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Abstract— Here we study a generalization of linear regression
to the case of maximal elements of a general fairness relation.
The regression then is based on balancing the distances to the
data points. The studied relations are lexicographic minimum,
maxmin fairness, proportional fairness, and majorities, all
in a complementary version to represent minimality. A new
combination of proportional fairness and majority is introduced
as well. Experiments are performed on human subjects solving
the visual task to draw a line fitting to given data points,
and by use of evolutionary computation (here by Differential
Evolution) the weights of a fair linear regression are adjusted
to the human-provided results. The fact that this gives a more
precise approximation than (weighted) linear regression hints
on the inclusion of the balance among the distances to the given
data points in the human decision making process.

I. INTRODUCTION

Among the various regression tasks, linear regression
seems to be a solved problem. The standard equations for
linear regression are based on the minimization of the total
sum of shortest distances of a regression line to the given data
points. In addition to an analytic expression that can solve
the optimization problem, the formula has low complexity
and is provided in any standard statistical software. In fact,
there might be only a few contexts where the assumptions
that lead to standard linear regression are not valid. However,
they exists. Here we give two thoughts that motivate the need
for an expansion of the concept of linear regression. (1) A
common study problem in mathematical economics is the
distribution of goods among a number of (human) agents, as
well as the sharing of resources. Such problems become of
high relevance with the growth of the internet and related
sharing problems. There are cases where global optimization
leads to solutions that exclude users from participation in
the network utilization (see e.g. [1] or [2]). To overcome
this problem, various extensions of the concept of optimality
have been introduced, usually put together under the term
“fairness.” We can consider that also for the cognitive task
of fitting a line by a human observer, i.e. a task that involves
a human decision maker, the issue of fairness can become
relevant. Instead of the “utilitarian” point of view to sum up
deviations from the given data points, as it is done in linear
regression, the focus is given to the distribution of deviations,
judged against each other: who gets more, who gets less? (2)
The linear regression is based on a pure geometric point of
view, by using Euclidian distances between points and lines.
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Also here, if a human decision maker is involved, the focus
will rather be on mutual losses and wins [3]. At least mean
absolute error then appears more appropriate (see also [4]
for a related discussion) than Euclidian distance — but there
is no analytic derivation for a corr. extreme value problem
and the approach is not further considered.

Here we want to present a general approach to linear
regression that includes standard linear regression as a special
case. The approach is based on maximality of set-theoretic
binary relations. Moreover, we report on the results of a (alas
small in scope) experiment that demonstrates the feasibility
of having alternative linear regression concepts at hand. The
task is related to a human visual cognition task. But due
to underlying complexity, instead of an analytical solution
we will need an optimization method to solve the related
optimization problems (Differential Evolution is used in our
case). The fair linear regression will be presented in the next
section. Section III than provides the report on the visual
task of fitting regression lines by a human observer. Section
IV gives a summary of the paper.

II. FAIR REGRESSION

The starting point is the pairwise comparison between
items of a domain. It comes out that this is all what is needed
to specify an optimization tasks. Formally, the domain is a set
A and the pairwise comparison outcome for any pair (x, y)
of elements of the domain gives a binary relation R. Thus,
in so-called set representation, a relation R is a subset of
A×A, i.e. the set of ordered pairs of elements of A.

In general, binary relations exhibit two main aspects of
comparison between elements: one aspect can be roughly
described as equality, similarity, nearness etc. the other aspect
as preference, betterness, or advance. In fact, any relation
can be split into two disjoint relations called the symmetric
part and the asymmetric part. The symmetric part I(R)
of a relation R contains all pairs (x, y) ∈ R where also
(y, x) ∈ R. On the contrary, the asymmetric part P (R)
contains all pairs (x, y) ∈ R where (y, x) does not belong
to R. The asymmetric part represents the comparison aspect
of a relation.

Moreover, the asymmetric part allows for a general defini-
tion of extremity of elements of the domain A. We consider
all elements x of A where there is no y ∈ A such that
(y, x) ∈ P (R) as maximal elements of R, establishing
the maximum set. In a similar way we can define minimal
elements x where there is no y such that (x, y) ∈ P (R) [5].

It can be easily seen that for finite non-empty domains
A a necessary and sufficient condition for a relation to



have a non-empty maximum (or minimum set) is cycle-
freeness of the asymmetric part. Cycle-freeness refers to
the representation of a relation as a directed graph and
means that the graph of P (R) does not contain any cycles.
Formally it means that there is no set xi with i = 1, . . . , k
of k ≥ 3 elements such that (x1, x2) ∈ P (R), (x2, x3) ∈
P (R), . . . , (xk−1, xk) ∈ P (R) and (xk, x1) ∈ P (R). The
condition for k = 1, 2 is automatically fulfilled by the
definition of the asymmetric part P (R) that will not contain
any pair (x1, x1) as well as any pair (x2, x1) whenever
(x1, x2) ∈ R.

A small comment here: it is also possible to consider
greatest elements x (or least elements in a similar way)
where (x, y) ∈ R for all y ∈ A. However, it is more
ambitious than maximality and for many specifications of
relations R over domains A there are no such x at all. Thus,
in the following the focus will be on maximal elements, i.e.
essentially elements to which no other element of the domain
is in relation, as well as relations where the main aspect is
comparability and not equality. We will use an in-fix notation
x ≥R y to express the fact that (x, y) ∈ R and the notation
x >R y to express (x, y) ∈ P (R).

The task of relational optimization then is to establish a
relation R that captures the optimality aspect of a model
domain, and to find its maximum set as solution. This
definition is general enough to cover the classical approach of
functional optimization (where the real-valued larger-relation
serves as relation) as well as multi-objective optimization,
where the Pareto-dominance relation is used (and in which
case the maximum set is called Pareto front).

One important class of relations that can be used to
paraphrase optimization goals are fairness relations [2].
These class of relations represents aspects of the distribution
or sharing of resources when comparing solutions. It is
convenient to focus hereby on relations that are cycle-free
(so they have non-empty maximum sets) and are implied by
Pareto-dominance (so their maximum sets are Pareto-efficient
solutions).

Here we want to apply the relational optimization approach
to the linear regression problem. Given a set of N data points
(xi, yi), i = 1, . . . , N , where the xi and yi are from R2 we
are seeking the two parameters slope a and bias b of a line
according to the equation

y = ax + b (1)

that in some sense best fits to the data. For the common
“textbook” linear regression this is the mean squared error
(MSE) of the Euclidian distances of the points to the line
(distance here means the shortest distance of the point to
a point of the line). In general, it will be a vector whose
components represents the deviation from the line that is not
necessarily the Euclidian distance. Now we have to consider
two aspects:

1) Choice of a suitable set of relations: as mentioned
before, fairness relations appear to be of interest since
they can represent the balance of an allocation in an

(Pareto-)efficient manner. Since the base are vectors,
these should be relations whose domain are subsets
of RN

+ . Moreover, these relations should fit with the
possible numerical range of a regression problem (es-
pecially the handling of vectors with component values
0 or values close to 0). Also, their maximum sets
should preferably contain only few (or even only one)
elements to simplify the selection of a final solution.

2) In resource allocation tasks, the problems are usually
formulated in terms of maximality. For example (it
will be discussed later in more detail) the approach
of seeking a vector with largest minimal component
is assuming an advantage of increasing components.
However, in regression we have to consider minimality:
the closer all points to the regression line the better. On
first glance it seems no major problems to rephrase a
relation with maximality aspect to a minimality one.
The converse relation of a relation R (composed of all
pairs (x, y) where (y, x) ∈ R) will serve maximum
sets that are equal to the minimum set of R. But in
many cases this approach does not give a suitable
relation, basically because there is no canonical and
domain-independent level of aspiration for minimality
as it is “zero allocation avoidance” for maximality —
that would be only a non-numerical infinite level and
otherwise depending on extreme values of the domain.
Therefore, it appears more of practical value to change
a maximality relation in a syntactic way to specify
minimality relations, despite the fact that then the new
relations are not formally related to the former ones.
We will speak about the formal complement if using
a converse relation, and syntactic complement if we
base the definition of a relation on complementing to
syntactic elements of its definition: replace maximum
by minimum, larger by smaller etc.

In the following, we will discuss possible (maximality)
fairness relations and their potential to provide related min-
imality relations that can be used for the linear regression
problem. Before continuing, we need to provide basic defi-
nitions.

Definition 1: Given a vector domain A ⊆ Rn then the
vector xi Pareto-dominates the vector yi if for all i =
1, . . . , n xi ≥ yi and for at least one j from same range
as i it is xj > yj .

Definition 2: Lexicographic order: when comparing any
two vectors x and y from Rn it is said that xi comes lexico-
graphically before y if there is an index j from {1, 2, . . . , n}
such that for 1 ≤ k < j xk = yk and xj > yj .
It means that like sorting books in a library by title, first
comparison is made by the first component of both vectors,
and in case they are equal by second component etc.

Definition 3: A sorting permutation of an n-dimensional
vector x is any permutation Π of the vector indices such that
for 1 ≤ i < j ≤ n it is xi ≤ xj . The i-th component of the
permuted vector is usually denoted as x(i).
Note that a vector can have more than one sorting per-



mutation, in case there are repeated occurrences of the
same numerical value. Care has to be taken that this will
not influence definitions based on x(i)-components, like the
following one (where it does not matter which permutation
is chosen):

Definition 4: Given an n-dimensional vector x then the i-
th component of its majorant vector is given by

∑i
k=1 x(k),

i.e. its first component is the smallest component of x, the
second component is the sum of the smallest and second-
smallest components of x etc. and the n-th component is the
total sum of all components of x.

Definition 5: Given is a weight vector w from Rn. The
ordered weighted averaging (OWA) of a vector x ∈ Rn by
w is computed as

owaw(x) =

n∑
i=1

wix(i) (2)

Now we can discuss the suitability of a number of relations
and see whether they can serve as substitute relations for the
“default” minimal MSE criterion in linear regression in a
“fair sense”.

A. Pareto dominance

We start with Pareto dominance but just to confirm that
this relation is not suitable for at least two reasons. The
minimality version of Pareto-dominance is the same, no
matter if we choose the formal or the syntactic approach:
for x <P y we require that all xi ≤ yi and at least one
xj < yj (1 ≤ i, j ≤ n).

1) The size of maximum sets of the Pareto dominance
relation is often even a larger share of the domain.
With increasing dimension of the domain (as it would
be the number of data points here) the chance that two
vectors are in this relation to each other is known to
fall exponentially, which causes a smaller number of
cases where some y is in relation to a given x (it would
need to be larger in all components) and thus any x
more likely to belong to the maximum set.

2) A line passing through any pair of data points would
be Pareto-optimal: the line is uniquely specified and
the deviation vector would contain two 0s for which
no value can be smaller.

B. Maxmin fairness

Maxmin fairness was established in the seminal work [6]
in networking research and has gained increasing attention
since then. Maxmin fairness actually represents the charac-
teristic of the final result of an algorithm “Bottleneck flow
control” (BFC) [7] but has found variants of specifications
since then. The BFC algorithm helps to allocate traffic rates
to links in a network routing problem where the links have
maximum capacities and ensures that no user will receive a
traffic rate of 0, while maximizing the flow in the network at
the same time. We will give it here out of its historical context
in a more compact manner, noting that there are at least three
different ways to qualify the result of the BFC algorithm.
Independently of the BFC algorithm, the underlying idea

of largest minimum has been extensively studied by Rawls
in economical science [8]. It is the base for some critique
on the utilitarian point of view in economics, summarizing
the individual allocations by a kind of utility of a meta-
individual. Rawls insists on the point that this says nothings
about the modality of the distribution itself and might ignore
the base case that some individuals, despite an optimal total
might be treated in an unfair manner. The idea to maximize
the minimum will not do this and thus be a better base for
the fair allocation of resources.

The first representation of this kind of fairness is by
the leximin relation. To compare two vectors x and y by
this relation (written as x ≥lm y) to both vectors their
(own) sorting permutations are applied and the resulting
vectors with sorted components (non-decreasing order) are
lexicographically compared. Note that the specific choice of
the sorting permutations does not influence the result. The
relation is transitive as well as complete, so usually the max-
imum sets contain only one element (except permutations of
the same vector that belong to the symmetric part of the
leximin relation). There is no restriction on the range of the
domain.

In order to design a corresponding complementary re-
lation, the syntactic approach gives a relation where the
maximal value is minimized. Therefore, the sorted vector has
to be reversed before comparison (so both x and y become
sorted in non-increasing order) and the comparison is the
converse of lexicographic order.

It is easy to see that this relation is suitable for linear
regression: it would select a line where the largest deviation
from any of the data points is the smallest among all feasible
regression lines.

The second representation of maxmin fairness will sort
the vector x in non-decreasing order as well, but apply the
sorting permutation of x to the components of y (and not the
sorting permutation of y as for the leximin relation). Then,
again, the permuted vectors are compared by lexicographic
order. This is the original definition of maxmin fairness given
in [6] (the definition there is different but it can be seen that
both are the same relations). Maxmin fairness is cycle-free
and implied by Pareto-dominance. Its main difference is that
it is kind-of “individualizing” the least component: if we
take one component index i and select all elements of the
domain where xi happen to be the smallest value, then the
element where this is the largest value is a maximal element
of maxmin fairness relation. Simplified speaking, each index
has its own maxmin case and no further distinction is done
(among them, we also find the leximin maximal element).

The definition of a complement to maxmin fairness can
be done like in the leximin case. However, for the regression
problem we might find it not so useful to have a regression
line for each data point and prefer to use the leximin relation
instead.

The third representation is as maximal value of an OWA
operator whose weights are exponentially falling [9] as for
example wi = 2(n−i). It gives very large weights to small



values (bad allocations) and low weight to large values
(allocations to the rich). It demonstrates a role of OWA
operators to represent “weighted balance” that will be more
clarified in the next subsection.

To summarize, the suitable way to introduce the aspect of
least maximum deviation in linear regression is the leximin
relation over the domain of feasible regression vectors (i.e.
pairs of values (a, b)) and selection of a regression vector by
the maximum set of this relation. We will call it leximax in
the following.

C. Majorants

Majority of vector x to y (sometimes also called just
vector inequality) is based on the majorants of x and y: if
the majorant of x Pareto-dominates the majorant of y then
x is a majorant of y (written as x ≥mj y). Initially this
relation has been studied in mathematics, but its relevance for
economics became soon apparent by e.g.. the Lorentz-curve
and related Gini index [10] representing the distribution of
wealth in a society. The various properties of majorants are
studied in the seminal book [11]. It should be noted that a
common assumption of majorants is that the total of x and
y is the same, a condition which can be alleviated if taking
the general optimization point of view (and not to compare
two different ways of distributing the same total among a
number of individuals).

With regard to linear regression, majorants have a weak
point. The weak point is that its maximum sets can be
large. One of the major properties of the majorant is that it
summarizes all ways of maximizing related OWA operators.
it means that if we fix a weight vector and seek the vector
x whose OWA with these weights is maximal it will belong
to the maximum set of the majorant relation (this is similar
to the fact that maximizing a weighted average will give a
single element of the Pareto front).

On the other hand, specifying a syntactic complement
of the majorant relation is straightforward (we may call it
minorants): compute the minority vector as vector of partial
sums of the vector sorted by non-increasing components, and
compare by the complement of Pareto dominance.

However, as we have noted, we still would have to select
among the various maximal elements of this relation, and
this happens to be the same as looking for suitable weights
of an OWA operator that should have a minimal value. This
is the approach that will be followed here.

D. Proportional fairness

Where the maxmin approach sometimes gives a too strong
promotion of the weakest element, proportional fairness
seeks a compensation of relative losses and wins. It was
originally introduced in [12] and is defined as follows:

Definition 6: Given two vectors x, y from Rn with posi-
tive components. Then it is said that x is proportionally more
fair than y if and only if

n∑
i=1

yi − xi

xi
≤ 0 (3)

This definitions ensures that if considering a change from
allocation x to y relative gains are not achieved by stronger
losses. The relation (it is like maxmin fairness not always
transitive, not complete, but cycle-free and implied by Pareto
dominance) implies a larger value of the total logarithmic
utility, thus it is often simplified by a comparison

n∑
i=1

log xi ≥
n∑

i=1

log yi (4)

With regard to a minimum version, it appears not so easy
to come up with a suitable definition (since it includes an
arithmetic expression). The main problem is the appearance
of division by 0 cases. This holds especially for the linear
regression problem, where components can easily be 0 and
would basically select lines that pass through data points.

In order to solve this problem, we propose a combination
of majorants and proportional fairness to be used as a fairness
relation. The relation proportional minority fairness (PMF)
between x and y then is defined as follows:

1) Calculate the minority vectors of x and y.
2) Compare these minority vectors by the converse of

proportional fairness.

The definition would only be invalid in case all data points
are exactly located on a single line. Only then, the first
component of the minority vector of deviation vector x,
which is its largest component, can be 0. However, in this
case we do not need to consider a special regression problem
as the connecting line will well serve all goals of a linear
regression.

In addition to a guaranteed computability, in a convex
domain (as the linear regression is) the maximum sets will
usually contain only one element. The disadvantage here
is that the selection of maximal elements has power two
complexity (it needs to consider all pairs of the domain). If
sampling a range of (a, b)-parameter pairs to approximate the
maximal line, even if its usually not considered intractable,
the computational effort can grow rapidly. For example,
sampling both, a and b with 1000 values each gives a
domain of 1 Million pairs and this includes 1012 pairwise
comparisons which is a huge computational effort.

However, simplification is possible by taking advantage
of the fact that the proposed PMF relation implies a larger
relation between the product of components of the minorant
vector. Then, the maximal element can be computed by a
single pass through the domain as well.

III. EXPERIMENTS

In the following, we report on a first experiment to study
the various ways of linear regression that were introduced
in the foregoing section and to learn about their strong and
weak points. Moreover, we want to gain some evidence if
the fairness aspect is of relevance for the cognitive task of
line adjustment or not.



Fig. 1. Sheet with four panels a 10 dots that was used in the experiment.

A. Material and method

The first experiment here was performed among a group
of students. Four dot patterns, each composed of ten dots,
were presented on a sheet of paper (see Fig. 1). The task
was to draw a line by pencil and ruler that is in a “good”
balanced position to the points. In fact, all four dot patterns
are rotated versions of the same dot pattern.

The students were all familiar with the textbook approach
to linear regression, so it was also told to

1) Not necessarily try to “guess” the true regression line
but follow their subjective feeling of a good fitting line,
representing the linear spread of the dots.

2) Not to just select two points and connect them.
The lines were all drawn in the order upper left panel - upper
right panel - lower left panel - lower right panel and without
any pause between the drawing of the four lines. In total,
seven students incl. one instructor of both gender participated
in the experiment. While doing no special questionnaire
about their experience, most subjects reported that the task
appeared more easy to them before than it was experienced
- in fact some difficulties to decide for the “best line” was
reported.

B. First evaluation: linear regression

The next step was to measure the positions of points and
lines and make elementary statistics. For simplification, i.e. to
avoid negative values and to allow direct comparison between
all four cases, all measures where mapped into the positive
quadrant. The mapping, in terms of the location on the test
sheet, where done by measuring both x-and y-coordinates
from the center to the outside. The results, including the
parameters of the linear regression line, are shown in Table
I and a visualization is given in Fig. 2, with the regression
line drawn in red (or lighter gray in case of non-color print).

In this figure it can be seen that for three panels the
regression line appears more on the border of the distribution
of human-selected lines, thus they are a possible but rather
unlikely human choice (it should be noted that in 3 of 4
cases, the line most closest to the linear regression line was
drawn by the same subject). But for the lower-left panel, the
regression line seems to represent the average of the lines
as drawn by the experiment subjects. The difference of this

TABLE I
RESULTS FOR AVERAGES (AV) OF SLOPE AND BIAS FOR USER DRAWN

REGRESSION LINES IN COMPARISON TO THE LINEAR REGRESSION

RESULT (REG) AND FAIR LINEAR REGRESSION FOR LEXIMAX RELATION

(LEXIMAX) AND PROPORTIONAL MINORITIES RELATION (PMIN).

bias slope
upper-left panel

av 8.03622 -0.650765
reg 7.58274 -0.59619
leximax 7.524 -0.606
pmin 7.6 -0.6

upper-right panel
av 5.4625 -0.291071
reg 5.34656 -0.273577
leximax 5.291 -0.279
pmin 5.38 -0.28

lower-left panel
av 11.0955 -1.06708
reg 11.3806 -1.08912
leximax 11.394 -1.072
pmin 11.36 -1.08

lower-right panel
av 6.35714 -0.342857
reg 6.09127 -0.303139
leximax 6.062 -0.309
pmin 6.04 -0.3

TABLE II
THE 22 MAXIMAL ELEMENTS FOR THE MINORITIES RELATION FOR THE

UPPER-LEFT PANEL.

slope bias
-0.66 7.96
-0.66 8.0
-0.64 7.76
-0.64 7.8
-0.64 7.84
-0.64 7.88
-0.64 7.92
-0.62 7.6
-0.62 7.64
-0.62 7.68
-0.62 7.72
-0.62 7.76
-0.62 7.8
-0.6 7.52
-0.6 7.56
-0.6 7.6
-0.6 7.64
-0.6 7.68
-0.58 7.44
-0.58 7.48
-0.58 7.52
-0.56 7.36

panel to the other panels is that here the dot pattern is most
steeply falling.

We see this as evidence that in fact the human solves this
cognitive task by focussing on the “landmark” dots — thus
basically taking the distance in y-direction more strongly into
account than constructing a hypothetical virtual point in mind
that is located nearby the given point and whose position
might be closest to a candidate line. In case of the lower-
left panel, the closest points to the regression line will be
less offset from the x-positions of the given dots and thus
the linear regression line more likely. With this reasoning, in



the following we choose the y-distance only as a measure for
deviation of a line to the given dots. In the next experiments,
we want to investigate whether the fair linear regression lines
could give a better representations of the human choice of a
balanced line than the linear regression.

C. Second evaluation: fair linear regression

With regard to select maximum sets of the fairness re-
lations that were introduced and selected in the foregoing
section, we performed evaluations as follows:

• For maxmin fairness, we computed parameters of a
regression line such that the largest y-distance of a
point had the smallest value. The y-distances here serve
as deviation vector. The parameters where selected by
subsampling a parameter range of width 1 around the
linear regression values, subdivided into 1000 intervals.

• For proportional minority, we took a smaller subsam-
pling of 100 intervals for the two parameters and
computed the maximum set of the relation by exhaustive
pairwise comparison (i.e. 10000 comparisons). Since
we have to use the asymmetric part of the relation to
confirm maximality, in each case where x (i.e. a specific
choice of parameters) was in relation to y it had to be
tested that not y happen to be in relation to x as well.

• For minority fairness (the complement relation to ma-
jorants) same settings were used as in the case before,
and the maximum set was exhaustively sampled.

Table I also shows the results for these cases. In all cases
the adapted lines have parameters more close to the linear
regression line than to the user average selection. This is the
basic observation that can be done, and it seems that there is
no specific evidence for a user selection based on minimizing
the maximal deviation, or balancing the deviations.

However, minority fairness gives a different picture. In
Table II the set of 22 maximal elements of the minority
relation for the upper-left panel is listed and shows that
indeed some of them cover the average user selection better
than linear regression (especially the second pair -0.66 and
8.0 is very close to the user average). But the fact that the
number of candidates is rather large makes this approach
not practicable. So we have to consider that each of these
maximal elements is related to the minimum value of some
OWA with corr. weights. In the third evaluation, we want to
explore the adaptation of OWA weights.

D. Third evaluation: adaptation of OWA weights

The result of the foregoing evaluation was an indication for
flexibility of the OWA operator to represent the user selection
of line parameters more closely than linear regression. We
want to compare this with the result of using weights in the
linear regression. This way it can be seen if the position of
a dot has stronger influence on the human line drawing or
the distribution of distances. For adapting the 10 weights in
both cases, we used Differential Evolution (DE).

The choice for DE is based on recent good experiences
with DE for a broad range of optimization tasks, as well as

ease of implementation, direct representation of real values,
and low number of parameters. Since it is a well known
procedure there is no need to repeat the algorithm here.
Most relevant here is the circumstance that both adaptations
(for OWA weights, and for weighted linear regression) are
performed under the same settings of DE parameters, and
thus also the same number of function evaluations.

For the case of OWA weights, the fitness computation for
a single individual s is performed as follows:

1) The individual p is encoding a weight vector of an
OWA.

2) The parameter range of size 1 for slope and bias each
is subdivided into 1000 intervals around the linear
regression value, and for these 1 Million cases the
parameters amin, bmin are found that minimize the
OWA of y-distances using p as weights.

3) The fitness (here its a minimization task) is given by

F = 10|amin − aav|+ |bmin − bav| (5)

where aav, bav are the average slope and bias of the
human-selected lines, and the factor 10 is introduced
for compensating the different numerical ranges of a
and b.

The corresponding fitness for the weighted linear regression
is basically the same procedure, except that in case of the
OWA the weighted average is used. It should be noted here
that also for the weighted linear regression, we only use y-
distances at the data points and not the shortest distance to
the line.

The settings for DE were chosen by values that gave rather
fast convergence: population size is 20, the weight values (i.e.
components of the individual vector) were clamped between
0 and 1 including 0 and 1, the injection rate was set to 0.5
and the parameter F to 1. DE was performed for 100 steps.
For a wider range of DE parameters there were actually
no different results, but a larger number of generations was
needed to achieve same performance.

Table III gives some results. A notable feature of using
DE in this context was that the fitness values after 100
generations, per panel, with very few exceptions, where
always the same in both cases, OWA and weighted linear
regression. For illustration, a few weights vectors are shown
as well. The following observations can be made:

• In all cases the OWA comes more close to the user
average than the weighted linear regression. For the
upper-right panel it is a very large difference, for the
lower-right panel more a close match. This is a clear
indication that the OWA can be much better adjusted
to the human way of balancing lines then the weighted
linear regression. Thus, there is some indication that
human observers take the distribution of distances into
account.

• While the best fitness value appears to be the same,
the weights themselves vary a lot. It shows that same
results can be achieved within a wide range of weights,
for OWA as well as weighted linear regression. In case



Fig. 2. User-drawn regression lines (in black) and linear regression lines (in red) for the four panels of the experiment sheet. Note that the dot positions
and lines were mapped into the positive quadrant, and also that the four subfigures have different numerical scales in x-direction (horizontal axis) and
y-direction (vertical axis) for better visualization.

TABLE III
SELECTED BEST RESULTS FOR OWA (OWA) AND WEIGHTED LINEAR REGRESSION (WLR) ADJUSTED TO THE USER AVERAGE REGRESSION LINE BY

USING DIFFERENTIAL EVOLUTION.

example weights fitness
upper-left panel

owa (0.291195 0 1 0.171037 0.143524 1.0 1 0.25157 0.722466 0) 0.0114306
wlr (1 0.417243 1 1 0.149854 0.0239066 1 0.699275 1 1) 0.128569

upper-right panel
owa (0 0.043132 0.245781 0.168147 0.496377 0.616693 1 1.0 0.569346 0.924157) 0.0182095
wlr (0 0.754094 1.0 0 1.0 0 0.644548 0.306872 0.114402 0.0) 4.04387

lower-left panel
owa (0.0 0 0.653261 0.209838 0.531429 0.0 1 0.896185 0 0.538717) 0.0337007
wlr (0.564098 0.742391 1 0.129688 0.767997 0 0 0.04389 0.114336 0.918784) 0.235301

lower-right panel
owa (0.257143 0.974894 1 0 1 1.0 0 0.742932 1 0.190612) 0.0557098
wlr (1 0.203465 1 1 1.0 0.295419 0.637501 0.477884 0 0.749796) 0.0885701

of OWA it should be also taken into account that the
weights for the smaller deviations (which can become
very close to 0 or even 0) do not have a strong numerical
influence on the adaptation, so it is not expected to have
stable values here.

• In case of the upper-left panel it is interesting to note
that the adjusted OWA weights in nearly all cases have
a rightmost weight (for the largest deviation) that is
smaller than the second one from the left (the weight for

the second largest deviation). However, this is not the
case for the other panels. In this case one might consider
the perception of an outlier dot that is ignored in the line
drawing task and producing a largest deviation. Then,
the user is focusing on the next point.

• The weights adapted for the weighted regression show
no general pattern. Often, 0 and 1 weights appear, but
in varying positions. There can be the same best fitness
achieved with canceling the left- or rightmost point, but



also with a strongest weight of 1. It shows that there
is no positional preference of the user to place the line,
e.g. by using the left- or rightmost as “support points.”

• It is not explicitly given by results, but the continuation
of the DE for 500 generations did not change the results.

In summary, where the direct application of a fairness
relation for regression gave no clear difference to the linear
regression, especially no better adaptation to the user choice,
the adaptation of weights was clearly much better in case
of the OWA operator. We got some evidence that user take
distribution aspects of deviation of a line from given points
into account.

E. Limitations
The comparison of linear regression with different ap-

proaches to fair linear regression was only possible by
proposing a concept of using maximality of general relations
for this task. Hopefully, the foregoing analysis has demon-
strated the practical application of this concept. However, we
are also aware that the drawn conclusions are limited in their
scope, due to a number of reasons:

• First at all, the number of subjects was rather small,
and constant problems were used in all cases. It needs
a larger base and also a procedure for automatically
creating a number of reasonable tasks to improve the
confidence into the obtained results.

• Contrary to linear regression, the general problem does
not have an analytic solution. There is some effort
needed to find the maximal elements of the used rela-
tions, with additional parameter settings and granulation
effects.

• Even if in nearly all cases the same best fitness values
were obtained, there is no guarantee that these are the
global best values. This is a known fact for any meta-
heuristic algorithm like DE.

• The way of representing the selection of all subjects was
done by averaging slope and bias. It might be questioned
if not another way of fusing these parameters should be
used, as the same arguments on linear regression and
the related MSE minimization might also apply here.

• Only DE was used. By its nature, DE gives an easy
framework for such adaptation tasks, but a comparison
with other metaheuristic algorithms might not give
better results but insight into the stability of the results.

• The constellation of dots seems to have influence on
how the human solves the cognitive task of line balanc-
ing. Probably it needs many more specific experiments
to find out about human preferences and also perception
of outliers.

Needless to say, these limitations are within the exper-
imental design and do not demonstrate (except a possible
larger computational effort) any essential drawback of the
proposed concept of fair linear regression.

IV. SUMMARY

We started with a carefully performed critique on the use
of linear regression. We feel that in tasks where human

cognition of visual scenes, or in other regard allocation and
resource sharing tasks are considered, the standard approach
of linear regression to minimize the MSE might not be ap-
propriate. This is the motivation to have alternatives at hand.
By using fairness relations that incorporate aspects of the
distribution of items, a suitable set of relations was identified
that can be used in an alternative way to standard linear
regression: by finding maximum elements, i.e. elements of
the asymmetric part of a relation to which no other element is
in relation. For using this concept it was necessary to provide
minimum versions of fairness relations.

The approach was demonstrated for the cognitive task
of human-placed regression lines for a specific dot pattern.
While linear regression comes close to the human-drawn
lines, the precision can be even more improved by evolution-
ary adapted OWA operator weights. Here, an evolutionary
approach is suitable since the number of weights is equal to
the number of dots, and in general there are no analytic ways
to solve the corr. extremity problems. In an experimental
setup a related analysis showed that using OWA can give the
best representation of the human selection of a fitting line,
especially notably better than a weighted linear regression.
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[4] M. Köppen, K. Yoshida, and K. Ohnishi, “A gratis theorem for
relational optimization,” in Proc. 11th International Conference on
Hybrid Intelligent Systems (HIS 2011), Melaka, Malaysia, December
2011, pp. 674–679.

[5] K. Suzumura, Rational Choice, Collective Decisions, and Social
Welfare. Cambridge University Press, 2009.

[6] D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, N:
Prentice Hall, 1992.

[7] J. Jaffe, “Bottleneck flow control,” IEEE Trans. Commun., vol.
COM-29, July 1981.

[8] J. Rawls, Justice as fairness: A restatement. Harvard University
Press, 2001.
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