawbacks and impossibilities like the Arrows’ Theorem.

There is a general incentive to define measures of cor-
responding observables of a system and thus being able
to express performances, efficiency etc. of a system under
observation in as few as possible numerical quantities. These
numerical values can be stored as off-line reference to
always access the system performance at a definite instance

of time and location (cardinality), and, what is more relevant,
to allow comparison of current system performance with
past states, or judge on the faith of the system in estimates
of future states. It is no wonder that this tendency also
found its way into the “measurement” of intangible goods
like fairness. The temptation to compare the development
of economical vectors, monitor the effects of campaigns,
follow worrying trends etc. is large, and for example the
Gini index already provided a convenient means for judging
on the fairness of distribution of wealth in a society.

However, the recent prevalent spread of the internet as a
human-crafted and controlled network and its multitude of
technical fair division and allocation problems (be it traffic
rate assessment, channel allocation, queue management,
relay assignment, or carrier selection and many more) was
accompanied by the introduction of a new fairness measure.
In fact, and oddly enough, in the networking domain the Gini
index never played an important role, while the proposal of a
rather simple formula in the 80s still astonishes practitioners
with its easy comprehension, computation and its endlessly
ability to produce charts to demonstrate the fairness aspects
of new engineering approaches. We speak about so-called
Jain’s fairness index as it was introduced in [4].

While hundreds of studies have used this index in sim-
ulations or theoretical estimates, the predominant use was
always with the performance values directly exposed by the
system. Even in the original paper [4] it was mentioned that
this is not necessarily the best choice. Fairness can relate
to various aspect of an allocation and sometimes the issue
can rather become to identify the fitting “allocation metric”
than to equalize user performance. In this paper, we want to
follow this suggestion by studying multiple fairness indexes
at once - one index for one of several specific fairness
aspects of the allocation. Then, relational optimization is
applied to select an allocation among the vectors of fairness
indices. Analysis of the selected allocation gives insight into
the mutual influence of different fairness aspects and allows
conclusions on the focus of future system design.

In Section II we will recall Jain’s fairness index and its es-
sential properties. The following Section III than introduces
a multi-Jain fairness index and exemplifies its definition for



the case of wireless channel allocation. Then Section IV
presents a few experiments using this multi-fairness index
and demonstrates the manner of analyzing these results.

II. JAIN’S FAIRNESS INDEX

Given a set of n data x = (x1, x2, . . . , xn) where xi ∈ R
are real numbers and xi ≥ 0, then Jain’s fairness index is
given by the formula [4]

J(x) =
[
∑n
i=1 xi]

2

n ·
∑n
i=1 x

2
i

. (1)

Basically it is the square of the ratio of two power means
of the xi, the arithmetic mean and the quadratic mean. By
the power means inequality we know that this is a value
from [0, 1]. Moreover, its value is only 1 if all xi are equal.
In the original paper, this choice was motivated by some
wanted features of an index that can represent the fairness
of a distribution. These features were in particular:

• Its computation can be performed for any number of
arguments.

• It is scale-independent. If we multiply all xi by a
constant factor α the value of J will not change.

• The value of J should be bounded between 0 and 1.
• Continuity, i.e. a small change of any of the xi should

cause a small change of the index J .
It is easy to see that the proposed index fulfills all these
requirements. In addition, it has a convenient interpretation:
assuming that a distribution is such that M items have to be
given to n users. In a distribution commonly seen as “unfair”
only k of the n user receive each M/k and all other receive
0. Then the Jain’s fairness index computes to

J(x) =
[k ·M/k]2

n · k · (M/k)2
=
k

n
(2)

i.e. it is equal to the share of users receiving goods. Then, a
fairness index of 0.8, for example, can be seen as a situation
where only 80% of the users receive goods and all other
nothing.

Authors are not aware of any attempt to characterize
the class of functions with all these properties, but it can
be speculated that the Jain expression will be among the
simplest. This can explain the popularity of this fairness
index. However, there have been attempts to generalize
that index. One example is a recent proposal of so-called
“fairness axioms” [5]. Based on a number of functional
properties, for some reason called “axioms”, a class of
functions is identified that fulfills all these properties. It
can be written as (taken from [6] where a more compact
representation is given):

Fβ,λ(x) = sgn(1− β)×

×

(
n∑
i=1

(
µixi∑n
k=1 µkxk

)1−β
) 1
β
(

n∑
i=1

µixi

)λ

which depends on two parameters β and λ. The use of
weights wi is optional. The second factor is remarkable:
it was introduced in [5] in order to handle a trade-off with
efficiency. In fact, Jain’s fairness index gives a strong focus
on equality of all xi but not on their magnitude. To explain
this, consider sharing M (dividable) goods among n users
such that each user receives M/n goods. For this allocation
is J = 1. Now compare with a “wasteful” allocation where
each user receives 1/100 · M/n goods. But also here we
have J = 1. There might be a hidden agreement that an
allocation should be such that all goods are shared, but
in many allocation problems (esp. of indivisible goods or
for multi-resource tasks) it is not possible to guarantee the
distribution of all goods.

Therefore the addition of the λ-dependent factor in Eq. (3)
was made. But this breaks one of the basic requirements on
the Jain index, to guarantee that the index is bounded by 0
and 1. Also, the expression given by Eq. (3) is not a direct
generalization of Jain’s fairness index, since for the case
β = −1 it computes to n · J(x) and not J(x).

Thus the generalization of Jain’s fairness index still re-
mains an issue. It appears that fairness can only be inves-
tigated in combination with efficiency measures (like total
throughput, delay, maximum rate etc.). But we can pick up
another relevant comment from the original paper [4]. It was
noted that the value of the fairness index depends on the so-
called “allocation metric” where examples are given like: re-
sponse time, response time per hop, throughput, throughput
times hop, power (seen as ratio of throughput and response
time), or “fraction of demand” (i.e. proportionality). Thus we
promote an approach to consider a variety of fairness indices
according to different allocation metrics at once. Instead of
allocation metric, we will speak about allocation features,
and for a set of features (each a vector by itself) we compute
Jain’s fairness index for each feature.

This way, an allocation is represented by a vector of
fairness indices, each representing a fairness aspect of that
allocation. Then, we can use this to select an allocation
by searching the allocation, where the smallest index is
maximized (so the lexicographic maxmin, or shortly leximin
allocation). Moreover, by investigating the influence of the
singular features on other performance measures of the
leximin allocation we can learn about the “price” paid with
regard to performance to make an allocation fair.

III. MULTI-JAIN FAIRNESS INDEX

The original paper of Jain et al [4] was considering a
wired network. With the emergence of wireless communi-
cation, the relevant allocation problem statement changes
from rate allocation to channel allocation. This also means
a change from a dividable good to an indivisible good. We
will focus on the study of wireless channel allocation, and
give a formal specification of the allocation task in the next
subsection. Then we will list a number of allocation features



that can be computed from a given allocation of channels to
users.

A. Wireless Channel Allocation

At first we give the formal definition of the Wireless
Channel Allocation problem, following [7]: Given a set of n
users U (the agents of the allocation) and m channels C (the
items of the allocation) and an n×m matrix CC of channel
coefficients, i.e. reals from [0, 1]. A channel allocation is a
mapping A : C → U where to each channel ci with i =
1, . . . ,m exactly one user uj with j = 1, . . . , n is allocated.
The notation is uj = A(ci). An allocation is feasible if at
least one channel is allocated to each user. The performance
of user uj in allocation A is pj =

∑
i,A(ci)=uj

CCji.
The task of wireless channel allocation (WCA) is to find
a feasible allocation a that “maximizes” the performances
for all users. The additional task is to assign an effective
meaning to “maximize.” The WCA reflects a situation where
a wireless infrastructure is composed of a Base Station
BS and multiple Subscriber Stations SS, and we consider
uplink traffic over one or multiple timeframes where the
BS can simultaneously receive data from each user via SS.
The “channel” here appears as a virtualization of physical
transmission channels, either by channel bonding allowing
for assigning more than one channel per timeframe to a
user, or by repeated use of same channel(s) at different time
slots for same user. The channel coefficients represents the
knowledge of the BS about the particular channel states,
based on measurements (e.g. using beacon signals) and/or
prediction (for example if a user is moving then to predict
future channel states). The WCA then is the scheduling
task that has to be solved based on available channel state
information. Note that standards like IEEE 802.11 (WLan)
or IEEE 802.16 (WiMax) do not specify a scheduling itself
and such procedures can be used to complement the standard
specifications in a real-world application.

However, from economical point of view the WCA ap-
pears to be a specific case of fair allocation of indivisible
goods.

B. Per-Entity Allocation Features

Given any allocation A (and using terminology of former
subsection) that assigns channel cj to user ui with chan-
nel coefficient CCij we evaluate the allocation by several
feature calculations. The features listed in the following are
covering various aspects of the allocations that favorably
would be equalized in a “perfect allocation” — even if such
allocation is not feasible at all. It should also be noted
that the particular selection of features here is partly for
demonstration purposes of the general approach. One aspect
that we do not quantify here is the channel distribution, for
example: assuming the total channels are a smaller set of
channels monitored over a number of time frames, then also
per time frame allocation features could be considered. For

example, an allocation of 5 users to 30 channels could also
stand for five allocations of 5 users to 6 channels, one per
time frame. However, we will not consider this aspect here.
The chosen set of features, where each computes to a vector
of - preferably - equal components, are as follows:

1) F1: performance per user, or f
(1)
i = pi =∑

k,A(ck)=ui
CCik, as it was mentioned in foregoing

subsection. This vector has n components.
2) F2: channels per user, or f (2)i = |{j |A(cj) = ui}|. It

judges whether each user receives about same number
of channels. This vector has n components.

3) F3: equity, or f
(3)
i =

∑
k,A(ck)=ui

CCik∑
l
CCil

. The

maximum performance of a user is seen as the case
where the user would receive all channels. This feature
represents the proportions of that maximum perfor-
mance that each user receives. In case of equality, the
allocation would be equitable - however, equity is hard
to achieve due to the discrete nature of channels. This
feature vector has n components.

4) F4: delay, where feature f (4)i is the difference between
the last occurrence of user ui in the allocation and the
first appearance, plus 1. Thus, this measures mimics
the time a user has to wait if the channels would be
processed sequentially. Otherwise, it enforces equidis-
tance in user allocations and might acquire a different
meaning. Also here there are n components of this
feature vector, one per user.

5) F5: relative channel utilization. Here we compare the
current allocation with the most favorable allocation
of channel ci to some user, i.e. the allocation to a
user uk where CCki is maximal. This vector has m
components.

6) F6: absolute channel utilization, which is for channel
ci the channel coefficient CCki where A(ci) = uk.
Also here, we have m components.

7) F7: envyness, which compares for each pair of dif-
ferent users ui and uj the performance pi for user
ui of current allocation A with the performance for
user ui in an allocation where users ui and uj change
roles, i.e. where each allocation of user ui becomes
an allocation of user uj and vice versa. Thus, we
have an indication whether user ui envies user uj
since the second performance is higher and user ui
would prefer to change with user uj or not. The
comparison is done by dividing performance in current
allocation by performance in (i, j)-swapped allocation
and the feature has n(n−1) components, one for each
(ordered) pair of users.

Once we have computed all feature vectors F1 to F7 for an
allocation A, we construct the multi-Jain index as follows:

J(A) = {J(F1), J(F2), . . . , J(F7)}. (3)



As it was mentioned before, from the set of vectors com-
puted from all possible allocations an allocation can be
found where the minimum component is maximized, the so-
called leximin. We will consider this approach in the next
section.

IV. EXPERIMENTS

For demonstrating the approach we present the results of
a few experiments. The general goal is to study the influence
of the various features on the results. But before we have to
consider the WCA problem instances. The only parameter
of a WCA problem is the matrix of channel coefficients. The
distribution of their values is strongly problem dependent.
We take two cases: in first case (called “i.i.d. distribution” or
“random CC” in the following) the channel coefficients are
i.i.d. uniform random numbers from (0, 1). This corresponds
with a case of no specific knowledge about the connectivity
situation in the network. The second case (called “radial
distribution”) refers to a simple scenario where the users
are distributed in a squared area with the base station at its
lower-left corner. The channel coefficients are assumed to
only depend on the distance to the base station. We take
i.i.d. uniform random x- and y-coordinates within a square
of side length 1/

√
2 (thus the maximum distance to the base

station is 1). In this case, the channel coefficients for same
user but different channels are all the same. We note that the
second case is harder with regard to fairness. The reason
is that there is no incentive to serve users that are more
remote than the user which is closest to the base station.
The service can only be enabled if fairness is taken into
account. Moreover, in cases where the number of users is
close to the number of channels, typical properties of a fair
allocation like proportionality and envy-freeness cannot be
achieved.

Now for the experiments: in a first experiment, we com-
pare the different features with regard to minimality. It
means if an allocation is selected by prescribed procedure,
one component of the multi-Jain index must be the minimal
one (actually the minimum that is maximized). We want to
know which of the features serves the minimal component
most often (and can thus be seen as the “driving” feature
that promotes the equality of other features).

Table I
THE COLUMN Fi LISTS THE NUMBER OF CASES WHERE J(Fi) WAS THE

MINIMAL COMPONENT IN THE FINALLY SELECTED ALLOCATION, OUT
OF 100 RANDOM WCA PROBLEM INSTANCES AND FOR DIFFERENT

DISTRIBUTIONS OF THE CHANNEL COEFFICIENTS.

F1 F2 F3 F4 F5 F6 F7

i.i.d. distribution 1 0 0 1 0 2 96
same without F7 23 3 15 0 14 45 0
radial distribution 21 0 0 0 3 1 75
same without F7 71 7 7 0 7 8 0

The results are shown in table 1 for the case of 8 channels
and 5 users (since the problem domain grows exponentially,

Table II
RELATIVE LOSS AGAINST MAXIMUM PERFORMANCE BY SELECTING

ACCORDING TO A SUBSET OF FEATURES. EACH ROW LISTS A SUBSET
WHERE ONE FEATURE WAS REMOVED FROM THE TOTAL SET OF
FEATURES. THE LAST LINE SHOWS THE EXPECTED VALUE OF

PERFORMANCE LOSS FOR 1000 RANDOM ALLOCATIONS.

removed i.i.d. distrib. radial distrib.
F1 0.631449 0.745444
F2 0.607061 0.713038
F3 0.591417 0.737509
F4 0.595488 0.719371
F5 0.597669 0.72336
F6 0.579802 0.711416
F7 0.5766 0.696861
random 0.581044 0.709548

this is already a problem of moderate size). The leading
role of envy-freeness can be clearly seen. For random CC,
nearly all cases are driven by feature F7, and for the radial
distribution, the same happens in 75% of the cases. Second
comes the performance, i.e. feature F1. It is interesting to
compare with a situation where feature F7 is not considered.
While in the random CC case all features now start to
contribute to the maxmin selection, in the case of radial
distribution F1 takes over the role of F7. Thus, achieving
equality of features appears to be hardest for the feature
representing mutual envyness degree, and next for the total
allocation per user.

In experiment 2 we continue to study the influence of the
various features, but now on maximum achievable perfor-
mance. The maximum achievable performance of a WCA
is the allocation where each channel is allocated to one of
the users with maximum CC. Of course, such an allocation
might be infeasible, since there can be users that will never
receive any channel (if they happen to never be maximal
in any column of the CC matrix). So fair allocations will
surely reduce the performance, but by which degree?
Table 2 shows some related results. Here, the same setting
was used (5 users, 8 channels). In each case (one row in the
table) the maxmin allocation for the set of features except
one was selected and its performance compared with the
maximum performance. The values shown are sampled over
30 independent runs. The last line gives the related value
for 1000 random allocations.

It can be seen that here, except feature F1 no feature has
a significant influence on performance, and esp. there is no
significant difference to a random allocation (we can skip
the test of significance here). If we ignore the first feature,
this is not so surprising: as it was mentioned before, the
fairness index cannot resolve the problem of representing
both, equality and efficiency at the same time. None of
the used features directly represents efficiency (beyond the
level that envy-freeness implies proportionality) and so it
cannot be expected that selected allocations diverge much
from other allocations.



But at the same time, the significant increase in relative
performance when feature 1 is not included is notable. It is
even more interesting since the ratio is larger for the case
of radial distribution (in fact the more realistic scenario).

We can summarize the findings here by the statement that
the most relevant feature for establishing fairness appears
to be envy-freeness. On the one hand, the increase of the
feature promotes the increase of other features, on the other
hand, it does not significantly reduce total performance. The
opposite claim is about user performance: it also drives
the other features, but the price is a significant loss in
performance, esp. in the case of radial distribution.

We have to note that these results are more in the sense
of demonstrating the analysis that becomes available by the
use of a multi-Jain index. In order to establish the facts in
more details, a more thorough investigation of the model
situation, incl. other relevant aspects has to be performed.
This is the scope of future works.

We may conclude with a short discussion: the predom-
inance of envy-freeness is not surprising: it is the most
challenging feature of a fair allocation. Let us compare this
with other common characteristics of fair allocations. In the
following, we consider a general allocation problem where
m goods are to be distributed among n users. Each user has
values for each good, and these valuations may be different
for each user (like the channel coefficients in the WCA
problem).

1) Proportionality: an allocation is proportionate if
among n users each user receives at least 1/n-th
of the total value of all goods according to her
valuation. When summing up the relative valuations
of the allocation for all users, the result will be at
least 1. The issue here is that nothing is specified
beyond the 1/n-proportionality level: the remaining
allocation can be such that all other goods go to one
user only, and the allocation would still be proportional
fair. In addition it can be easily seen that envy-
freeness implies proportionality, while at the same
time preventing such unfair allocations.

2) Equity: if proportionality means that each user receives
at least 1/n-th of her total valuation of all goods,
equity means that the ratio is the same for all users.
This demand can only be fulfilled if the goods are
dividable, but it can be approximated in the case of
indivisible goods. However, the value of equal ratios
does not need to be at least 1/n — an allocation
providing exactly a 1/1000-th of their total values to
each user is also equitable. Equity can only become
strong in combination with other fairness properties.

3) Efficiency, or Pareto efficiency: it states that for a
fair allocation, no user can gain more without making
some other user worse off. This is in fact a relation,
also known as Pareto dominance in the multi-criterion
decision making domain, and it says that the fair allo-

cation should be an element of the Pareto set of non-
dominated solutions. The problem here, in addition
to the fact that Pareto sets can become large with
increasing problem dimension, is that a solution where
one user receives everything and all other nothing is
also efficient. The one user getting everything cannot
get more, and in order to give something to any of the
users that received nothings means to take away from
the user that received everything. Also here, efficiency
alone does not guarantee an accepted fairness and
needs to be combined with other features.

4) Studies mention other properties of fair allocations
and the procedures to find these allocations, giving
reference to features related to “consistency” (fair
allocations change with change of number of users or
goods in a consistent way), “incentive” (or strategy-
proofness) where there must be an advantage of con-
firming on a fair allocation and providing true valua-
tions etc. We note that these features are procedure-
dependent and the proposed framework of using a
multi-fairness index cannot make any statement about
their fulfillment without the exact specification of an
allocation procedure.

This short discussion shows that envy-freeness is in fact
an attractive feature, as it does not have any of the pitfalls of
the other properties. However, it is often not possible to find
an envy-free procedure. Therefore, the proposed approach
gives a way to approach envy-freeness to some degree.

V. SUMMARY

We have presented a multi-Jain fairness index to describe
various fairness related aspects of an allocation. By the
example of allocating wireless channels to users in a wireless
network infrastructure, seven specific features have been
specified. The standard Jain fairness index for each of
these features, put together for all features, gives the multi-
Jain fairness index. By means of a leximin procedure, an
allocation can be selected where the smallest among the
Jain fairness indexes takes a largest value. This extends the
notion of an allocation where fairness is only achieved for a
single allocation metric. By analyzing the influence of each
feature on the leximin selection, conclusions can be drawn
about the relevance of the different fairness aspects that are
all represented at once in a multi-fairness index. In case
of wireless channel allocation, this analysis gives indication
that in fact the attempt to make user performance as equal
as possible decreases available system performance, while
the attempt to equalize envyness among all possible pairs of
users appears to be of advantage to also increase all other
aspects of fairness without reducing system performance.
Future work will consider this aspect by taking dynamics
of the system into account and also define time-dependent
allocation features or to study fairness of multi-resource



problems (with the starting point of Dominant Resource
Fairness proposed in [8] and improvements as in [9]).
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