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Abstract. Relational mathematics, as it is studied in fields like mathematical eco-

nomics and social choice theory for some time, provides a rich and general framework

and appears to be a natural and direct way to paraphrase optimization goals, to repre-

sent user preferences, to justify fairness criterions, to cope with QoS or to valuate utility.

Here, we will focus on the specific application aspects of formal relations in network

design and control problems and provide the general concept of relational optimization.

In relational optimization, we represent the optimization problem by a formal relation,

and the solution by the set of maximal (or non-dominated) elements of this relation.

This appears to be a natural extension of standard optimization, and covers other no-

tions of optimality as well. Along with this, we will provide a set of fairness relations

that can serve as maximizing relations in relational optimization according to various

application needs, and we specify a meta-heuristic approach derived from evolutionary

multi-objective optimization algorithms to approximate their maximum sets.
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optimization

1. Introduction. Recently, advances in network technologies and their increas-

ing impact on all our daily’s life have raised a new quality of problems with regard

to optimization, efficiency and controllability. The change is essentially coming

from the stronger reference to the subjectivity of agents, expressed in terms like

preference, equity, fairness, or envy-freeness. As an example, consider a scenario

for a Broadband Wireless Access (BWA) system, the so-called OFDMA (Orthog-

onal Frequency-Division Multiple Access) system, which also employs cooperation

among various agents via relays. In such a model, three types of stations (mobile

stations, relay stations, base station) are placed in a plane. There is a complex

interplay between the stations, but the main goal is to direct downlink traffic from

the base station to the mobile stations, partially utilizing the relay stations. There

are many influencing factors as well as features of a specific configuration of such

a system (see (Zhang et al., 2009) for a nice introduction into this problem):
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• the allocation of directing transmissions from mobile stations to relay

stations in a cooperative manner, or to the mobile stations directly, and

the share of such a cooperation,

• the number and placement of relay stations (probably taking physical

terrain conditions or antenna heights into account)

• the power allocation to relay stations with corresponding signal-to-noise

ratios, and choices of their forwarding mode: decode-and-forward, where the

relay station decodes the transmission from the base station, encodes anew

and forwards to the mobile station, causing additional delay,

amplify-and-forward, where the relay station just amplifies the base station

transmission, resulting into higher power usage, or a mixture of both

modes,

• minimum transmission rates, maximum delays, and/or maximum tolerable

error rates seeked by the mobile stations,

• subcarrier allocation to stations with corresponding channel coefficients,

and the accompanying splitting of transfer rates into low and high rates

that influence channel utilization,

• the management of time slots, etc.

There is no immediate specification of an efficient guidance for the system

configuration, while exactly this is needed to set up and operate the system at each

time instant. Common ways to achieve such a guidance are optimality, fairness,

Quality-of-Service (QoS), among many other like inferring from simulation studies

or descriptions of probability distributions, identification of equilibrium states etc.

We can easily see that in such a context, even the most generic concept among

them, i.e. optimization can be understood in various manners, and be given in

terms of efficiency, maximality, “better-ness” or robustness. QoS usually refers to

features that are guaranteed throughout the operational time of the system, and

often appear as constraints to the optimization. These are all referring to objective

circumstances. By fairness, for the first time we also introduce subjectivity of

agents.

Here, we want to put forward a theory that appeared in a number of recent

publications in a coherent manner, which utilizes aspects of economics as efficient

guidance on a strict relational framework. Section 2 will recall basic facts about

relations and tailor this to the needs of relational optimization, expressed by the

task of finding maximum sets of relations. Section 3 will introduce a special class

of relations, fairness relations, and its utilization in network design and control

problems will be exemplified in section 4. The paper will draw some conclusions

and compare to related work in section 5.

2. Relations and Relational Optimization In set theory, a binary relation R

on a set X is simply a subset of X × X, indicating all (ordered) pairs (x, y) of
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elements from X between which the relation holds. Thus, R is basically a set

xRy ⇔ (x, y) ∈ R ⊆ X ×X, (1)

and we speak about “x is in relation to y,” “the relation is between x and y” etc.

This is a special case of a relation between elements from a set A and elements

from a set B (which is a subset of A × B) where A = B, and it is also a special

case of an n-ary relation as subset of n-times the direct product of X with itself,

where n = 2.

There are several ways to represent a relation, in addition to the set represen-

tation. For example, if X = {1, 3, 5}, then

X ×X = {(1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5)}.

We consider a “larger”-relation R> as the subset of pairs {(3, 1), (5, 1), (5, 3)}, but

it seems to be more transparent to represent it as:

R = {(x, y) |x, y ∈ X ∧ x > y}. (2)

This is the logical representation of R as a set comprehension, i.e. a statement

describing the properties that its member pairs must satisfy. Another way is the

functional representation as a mapping (1→ ∅, 3→ {1}, 5→ {1, 3}) that assigns

to each x ∈ X the subset of elements of X to which it is in relation.

Assuming an ordering of X so that X is composed of elements xi with i =

1, . . . , |X|, then

R = Rij =

 0 0 0

1 0 0

1 1 0

 (3)

gives a matrix representation of the same relation, where Rij = 1 if and only if

(xi, xj) ∈ R. Among the many other ways to represent a relation, we only want

to mention the graph representation of a relation as a directed graph G = (V,E)

of node set V and edge set E. In our example, the nodes of the graph are the

elements of X, and there is an edge from x ∈ X to y ∈ X if and only if (x, y)

belongs to the relation.

Since the various representations refer to different mathematical concepts, we

can “borrow” terms from the corresponding disciplines and use them for rela-

tions as well. For example, we can speak about the spanning tree of a relation,

or its diameter, according to the graph representation. According to the matrix

representation, we can speak about the rank, or the Eigenvalues of a relation etc.

The set X is often called the domain of the relation. Given a relation R between

elements of X, we can define a restricted relation between elements of any subset

of X. If Z ⊆ X then RZ is the set of all pairs (x, y) ∈ R such that x ∈ Z and

y ∈ Z.
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From a practical point of view, relations can refer to various things, or, in other

words, can have different interpretations. A few examples:

• Relations can represent equivalence of things, or that two things are

representing the same. It is usually expressed as =–relation. Close to

equivalence, there are also the aspects of approximation or similarity (≈)

and of identity (≡).

• Very often, we use the term “relation” with respect to a social relation, like

father-of , daughter-of , boss-of etc., thus referring to a position in a

hierarchy.

• Feasible spaces of problem domains directly refer to a relation among its

elements - while usually we will need an n-ary relation for its

representation.

• Relations can refer to some aspect of “better-ness” like more, better ,

larger , “at least as good”, dominates, is-preferred-to etc. and thus help

characterizing a percept from environment.

• Relations can also refer to a temporal or logical order, esp. to represent

causality, precedence, or linkage.

• Non-binary relations are also used to represent pairings (like

(Apple,Banana) and are of utmost importance for the formal handling of

relational databases.

For distinguishing all these different aspects of relations, properties of relations

can be considered. Among the basic properties that can be found in any textbook

are:

• Completeness: ∀x, y ∈ X : x 6= y → (x, y) ∈ R ∨ (y, x) ∈ R,

• Reflexivity: ∀x ∈ X : (x, x) ∈ R,

• Irreflexivity: ∀x ∈ X : (x, x) 6∈ R,

• Antisymmetry: (x, y) ∈ R ∧ (y, x) ∈ R→ x = y,

• Transitivity: ∀x, y, z ∈ X : (x, y) ∈ R ∧ (y, z) ∈ R→ (x, z) ∈ R, or

• Symmetry: ∀x, y ∈ X : (x, y) ∈ R→ (y, x) ∈ R.

There are many specific properties, and we will see a few more later on. Then,

classes of relations are specified by composing elementary properties: a relation

is an Equivalence, if it is reflexive, transitive and symmetric. Or: a relation is an

Ordering, if it is reflexive, antisymmetric and transitive. But as already indicated

by re-using the bold font here, these compound properties are just properties

as well, and we may logically combine them with other compound properties to

represent presumed “elementary” properties as compound properties. This is the

far reach of the Ugly Duckling Theorem (Watanabe, 1969), and it also means

that there is no way to grasp the semantic meaning of a relation (equivalence,

similarity, better-ness etc.) by means of properties alone, i.e. between two such

relations the total number of distinguishing properties (all compounds from a set

of basic properties) between two differently interpreted relations is constant. It
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means we have to ponder the properties, in order to come up with a practical

approach.

With regard to the set representation of a relation, we can define corresponding

operations on relations, in order to get new relations from given ones. A few

examples:

• Complement: (x, y) ∈ R̃↔ (x, y) 6∈ R,

• Converse: (x, y) ∈ R̂↔ (y, x) ∈ R,

• Converse Complement: the converse of the complement of a relation R

(same as the complement of the converse),

• Relational Product: (x, z) ∈ (R1 ×R2)↔ ∃y ∈ X : (x, y) ∈ R1 ∧ (y, z) ∈ R2

(R1, R2 both have the same domain X, also note that this operation the

base for the definition of relational algebra),

• Transitive Closure: The smallest RTC such that R ⊆ RTC ⊆ X ×X and

RTC is transitive,

• Symmetric Part: S(R) = {(x, y) ∈ R | (y, x) ∈ R}, or

• Asymmetric Part: P (R) = {(x, y) ∈ R | (y, x) 6∈ R}.

The above-mentioned problems with the specification of relations by properties

alone come up when we consider special sets specified by relations. While we

can apply the following definitions to any relation, they make only sense if the

relations belong to a special class of algorithms. Nevertheless, two of these special

sets, maximum set and best set, will be the major focus of the remaining part of

this paper.

(a) Upper Approximation of a set Z ⊆ X by a relation R is given as the set

ẐR = {x ∈ X | ∃z ∈ Z : (x, z) ∈ R}. This is referring to the character of the

relation as a similarity relation, and appears this way in rough set theory, along

with the related definition

(b) Lower Approximation of Z ⊆ X by R as ŽR = {z ∈ Z | ∀x ∈ X : (x, z) ∈ R→
x ∈ Z}.

Per definition, we could also consider upper and lower approximations of sets

by order or equivalence relations, but here, they would just coincide with the sets

Z. Thus, some care has to be taken about the proper meaning of a relation, and

this also applies for the following two specifications, where the focus is on the

better-ness character of a relation R.

(c) Maximum Set M(R) of a relation R is given as the subset of all elements of

X to which no other (different) element of X is in relation P (R), formally

x ∈M(R)←→6 ∃y ∈ X, y 6= x : (y, x) ∈ P (R), (4)

followed by the specification

(d) Best Set B(R) of a relation R as the set of all elements of X that are in

relation P (R) to any other element of X, formally:

x ∈ B(R)←→ ∀y ∈ X, y 6= x : (x, y) ∈ P (R). (5)
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Both definitions could be applied to any kind of relation, but also, as long

as we are focusing on better-ness, they do not serve an interesting purpose. For

example, for a temporal order of events, the maximum set refers to the last event,

and the best set to the first event. For an equivalence relation, both sets are empty

since the asymmetric part is empty. We say that the maximum set is composed

of maximal elements, and the best set is composed of greatest elements. In either

case, these are extreme elements.

Best Set vs. Maximum Set 

Greatest Element from Best Set  Maximal Element from Maximum Set 

Fig. 1. Illustrating maximum and best set elements for a graph representa-

tion of a relation. The figures show only relations involving extreme

elements.

The reference to the asymmetric part P (R) is for formal convenience. We

are basically interested in the relation to non-equivalent elements in order to

justify maximality or greatestness. If considering the same definitions based on R

instead of P (R), these sets will probably be modified, and we speak about strong

maximum sets and weak best sets. It can be seen that maximum and best sets are

related concepts: the maximum set of a relation is the same as the weak best set

of the converse complement relation, and the best set of a relation is the same as

the strong maximum set of the converse complement relation.

We will also use the “infix” notation x ≥R y to refer to a relation R between

x and y with the interpretation of better-ness, and by x >R y to its asymmetric

part P (≥).

So far, we have recalled mostly fundamental facts about relations that can

be found in many textbooks. But if someone compares the various sources for

introducing relations, it can be seen that there are slight variations in the way of

defining things - like a “dialect” of speaking about relations. In fact, so far we have

followed the “dialect” of a mathematical economist, for a good reason. Relations
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play a central role in mathematical economics to formalize the concept of social

choice, and the strict application of relational mathematics here was provided by

Kotaro Suzumura (Suzumura, 2010).

Choice Func+on 

choice set X 

subset s1 

subset s2 

selectable items 

chosen items 

Fig. 2. Social choice from a choice set.

What is a social choice function? Given is a choice set X (for example of goods

to distribute) and a system S of subsets si of the choice set X. Then a choice

function C assigns to each subset si of S one of its non-empty subsets C(si). This

notation can represent many concepts, for example an election: the choice set X

are all electable persons of a community, and the subsets si the sets of candidates

for various elections. Then, a voting scheme can be applied to the totality of these

candidate sets, comprising the set S with the effect of selecting a winner for each

contained candidate set. In this case, the subset of si of chosen candidates usually

contains exactly one element, but in other circumstances, the chosen subset can

also have more than one element. Figure 2 illustrates the case where the choice

set X has 7 elements. Here, the choice function does not have to provide means

for choices from all possible subsets, but only for two subsets: it selects two items

for subset s1 and one item for subset s2 (indicated by open circles). Note that not

all elements of X need to belong to a subset, and that elements can also belong

to more than one subset.

Then Suzumura introduced the concept of rationalizability of a social choice.

In general, this refers to the special case of a social choice function, where we

can specify a relation R among the elements of X such that for each element of

S the chosen subset C(si) of si corresponds with the best (or maximum) set of

the restricted relation Rsi . For some reason, Suzumura actually defines rationaliz-
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Ra#onaliza#on 

choice set X 
with rela#on R 

subset s1 

subset s2 

other element 

greatest element 

Fig. 3. Rationalizability of a social choice function.

ability based on what we called weak best set, but the small differences in formal

notation will not be relevant for the aspects studied here.

Figure 3 illustrates a rationalization of the choice function that was shown in

Fig. 2 by providing a correspondence between choices from subsets and greatest

elements (it also contains a case where a greatest element is not maximal, but

chosen nevertheless).

In general, not all choice functions will have a rationalizing relation, and there

can be more than one rationalization of the same choice function. We say that a

choice function is rationalizable if at least one rationalizing relation exists.

In (Suzumura, 2010) it is also demonstrated how various economical theories

can be brought under the umbrella of this formal framework, by providing addi-

tional assumptions about the choice functions as so-called axioms. For example,

Arrow’s Axiom is given as:

∀s1, s2 ∈ S : s1 ⊂ s2 → [s1 ∩ C(s2) = ∅ ∨ s1 ∩ C(s2) = C(s1)] . (6)

The “meaning” of this may take a moment to comprehend. It is virtually exclu-

sion of choices depending on absence of choice items. Assume a scenario where

someone goes into a cafe and wants to order cake, and the waiter explains the

menu choices blueberry cake, cheesecake, and cherry cake. The customer decides

for the blueberry cake. After a moment, the waiter returns to the table and excuses

that he made a mistake when telling the choices, and there is no cheesecake avail-

able anymore. The, the customer replies “If that’s the case, I will take the cherry

cake!” Such a change of mind is actually excluded by Arrow’s Axiom for a “ratio-
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nal” agent. There, s2 is {cheese, cherry, blueberry} and s1 = {cherry, blueberry}.
Then, the customer is the “performer” of the choice function C and this assigns

C(s1) = {cherry} and C(s2) = {blueberry}. So we have s1 ⊂ s2, that means

the range of available items s2 is narrowed down to s1 (“no cheesecake”). But

the implication appears to be wrong: s1 ∩C(s2) = {blueberry} is not empty, and

s1 ∩ C(s2) = {blueberry} is different from C(s1) = {cherry}.
So, Arrow’s Axiom reads like: if the range of available items (s2) is narrowed

down to s1, but still contains some previously chosen items, no previously unchosen

item becomes chosen and no previously chosen item becomes unchosen.

As an example for the further reasoning: based on this assumption about the

choice function, and if the choice function is rationalizable by a relation R the

relation is an ordering if and only if the choice function fulfills Arrow’s Axiom

(Theorem 2.2 in (Suzumura, 2010)).

Universal Ra,onalizability 

Social 
Choice 

Choice 

Choice Set 

Op,mality 

Op,mum 

Feasible 
Space 

Algorithm 

Final State 

Ini,al States 

Rela,ons 

Maximum 
Set/Best Set 

Domain 

Correspondence 

Fig. 4. Universal rationalizability, extending the concept of a social choice

function to other domains.

This is a very short and sketchy introduction to the Suzumura approach to

social choice, and we highly recommend the book (Suzumura, 2010) for further

reading. As it was stated in the introduction, our concern is optimality as a means

to efficiently select configurations for design and operation of a system. However,

the pure set notation of rationalizability implies its applicability to various other

contexts, and we want to call this universal rationalizability (see Fig. 4). Ratio-

nalizability was given by the correspondence between best or maximum sets and

social choices. But also if we want to formalize optimality, we refer to the selec-

tion of optimal states for each element of a collection of subsets of the feasible



26 M. Köppen

space, and we can consider its rationalization by a relation. Then, the optimal

states corresponds with the maximum or best sets of the relation, restricted to

the corr. subset. In fact, the traditional approach to optimization is to maximize

a real-valued function, so the relation here is simply the >-relation (alternatively

≥), where both, the best and maximum sets correspond with the largest element

or supremum1. In multi-objective optimization, we refer to the Pareto-front (i.e.

the maximum set of the Pareto-dominance relation) of non-dominated elements

in a similar sense (see next section). But the correspondence also shows that we

can provide optimality by specifying any other “better-ness” relation in the same

fashion. This is the approach of relational optimization.

The other argument is about algorithms. There might be different opinions

about the meaning of “algorithm” but it might not cause to much critique if one

says that an algorithm is a step-by-step procedure of state transitions, starting

from an initial state and arriving at a final state. If we also agree that the final

state is just an ordinary member of the possible initial states, the concept of

rationalizability applies as well: for some algorithms there might exists a relation

such that the selection of a final state coincides with the maximum or best set of a

relation among the elements of the initial states. This is another correspondence of

universal rationalizability. The last one discussed here is that then, an algorithm

can solve an optimization problem, if they share a rationalizing relation. But also,

given an algorithm, we can ask what kind of optimality it provides by identifying

a fitting relation. This principle will gives us guidance in the following. By using

a relation as a rationale, a selection principle can become efficient.

3. Fairness Relations In this section, we will use rationalization of fairness

as a means for optimality, which means we will represent fairness as a relations

between states of choice. Before doing so, a few comments about the general idea

of fairness are in place. Actually, fairness refers to several concepts. In social sci-

ences, three such concepts are: distributive fairness, which is about the modality

of a distribution of (dividable or individable) goods; procedural fairness as judge-

ment of a decision making process; and interactional fairness, with regard to the

perception of interpersonal treatment (Azar et al., 2011)(Hack et al., 2007). In all

cases, we can find an aspect of “empathy” in the judgement about fairness, by

one agent virtually taking the position of another one to compare states (a sloppy

way of paraphrasing this is the common washing room motto: “Please leave the

room the way you would like to find it!”). Thus, if there would be only one agent

in the universe, there would be no fairness (as well as no unfairness), but also, the

empathies here are not cycling, that means an agent will not take the virtual po-

sition of the virtual position of another agent easily. Nevertheless, we use fairness

for comparison.

1To be formally correct, we have to consider the function as providing a pre-ordering relation

between the elements of its domain, and we are looking for the maximum set of this pre-order.
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If we want to represent fairness as a relation between states, we can consider

some properties of such relations (in an axiomatic sense). This will be introduced

in the following:

Definition 1. A relation R between elements of a set X is non-cyclic or

cycle-free if there is no finite sequence of elements xi with i = 1, . . . , n such that

x1 ≥R x2 ≥R x3 ≥R · · · ≥R xn >R x1. (7)

Following Suzumura, there a various concepts of cyclicity of a relation, accord-

ing to various needs and with and without reference to the asymmetric part of a

relation. In any case, cycle-freeness is a weakened form of transitivity. As men-

tioned before, with regard to fairness, we may consider one agent justifying by

taking the position of another agent, but usually it is hard to take the position of

a taken position by a third agent. Therefore, a formal representation of fairness is

not necessarily transitive. By cycle-freeness we ensure two things: (1) even if we

cannot conclude from x >R y and y >R z that also x >R z, but at least we do not

have z >R x; (2) for finite X, the relation will have a non-empty maximum set.

We also need some relational “bounds” to ensure that a fairness relation is still

a relation acknowledging global improvements.

For vector relations, where X ⊆ Rn, we recall Pareto-dominance.

Definition 2. For any pair of vectors x, y ∈ Rn we say that x (weakly)

Pareto-dominates y (x ≥p y) if and only if for all i = 1, . . . , n xi ≥ yi.

Note that often there is the additional requirement that for at least one in-

dex j xj > yj . This is actually the asymmetric part of the just defined Pareto-

dominance, so using the notation x >p y to refer to this variant (also called strong

Pareto-dominance) should avoid any confusion. As said, we are not so much in-

terested into equality when looking for extreme elements.

By using Pareto-dominance, we define another property of a vector relation.

Definition 3. A vector relation R between elements of a subset X of Rn is

called right-Pareto-transitive (RPT), if for all x, y, z ∈ X from x ≥R y and y ≥p z
also follows x ≥R z.

By RPT we refer to the fact that for x ≥R y, the aspect is that of x “looking at”

y and not the other way. If this is the case, any deterioration of y should preserve

the relation. We do not consider the dual property of left-Pareto-transitivity (LPT,

x ≥p y ∧ y ≥R z → x ≥R z), as this would result to the rather complex situation

to take the viewpoint of an agent y taking the viewpoint of z while changing x at

the same time. Nevertheless, we will have relations with this property as well.

As a last comment, we will define antisymmetric relations ≥R but practically

only focusing on their symmetric part >R, to have a clear distinction in any case.

Then:
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Definition 4. A vector relation between elements of a subset X of Rn is a

fairness relation if and only if it is antisymmetric, cycle-free, and right-Pareto-

transitive.

We hope that foregoing comments hopefully supported the reasoning behind

this definition. We will provide some examples for fairness relations.

(1) As the simplest case, the ≥-relation between real numbers is a fairness relation.

From a ≥ b and b ≥ a we conclude that a = b. As a transitive relation it is

necessarily cycle-free, and also RPT.

(2) Pareto-dominance is a fairness relation as well: it is transitive and antisym-

metric, and RPT is just another reading of the transitivity condition.

(3) Any vector relation using a scalar comparison with a monotone scalar function

is a fairness relation. Scalar comparison here means to justify whether x ≥R y or

not by using a (scalar) mapping f : X → R and testing f(x) ≥ f(y). Specific

examples here are comparison by the average of components, or any other power

means.

(4) Maxmin fairness appears as the characteristic of a stable state in traffic rate

allocation in wired networks (Bertsekas et al., 1992). It is given as a state where

an agent can only become better off if another agent, already equally or worse

off, becomes even more worse off. This gives raise to the following definition of a

maxmin fairness relation:

Definition 5. Given a feasible space X ⊆ Rn. For two elements (vectors) x

and y from X it is said that x maxmin fair dominates y (x ≥mmf y) iff for each

i with yi > xi there is at least one j 6= i such that (1) xi ≥ xj and (2) xj > yj .

This relation is a little bit hard to comprehend at the beginning. Also from

a practical point of view, we may simplify the evaluation whether x >mmf y or

not as follows: separate the set {1, . . . , n} of indizes of x into three groups. Group

A are all indizes where xi > yi, set B all indizes where xi = yi, and set C all

indizes where xi < yi. Then, x >mmf y if and only if min(A) ≤ min(C)2. We

can also say that A are the “looser” (if x takes the y-perspective) and C are the

“winner” in the comparison. Then, it is considered at least as fair if the status of

the looser (represented by their minimum allocation) is not larger than the status

of the winner.

It is not so much effort to see that maxmin fairness is a fairness relation. With-

out a detailed proof, we just give the main reasoning. From x >mmf y follows

that y >mmf x is not possible. From x >mmf y follows min{xi |xi > yi} ≤
min{xi |xi < yi} and thus min{yi | yi < xi} < min{yi | yi > xi}, i.e. the condition

for maxmin fairness between y and x is not fulfilled and maxmin fairness is anti-

symmetric. It requires a little bit formal effort to also see that maxmin fairness is

cycle-free, the proof will be presented in a future communication. When reducing

the elements of y to another vector z (Pareto-dominated by y) the new set A′ for

2In the case that one of these sets is empty, continue the evaluation with ∞ instead of min.
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the comparison of x with z will be a superset of A while the new set C ′ will be a

subset of C. Thus, the inequality min(A′) ≤ min(C ′) will still hold and maxmin

fairness has the RPT property as well. However, maxmin fairness does not have

the LPT property.

(5) Proportional fairness was introduced with regard to an optimization problem

of traffic rate allocations, and to overcome some problems with maxmin fairness

with regard to maxmin fairness’ least element preference. Given a routing for

end-to-end user traffic in a wired network with link-capacity constraints (so-called

elastic traffic), then user evaluate allocated traffic rates by their utility function,

and manipulate traffic rates by payments. The total of utilities minus payments

should be maximized. In (Kelly, 1997) it was shown that generally a price model

exists such that the so-called proportional fairness state x can be achieved (and

is the one maximizing the objective), where for any other feasible state y

I(x, y) =
∑
i

yi − xi
xi

≤ 0 (8)

holds. This is direct representation of a relation: x ≥pf y if and only if I(x, y) ≤ 0.

Note that the domain of the relation needs to be Rn+. From the fact that x >pf y

implies
∏
i xi >

∏
i yi (for the implicator function I(x, y) = 0 is actually the

tangent to the curve
∏
i xi = const) follows antisymmetry and cycle-freeness,

and RPT can be easily seen from the fact that the indicator function I(x, y) is

monotone with regard to the second argument (by anti-monotony with regard to

the first argument, also the LPT property follows).

An extension of proportional fairness to α-fairness was proposed in (Mo et al.,

2000). Here, the indicator function changes to

Iα(x, y) =
∑
i

yi − xi
xαi

(9)

for some α > 0. For α→∞ α-fairness approximates maxmin fairness. Also here,

x >α y implies a corresponding >-relation between the (1 − α) power means of

the corr. elements, and directly gives antisymmetry and cycle-freeness, while RPT

can be directly seen from monotony of the indicator function with regard to the

second element.

(6) Leximin relation is another fundamental ordering relation. If the subscript

notation (i) indicates the i-th smallest element of an ordered set of values, then

we compare two vectors x and y by the smallest j such that x(j) 6= y(j). It is said

that x leximin dominates y (x ≥lm y) if either x = y or x(j) > y(j). The relation

is transitive and thus cycle-free, also proving antisymmetry and LPT is simple. It

is also a complete multi-variate relation.

An important property of all fairness relations is the fact that Pareto-

dominance implies fairness. This can be easy seen: if x ≥p y then RPT property

and antisymmetry give that from x ≥R x and x ≥p y also x ≥R y follows. Thus, as
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a general result, the maximum set of a fairness relation is a subset of the maximum

set of the Pareto-dominance relation. Due to cycle-freeness, this maximum set is

never empty (for finite sets). So, a fairness relation can also be seen as the deci-

sion maker in multi-objective optimization, excluding the border elements of the

Pareto front, where only a few objectives are maximal, other objectives minimal.

There are two limitations that have to be taken into account when using fair-

ness relations for decision making and efficient state selection. (1) The components

of the vector need to be commensurable. They should not have different “seman-

tic” meaning (like component 1 being a delay, component 2 a traffic rate) since

fairness relations usually also compare between components of a vector. If their

components represent different modalities, then we either need to introduce util-

ities (equity, commodity), which can become a daunting task, or we might use

multi-vectors to represent all aspects. (2) Then, maximum sets of fairness rela-

tions can contain more than one element. If the question about a final decision

comes up, all the elements in the maximum set are indifferent with regard to the

chosen fairness criterion. Nevertheless, the choice according to global optimality

(for example the state with maximal sum of elements) can still be done, so it still

can be a rather simple task.

4. Parabolic Fairness: From fair routing to fair wireless channel allocation

In this section, we want to demonstrate the concept of universal rationalizability

to define a fairness concept for wireless network control. The starting point will

be a wired network, where we know about an algorithm (BFC: Bottleneck Flow

Control) commonly understood to allocate traffic rates in a fair manner. Then,

we use a fairness relation to characterize the final state of the algorithm as the

maximum set of that fairness relation. So, we can use the same fairness relation

in the context of wireless networks (where the task becomes of discrete nature),

without thinking about the transition of the algorithm itself (for example, there is

no need to introduce a concept of “bottlenecks”). Since there are several relations

able to represent the final state of the Bottleneck Flow Control, we will presents a

few results of Monte Carlo simulations for comparing the maximum sets for these

relations.

4.1. Bottleneck Flow Control We assume a traffic network congestion avoid-

ance problem. A network for carrying traffic is given as an un-directed graph G

with nodes N and links L. Also, a maximum capacity is assigned to each link.

Then, there are a number of users that want to send traffic units through this

network. Thus, also a set of n triples (Πi, si, ri) of sender-receiver pairs and paths

connecting them is given, where si represents the sending node, ri the receiver

node for user ui. Paths Πi are given as a sequence of joined links starting from

si and ending at ri. We also consider the union of all links li used by all paths,

each link with a multiplicity wi according to the number of paths using the link

li. Then the Bottleneck Flow Control algorithm, which was initially proposed in

(Jaffe, 1981) assigns traffic amounts ti to all users ui in the following way:



Relational optimization and its utilization 31

Bottleneck Flow Control

1. Set the remaining paths to the set of all paths. Set the traffics ti for users

ui along their corr. paths Πi to 0.

2. While the remaining paths set is not empty, perform the following steps:

3. For all links li used by the remaining paths, get the number wi of paths

that pass through this link.

4. Find the links with minimum value of mi = ci/wi.

5. Add mi to the traffics for all users through the links with minimal mi.

6. Remove the paths of all users of links, for which mi is minimal, from the

remaining paths.

7. Set new capacities of network links ci → ci −mi ∗ wi.

We consider a simple example for the BFC algorithm. Given a network with 7

nodes and links between these nodes as indicated in the figure. It is assumed that

the link connecting nodes 3 and 4 has a maximum capacity of 200 units, and the

link connecting nodes 4 and 7 has a maximum capacity of 100 units. All other

links will have some higher maximum capacity. Three users wants to send traffic

through this network: user 1 sends traffic t1 via the nodes 1, 3, 4 and 7; user 2

sends traffic t2 via the nodes 2, 4 and 7; and user 3 sends traffic t3 via 5, 3, 4 and

6. It means that some users have to share links for their traffic: users 1 and 3 share

the link between nodes 3 and 4, and users 1 and 2 share the link between nodes 4

and 7. The BFC algorithm now will assign specific values for the traffic amounts

t1, t2 and t3, starting with amount 0, and increasing equally for a subgroup of

users. At the beginning (Level 0) the amount will increase for all users. In some

later stage, for example at Level 20, the traffic amount assignment of 20 (units)

to all users is still feasible. However, at Level 50, the link between nodes 4 and 7

has to transport a total traffic of 100: 50 from user 1, and 50 from user 2. This

gives a so-called bottleneck. Any attempt to further increase the traffic for either

user 1 or user 2 will result in exceeding the maximum capacity of this link. Thus,

the BFC algorithm stops to further increase the traffic amount for users 1 and 2,

and fixes the assignment t1 = 50 and t2 = 50.

However, user 3 is not affected by this bottleneck, since her traffic is not using

the link between nodes 4 and 7. So, the BFC algorithm continues. Later on, for

example at Level 70, the traffic assignment t3 = 70 (while keeping t1 = t2 = 50)

is still feasible. This level increase will continue until Level 150. Now, the total

traffic for the link between nodes 3 and 4 becomes 200: user 1 was fixed before at

the level t1 = 50, and t3 = 150 for user 3.

Any further increase of traffic is not possible, and the BFC algorithm stops.

Thus, the final traffic assignment is t1 = 50, t2 = 50, t3 = 150. In the implementa-

tion of this algorithm, of course, there are no increasing level sets, as the values of

bottlenecks can be directly inferred from the network configuration and the values

of maximum capacities.
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Given an instance of a network routing problem with maximum capacities, the

BFC algorithm will always assign a unique traffic state to all users. It can be seen

that this state corresponds with the maximum set of maxmin fairness, as well

as leximin fairness – where in both cases, the maximum sets contain exactly one

element, and this element is also the single greatest element for these relations

(of course, this only holds in the link-capacity constrained feasible space, i.e. a

space with linear inequality constraints). But then, the question comes up if there

is also a scalar function of the traffic amounts that is directly maximized by the

BFC algorithm. This was shown to be true in (Koeppen et al., 2011B). We define

a special case of the ordered weighted averaging (OWA) operator. As a reminder,

the OWA of a point x of Rn, given a weight vector w ∈ Rn, is defined as
∑
wix(i).

In this expression, x(i) indicates the i-th smallest element of all coordinates of x.

We specialize the OWA by also requiring the weights to be sorted in the opposite

order:

Definition 6. Given a point x from Rn and a set of weights w ∈ Rn, the

Ordered-Ordered Weighted Averaging (OOWA) of x by w is defined as

OOWAw(x) =

n∑
i=1

w(i)x(n−i+1). (10)

Thus, in the OOWA, the largest value is multiplied with the smallest weight, the

second-largest value with the second-smallest weight etc. As a special case of the

OOWA, we also introduce the exponential OOWA. The additional requirement

here is w(k) >
∑k−1
i=1 w(i), so that the weights itself are exponentially increasing.

A possible choice is wi = 2(i−1) for any i ∈ N .

Based on this, in (Koeppen et al., 2011B) it was shown:

Theorem 1. Given a weighted graph G of a network, a routing (i.e. a set of

linking paths between nodes), then among all feasible traffic allocations to the users,

the BFC algorithm gives the state with the maximum value of the exponential

OOWA (for any fixed choice of weights).

We also recall two extensions of the result (Koeppen et al., 2011C). The re-

quirement of an exponential increase of the weights is a result of link sharing. The

worst case, where the condition of exponential weight increase has to be fulfilled,

is where a single user shares traffic with all other users. If there is no link sharing

at all, any OOWA will be maximized by the BFC algorithm. So we also consider

a linear OOWA with weight-growth law wi > wi−1 for any i > 1. In case that its

maximum coincides with the maximum for the exponential OOWA, we can see

this as an indication that “link sharing” does not occur, or only to a small degree

with low influence on related results. This is a statement without direct reference

to the traffic rate allocation problem.
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If a link never shares traffic with more than one other user , the requirement of

exponential increase of the weights can be relaxed to the requirement wi > wi−1+

wi−2 for i > 2 and w2 > w1. One possible choice for such weights is wi = Fi+2−1,

where Fi is the i-th element of the Fibonacci series (F1 = 1, F2 = 1 and for i > 3

Fi = Fi−1 + Fi−2). From wi−1 + wi−2 = Fi+1 + Fi − 2 = Fi+2 − 2 = wi − 1 < wi
it can be seen that this choice fulfills the relaxed weight increase requirement.

We will call an OOWA computed with these weights a Fibonacci OOWA. The

exposition can be extended by using more than two weights in a straightforward

manner. We consider such special versions of the OOWA as a convenient tool for

probing implicit sharing issues in any domain, where these expressions can be

computed.

For convenience, in the following we will also write expOOWA (for “exponential

OOWA”), linOOWA (for “linear OOWA”), FibOOWA (for “Fibonacci OOWA”)

for these operators with the fixed choice of weights wi = 2i−1 for the exponential

OOWA, wi = i for the linear OOWA, and wi = Fi+2−1 for the Fibonacci OOWA,

and introduce relations ≥eo, ≥lo and ≥fo by size comparison of the corresponding

operator values. Since the OWA operator in general is monotone, all three relations

are also fairness relations.

4.2. Wireless Channel Allocation Now we want to turn our attention to a

completely different domain, and demonstrate how we can establish a concept of

fairness there as well. In Wireless Channel Allocation (WCA), a blank matrix B

of channel-timeslot pairs with a total of M cells bi, a set U = (ui) of N user and

an M × N matrix C of channel coefficients of real values from [0, 1] are given.

The task is to enter at most one user into each blank cell in B, i.e. to provide an

allocation a : B → U of cells to user with |{u ∈ U | a(b) = u}| ≤ 1 for all cells

b ∈ B. Each entry cij of the matrix C represents the utility for user ui in case

of assignment of cell bj , as a model abstraction of all the physical and logistic

circumstances of the wireless access. For a given allocation a, the performance for

each user is given by

p(ui) =
∑

j,a(bj)=ui

cij (11)

i.e. the sum of channel coefficients for all channels allocated to the user. Channel

allocation has to be performed such that, in some sense, all user are “satisfied”

with their individual performances as good as possible. The actual problem is to

specify the meaning of “satisfied” in an efficient way. For example, considering

maximization of the sum of all performances is not a good way to satisfy all users:

the optimization problem could be easily solved by selecting for each cell one of

the user with maximum channel coefficient. But this way it can happen that then

some user will never get any channel allocated, and these users are exempted from

wireless access. Therefore, the economics of WCA becomes relevant, especially

aspects of fairness.
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Table 1. Comparison of maximum set selections by the different relations.

For space reasons, column titles are abbreviated: column 1 shows

the scale of the problem, i.e. number of user and number of cells;

column 2 the average size of the maximum set of maxmin fairness,

along with 25% and 75% quantiles; column 3 the probability that

the allocation with maximal expOOWA is contained in the maxi-

mum set of maxmin fairness; columns 4 and 5 then the probabilities

that maximum allocation for linOOWA and FibOOWA resp. are

equal to the maximum allocation for expOOWA. All values where

computed from 30 random samples of the channel coefficients.

(u, c) |Mmmf |, (Quant.) meo ∈ Mmmf? mlo = meo? mfo = meo?

(2,3) 1.73 (1,2) 0.53 1.0 1.0

(2,4) 1.6 (1,2) 0.7 1.0 1.0

(2,5) 1.87 (2,2) 0.8 1.0 1.0

(3,4) 2.6 (2,3) 0.63 0.83 1.0

(3,5) 2.93 (2,3) 0.53 0.87 1.0

(4,5) 3.37 (2,4) 0.87 0.7 1.0

So the approach is to use expOOWA maximization for the WCA allocation.

We have seen that this is indistinguishable from maxmin fairness in fair traffic rate

allocation, so it is a “valid” concept for fairness as well, with the additional advan-

tage of being a functional that can be directly computed from performance vectors

and do not need pairwise comparisons. Parabolic fairness then is the transfer of

this concept of fairness to other domains in the sense of an analogy, as the litera-

ture style of a parable does, by imposing expOOWA maximization as the means

of efficient state allocation. Then, if we consider the user performance vector, we

can introduce a concept of maxmin fairness in the WCA problem as well.

As a small demonstration, we will utilize four relations to random settings of

the WCA problem (i.e. all channel coefficients are uniform random samples from

[0, 1]) . We select the maximum set Mmmf of the maxmin fairness relation, where

the relation domain are all possible allocations of users to cells, and compare

with the allocations meo with maximal expOOWA value. Since the number of

allocations is growing exponentially, we can do this for small problem scales only.

For such problem scales, results are shown in Table 1.

It can be seen that the maximum sets of the maxmin fairness relations are

comparable with the number of cells, and that the chance that these maximal

elements also include the maximum expOOWA state are increasing with increasing

problem scale (with one exception). We can extrapolate that the chances are more

than 90% for realistic problem scales. Table 1 also shows the comparison between

the maximum states of expOOWA, linOOWA, and FibOOWA. This allows for

a judgement of the “sharing” aspects in this distribution problem, and implicit

“bottlenecks.” We can see that pairwise sharing is present, since linOOWA and
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expOOWA differ for larger problem scales, but FibOOWA and expOOWA did

not differ in any case in the sample. Remember that for the BFC algorithm final

state, the maximum linOOWA would be equal to the maximum expOOWA if there

would be no link sharing, and expOOWA and FibOOWA would be equal if there

would be at most pairwise link sharing. So we can consider a similar reasoning

here, and see that in the WCA problem domain, increased performance for one

user will usually need to reduce performance for at most one other user. In WCA,

head-to-head competition prevails.

5. Conclusions and Related Work In this paper, a relational framework for

utilizing fairness in different domains was introduced. Also a small number of

fairness relations have been introduced, but not so much was said with regard to

two other main questions. We will shortly comment on them and provide some

references.

(1) Are there other fairness relations? The answer is definitely Yes. We may con-

sider a few particular aspects of the fairness relations considered here (esp. maxmin

fairness and proportional fairness) in order to see generic aspects. For example,

while maxmin fairness is relating different components of the same vector to each

other, this is not the case for proportional fairness. It might be seen as an disad-

vantage, and in fact, proportional fairness can be achieved with arbitrary small

components, as long as they are compensated by increasing other components. To

achieve a bounded trade-off for proportional fairness, ordered proportional fair-

ness was introduced in (Koeppen et al., 2011D). There, the indicator expression

changes to

I(x, y) =

n∑
i=1

y(i) − x(i)
x(i)

≤ 0 (12)

(remember that the subscript (i) indicates the i-th smallest component). It can

be shown that this is a fairness relation as well.

(2) How can we find the maximum sets of fairness relations? This is in fact a hard

question. Even for discrete problems like the WCA, the size of feasible spaces

grows exponentially, and exhaustive searches are impossible. This is worsened by

the fact that tests for maximum sets needs pairwise comparison, as soon as the

relation is not just the comparison of functional values (as for parabolic fairness).

So, this is the order of magnitude of the square of feasible space sizes. On the

other hand, exact algorithms like Bottleneck Flow Control are not (yet?) known.

This gives a good reason to consider the use of meta-heuristic approaches. It

has happened that over the last few years, a large number of algorithms have

been developed to approximate Pareto fronts of multi-objective optimization (MO)

problems. The main structural design aspect here is to employ Pareto-dominance

instead of direct numerical comparisons (e.g. of fitness, cost, or quality function

values). Thus, there is already the laid foundation to impute relations into the

algorithmic framework at all. In (Koeppen et al., 2010B) several meta-heuristic
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MO algorithms, modified by replacing the role of Pareto-dominance by maxmin

fairness, have been compared, and especially the SPEA2 algorithm (Zitzler et

al., 2002) appeared to be a good candidate algorithm to handle maximum set

approximations in general. However, issues of the relations itself also play a role,

and the same algorithm can show strongly differing performances when using

different relations. Moreover, in (Koeppen et al., 2011G) it was shown that the

search for a good relational optimizer is not futile, as the No Free Lunch theorems

do not apply to the case of such relational optimization.

5.1. Related Work This work is not the first to consider a formalization

(“computable”) fairness, and it will not be the last. In fact, the majority of pa-

pers evaluating fairness, for example in network simulations, is referring to Jain’s

fairness indicator (or index) (Jain et al., 1984), computed as

J(x) =
(
∑n
i=1 xi)

2

n ·
∑n
i=1 x

2
i

. (13)

This is essentially a measure how strong the components of vector x deviate from

equality. Very similar is the Gini index (Gini, 1997). The discussion whether equal-

ity is the only acceptable fairness, as it ensures envy-freeness, for example, is still

open. It might be so in simple circumstances. As soon as users justify their ben-

efits differently, equality would start to become unfair. This is the main idea of

equity. But the main problem with the indicator approach might be seen in the

fact that it allows to assign an absolute eternal level of fairness to any vector.

As said before, fairness is a matter of comparison, and a state appearing fair in

a context of states might appear unfair, if the set of context state changes and

new knowledge comes in. There is no way of modeling such a situation with a

numerical value alone.

This argument seems to be in conflict with the parabolic fairness that was

introduced before – also here, a numerical value is computed. But by virtue of

usage and definition, this expOOWA cannot be considered as a fairness indicator,

as its numerical size will strongly depend on the WCA problem at hand. Thus,

the only means of using the function value is to compare it with other function

values for the same set of channel coefficients. Moreover, the choice of weights is

not unique and just needs to follow a weight growth rule.

The same as for fairness indicators can be said about fairness measures (Lan

et al., 2010). Also here, some sets of axioms have been provided, with more or less

good intentions. Here, we have substantially extended such concepts by basing

fairness on comparability of states beyond numbers. In fact, the relational frame-

work allows even symbolic states to be processed, where numeric computations

are not possible at all.

As a final comment, much needs to be done with regard to fairness relations

and relational optimization. Besides practical and application aspects, also the

mathematical foundations need polishing. A main problem is the relation of fair-
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ness to topology, i.e. if and how we can consider a system of open neighborhoods

of relations, in order to handle limits of relations and other convergence and ap-

proximation aspects in a rigid framework. This is one of the topics of ongoing

research.
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M. Köppen, K. Yoshida, and K. Ohnishi (2011G), “A gratis theorem for relational optimization,”

in Proc. 11th International Conference on Hybrid Intelligent Systems (HIS 2011), Melaka,
Malaysia, December 2011, pp. 674–679.

C. Gini, “Concentration and dependency ratios (english translation),” Rivista di Politica Eco-
nomica, vol. 87, pp. 769–789, 1997.

T. Lan, D. Kao, C. Mung, and A. Sabharwal, “An axiomatic theory of fairness in network
resource allocation,” in INFOCOM, 2010 Proceedings IEEE, 2010, pp. 1–9.

J.M. Jaffe, “Bottleneck Flow Control,” in IEEE Trans. Communication, vol. 29(7), pp. 954–962,
1981.

R. Jain, D.M. Chiu, W. Hawe, “A Quantitative Measure of Fairness and Discrimination for
Resource Allocation in Shared Computer Systems,” DEC Research Report TR-301, 1984.



38 M. Köppen
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