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The recent problem of network resource allocation is studied where pairs of users could be in a favourable situation, given that the
allocation scheme is refined by some add-on technology.The general question here is whether the additional effort can be effective
with regard to the user's experience of fairness.The computational approach proposed in this paper to handle this question is based
on the framework of relational optimization. For representing different weightings for different pairs of users, the use of a fuzzy
measure appears to be reasonable. The generalized Choquet integrals are discussed from the viewpoint of representing fairness
and it is concluded that the asymmetric Choquet integral is the most suitable approach. A binary relation using the asymmetric
Choquet integral is proposed. In case of a supermodular fuzzy measure, this is a transitive and cycle-free relation. The price of
fairness with regard to a wireless channel allocation problem taking channel interference into account is experimentally studied
and it can be seen that the asymmetric on relation actually selects allocations that perform on average between maxmin fairness
and proportional fairness, and being more close to maxmin fairness as long as channel interference is not high.

1. Introduction

The rapid spread of wireless communication poses many
challenges to the underlying networking technology and
infrastructure. Daily experience of using wireless access
teaches us the increased efficiency of provider solutions. At
this stage of development, the major technical demand is the
efficient reuse of existing resources or their usage expansion
based on cost-efficient technical add-ons.That brings that the
main valuation criterion today is the total utility of network
infrastructure employment, with a lower focus on fairness
aspects of resource allocation and distribution. For now, the
standard user of a wireless infrastructure does not have the
immediate experience of fairness, taking the access vector of
other users into account—the needed information is simply
not available for the user. This might change in the future
and fairness might become the primary not the secondary
aspect in comparison to efficiency. Recently, the relation
between fairness and efficiency (in the sense of the total sum
of per-user valuations) has become a relevant research issue.

Obviously, a fair allocation is not an “optimal” allocation since
the total valuation will be lower than the maximum possible.
However, bounds do exist and in basic settings it is already
known that the “price of fairness” is actually not so high [1].

In the specification of fairness, the so-called “standards
of comparison” (SoC) give an important formal instrument
for the specification of fair solutions. It refers to a modality
of comparing two solutions, where a solution 𝐴 passes a
specific test with regard to another solution 𝐵. A classical
example is the Nash standard of comparison for bargaining
negotiations [2]; a solution is considered better than another
solution if the relative wins are not outperformed by relative
losses. If a solution 𝐴 appears to be better than any other
solution, that is, the relative losses are always larger than
or equal to the relative wins, the solution is seen as a
stable point in negotiations, and there is no incentive to
deviate from this solution. Later on, a few issues with the
Nash SoC led to the formulation of an alternative Kalai-
Smorodinsky SoC [3]. This approach promotes the user
that receives the least allocation (which is also the base
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for the economical and political ideas of Rawls [4]). Both
approaches, originally developed in economical science, have
been rediscovered in network telecommunication theory and
are very popular approaches in current research; the Nash
SoC is now better known as proportional fairness [5] and
the Kalai-Smorodinsky SoC as maxmin fairness [6]. It comes
out that, even historically, the cultural distinction between
these two fundamental kinds of fairness existed for long time
[7]. In between, a mediating approach that links proportional
fairness and maxmin fairness, the so-called 𝛼-fairness, has
been formulated as well [8]; if 𝛼 = 0 the relation refers to
proportional fairness, and (with some caution) if 𝛼 → ∞,
the relation approximates maxmin fairness.

However, the fairness models so far are based on a per-
user valuation of “wins” and “losses” where only a single
user can decide what is in her interest and what not. For
example, in proportional fairness, the SoC is based on the
comparison between two allocation vectors 𝑥 and 𝑦 of the
same dimension:

∑

𝑖

𝑦
𝑖
− 𝑥

𝑖

𝑥
𝑖

≤ 0. (1)

One can see that each user, formally, contributes a single
index value to the comparison test. However, as mentioned
above for the case of wireless communication, increased
demand of reuse of existing resources by new technical
means and add-ons puts also groups of users into different
situations that nevertheless need to be compared. There are
many refined technologies explored these days that exhibit
this property. One example is channel interference; in a
wireless infrastructure, a base station BS has to allocate
transmission channels (i.e., ranges of frequency bandwidth)
to its subscriber stations (SS). The safe way is to allocate at
most one SS to a channel. However, if SSs are well separated,
that is, the channel interference of two SSs using the same
frequency band is low, the same channel can be assigned
to more than one SS. The question is how to know about
this opportunity by proper measurement and about the best
way to employ this. Several studies have been devoted to this
technical challenge, but what they all have in common is the
establishment of a pairwise relation between users, usually
also weighted, as, for example, in [9–14].

Besides channel interference, there are many other newer
networking technologies where this aspect of pairwise user
weight appears; in cognitive radio, unused channel capacities
of primary users can be on occasion allocated to secondary
users. The pairwise relation here is represented by a conflict
matrix that contains lower values where the chance that two
users (one from the group of primary users, one from the
group of secondary users) transmitting data in the same
time intervall is low. The encounter probability also plays
an important role in peer-to-peer networking, opportunistic
networking, and vehicular networks.

Now, if considering above formalization of proportional
fairness, how do we take this aspect into account; that is, the
fact that a loss or win (relative or absolute) matters differently
for different pairs of users? In other words, if, for example,
user 1 and user 2 both experience losses when comparing two
solutions could be taken differently from a situation where

user 1 experiences a win and user 2 a loss. So far, no “pairwise
standard of comparison” is known and it does not seem to
be reasonable to define a different SoC for each different
situation due to combinatorial explosion. The related prob-
lematic is about the price of fairness here; if a provider will
consider a fair solution instead of the most efficient one, and
taking the collision matrix information of a specific situation
between users into account, is it worthy of the effort to
implement the resource-reusing solution at all (i.e., to employ
low channel interference, or to set up a schedule for cognitive
radio secondary user channel assignment) if at the end no
other allocation will be provided than without the technical
add-on?

The primary goal of this paper is to provide a for-
mal fairness approach that can distinguish groups of users
and weight them differently where needed. For this, it is
needed to understand the SoC in terms of (set-theoretic)
relations, following [15]. Then, a specific relation will be
introduced based on fuzzy measure theory and related
fuzzy integrals. It happens that this relation comes out
to be a transitive relation (allowing for ranking of solu-
tions, as well as fast search algorithms) and can be used
to valuate the efficiency losses related to making fair
allocations.

Fuzzy measures [16, 17], which are called nonadditive
measures [18] or capacity [19], are monotone and usually
nonnegative set function. Since they can be used to express
interactions between items that are not expressible by additive
measures, many studies have been done on their application
in fields such as subjective evaluation problems, decision-
making support, and pattern recognition. The generaliza-
tion with respect to fuzzy measures, a generalization of
the Lebesgue integral, is proposed by several authors. The
Choquet integral defined by Choquet [19] takes its place
as one of them and is most widely used. The original
Choquet integral is only for nonnegative functions, so that
several generalizations for general functions which are not
necessarily nonnegative have been given. There are mainly
two types of generalization, one of which is called the
symmetric Choquet integral or the Šipoš integral [20],
and another one which is called the asymmetric Choquet
integral is given in [18]. Concerning the details of these
integrals, the first attempt was made by Denneberg [18].
This has been followed by Grabisch et al. They study
properties and application to multicriteria decision making
and so on, for example, in [21, 22]. Recent generalizations
of the symmetric Choquet integral, employing averages
and balanced weights over permutations, are the fusion
Choquet integral [23] and the balancing Choquet integral
[24].

On the other hand, preference modelling and the related
preference prediction have become research fields of increas-
ing importance. The use of the Choquet integral as a base
for a preference relation has been the topic of [25] where it
is used to solve combinatorial optimization problems. The
application of a preference relation model based on Choquet
integral in multiobjective dynamic programming is the topic
of [26]. In these works, the optimality is prespecified and
given by independent means. Here, we shall focus on the
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formal representations of fairness in resource distribution
as optimality issue by itself. Our proposal is to evaluate
distributions from the aspect of fairness.

In this paper, we compare the generalized Choquet inte-
gral, the symmetric Choquet integral, and the asymmetric
Choquet integral from the viewpoint of representing fairness
with the result that the asymmetric Choquet integral is more
suitable for describing fairness. We also propose a fairness
relation using the asymmetric Choquet integral.

The paper is organized as follows. Section 2 introduces
notations and necessary materials about fuzzy measure and
the Choquet integral and recalls the relational approach to
fairness.Then, Section 3 presents discussion about two gener-
alized Choquet integrals. The fairness relation is proposed in
Section 4, and we give a sufficient condition that this relation
is consistent and transitive. Section 5 gives a demonstration
of how our fairness relation is used for decision making.
Section 6 compares the solutions obtained by this fairness
relation with the proportional and maxmin fair solutions by
way of experiments.

2. Preliminaries

2.1. Relational Optimization. Speaking about optimality is
speaking about comparing things. The basic mathematical
instrument for the representation of optimality is the concept
of a binary relation. Here, we want to recall some basic terms
and definitions; formore details, see, for example, [15]. A (set-
theoretic) binary relation𝑅 over a domain𝐴 is a subset of𝐴×
𝐴; that is, a set of ordered pairs (𝑥, 𝑦) with 𝑥, 𝑦 ∈ 𝐴. It is said
that𝑥 is in relation𝑅 to𝑦 (sometimes alsowritten as𝑥𝑅𝑦 or, if
the focus is on comparison, 𝑥≥

𝑅
𝑦).There are alternative ways

to represent relations, like a set comprehension, a mapping or
function from 𝐴 into the powerset of 𝐴, an incidence matrix
or a directed graph. Also, relations can have properties. Two
properties are of particular interest in the following; a relation
is symmetric if from (𝑥, 𝑦) ∈ 𝑅 it follows that also (𝑦, 𝑥) ∈ 𝑅
and it is asymmetric if from (𝑥, 𝑦) ∈ 𝑅 it always follows that
(𝑦, 𝑥) does not belong to𝑅. Each relation can be decomposed
into a symmetric and an asymmetric part, written as 𝑅 =

𝐼(𝑅)∪𝑃(𝑅), where 𝐼(𝑅) is a symmetric relation and𝑃(𝑅) is an
asymmetric relation. It is easy to decide to which part a pair
(𝑥, 𝑦) ∈ 𝑅 belongs in this decomposition; if (𝑦, 𝑥) is also in 𝑅,
it belongs to the symmetric part 𝐼(𝑅); if not, it belongs to the
asymmetric part 𝑃(𝑅). It means that each relation, no matter
what its domain is made of, shows mixed aspects of equality
or similarity and a means of “betterness” or preference.
For example, the real-valued “≥” relation is decomposed
into an equivalence relation “=” as symmetric part and a
strictly larger relation “>” as asymmetric part (which is well
symbolized by ≥). If we write 𝑥≥

𝑅
𝑦 for a relation, then 𝑥>

𝑅
𝑦

will denote the asymmetric part, reflecting the “betterness”
aspect of a relation 𝑅 over domain 𝐴.

Any relation 𝑅 can expose specific elements of its domain
𝐴 which are commonly called greatest, maximal, minimal,
and least elements. A greatest element 𝑥∗ of the domain
𝐴 with regard to 𝑅 has the property that for any 𝑥 ∈ 𝐴

(including 𝑥∗) it holds that 𝑥∗≥
𝑅
𝑥. All greatest elements

comprise the best set. Amaximal element 𝑥∗ has the property
that there is no 𝑥 ∈ 𝑃(𝑅) such that 𝑥>

𝑅
𝑥
∗ and all such 𝑥∗

comprise themaximum set (of𝐴with respect to 𝑅). Minimal
and least elements are defined correspondingly. Note that
they do not need to exist in general.

One can easily see that a standard of comparison, as it
was mentioned in the introduction section, is the same as
the concept of a greatest element. However, often it is the
case that best sets are empty. Therefore, it is convenient to
refer to the maximum set as optimization goal, for several
reasons. (1) In case of a finite domain, the maximum set is
nonempty if the asymmetric part of the relation is cycle-free
(i.e., the corresponding directed graph does not contain any
cycles). (2) If there is a greatest element, it will also belong
to the maximum set. (3) The maximum set can be seen as a
“frontier”; they are not greatest elements but at least no better
one is known.

In [15], the special case of fairness relations has been
intensively discussed. It is comparable and easy to represent
proportional fairness, maxmin fairness, leximin fairness, 𝛼-
fairness, and so forth by this relational framework. Then,
(Pareto-) efficient solutions can be found by finding the
maximum sets for these relations. But, the advantage is also
that the transition of a relational concept to another domain
becomes possible (by applying the same formal definition), or
that the relation can be specified in such away that completely
new aspects are taken into account (e.g., multiresource usage,
collaboration between agents, or vector-valued evaluations).
This is because the concept of maximality applies to any
relation, no matter what its domain is. Therefore, if we want
to handle the above mentioned problem of pairwise weights,
we just have to specify a corresponding relation (that is
preferably cycle-free and Pareto-efficient).

The last point that should be mentioned here is that the
finding of maximum sets can be a challenging task, even if
the complexity 𝑂(𝑛2) is not so high. Thus, exhaustive search
by a complete pairwise comparison can rapidly become
intractable (e.g., a maximum set over a domain with one
million elements would need 1012 pairwise comparisons).
One possibility is to use metaheuristic search algorithms to
approximate maximum sets; other alternatives are currently
under investigations. In case the relation is transitive, the
search for maximum sets can be performed in “batches”; that
is, decompose the domain into nonoverlapping subsets and
find themaximum set for each subset and then themaximum
set of the union of the found maximum sets.

2.2. Computational Fairness. We have now used the term
“fairness” several times without providing a general defini-
tion. For example, considering a given relation 𝑅, when is it
safe to say that this is a fairness relation? Actually, there is no
common understanding of fairness to which all researchers
and practitioners would fully agree. It would go beyond the
scope of this paper to consider the numerous considerations
that have been done in order to provide a computational
model of fairness, but at least we can summarize the basic
ideas. The additional restriction here is that the focus is on
the modality of a distribution, thus excluding other societal
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important concepts like procedural fairness or interaction
fairness.

The common theme of all approaches to (distributional)
fairness is to divide a set of resources among a number
of agents. As already mentioned in the introduction, with
far longest cultural history, we can find ideas about pro-
portionality in the assignment (proportional according to
demand, ability, suitability, availability, most available good,
etc.) or the resolution of conflicts about contended goods
in following an equity principle. Besides a relation point of
view, in order to compare different possible assignments,
the aspect can be also seen in aggregating the distributional
aspects of all agents and thus keeping the spread of allocation
differences small. This idea becomes strongly related to the
theory of majorization [27], where numerical comparison
between different ways of distributing the same total is
strongly related to the Schur-convexity of the used compari-
son measure.The application of this approach and its various
generalizations have been intensively studied, for example,
in [28].

Any continuation of a formal approach to fairness (in
the sense of a “definition of fairness”) would need the
specification of axioms that represent criteria derived from
specific ways of how to balance—in a just way—the conflicts
between agents that are in a better and agents that are in a
worse situation—keeping inmind that fairness does generally
not stand for the simple requirement of complete even allo-
cations. Such axioms can refer to impartiality of distribution,
consistency between solutions for different domains, mathe-
matical assumptions about the domain, limiting behaviours,
strategy-proofness of related procedures, or efficiency of the
distribution.

Saying this, the considered aspect of fairness here is the
balance between users who would gain more and users who
would gain less in an alternative allocation. We will use
aggregation operators for representing the joint state of all
winning and all loosing agents, thus basically following the
“recipe” of proportional fairness. But, as a new aspect, we also
want to take a different weighting for groups of agents into
account. Fuzzy integrals are a well-known formal approach
for such a representation.

2.3. Fuzzy Measures and Integrals. We now want to recall
basic issues of fuzzy measures and integrals in more detail.
Most of the material can be gathered together from various
publications and textbooks, but a comprehensive description,
as it will be given now, might be of advantage for the
understanding of the main proposal—a fairness relation
based on the asymmetric Choquet integral for supermodular
fuzzy measures.

Throughout this paper, we consider a finite universal set
𝑁 := {1, 2, . . . , 𝑛} and 2𝑁 denotes the power set of𝑁.

Definition 1 (Fuzzy measure [16, 17]). A set function 𝜇 :

2
𝑁
→ [0,∞) is a fuzzy measure if it satisfies the following

conditions:
(i) 𝜇(0) = 0 and 𝜇(𝑁) < +∞,
(ii) for any 𝑆, 𝑇 ∈ 2𝑁, 𝜇(𝑆) ≤ 𝜇(𝑇) whenever 𝑆 ⊂ 𝑇.

Properties (i) and (ii) express boundedness and mono-
tonicity, respectively.

Definition 2 (superadditivity, subadditivity). A fuzzy mea-
sure 𝜇 is superadditive if 𝜇 satisfies 𝜇(𝑆 ∪ 𝑇) ≥ 𝜇(𝑆) + 𝜇(𝑇)
and subadditive if 𝜇 satisfies 𝜇(𝑆 ∪ 𝑇) ≤ 𝜇(𝑆) + 𝜇(𝑇), for any
𝑆, 𝑇 ∈ 2

𝑁 satisfying 𝑆 ∩ 𝑇 = 0.

Definition 3 (submodularity, supermodularity). A fuzzy
measure 𝜇 is supermodular if 𝜇 satisfies 𝜇(𝑆 ∪𝑇)+𝜇(𝑆 ∩𝑇) ≥
𝜇(𝑆)+𝜇(𝑇) and submodular if 𝜇 satisfies 𝜇(𝑆∪𝑇)+𝜇(𝑆∩𝑇) ≤
𝜇(𝑆) + 𝜇(𝑇), for any 𝑆, 𝑇 ∈ 2𝑁.

Definition 4 (dual measure). Let 𝜇 be a fuzzy measure. The
dual measure of 𝜇 is defined by

𝑚
𝑑
(𝑆) := 𝜇 (𝑁) − 𝜇 (𝑆

𝑐
) . (2)

The dual measure of a fuzzy measure is also a fuzzy
measure.

Proposition 5. If 𝜇 is supermodular, then 𝜇 is superadditive.
If 𝜇 is submodular, then 𝜇 is subadditive.

Proof. When 𝜇 is supermodular, 𝜇(𝑆 ∪𝑇) + 𝜇(𝑆 ∩𝑇) ≥ 𝜇(𝑆) +
𝜇(𝑇) is satisfied for any 𝑆, 𝑇 ∈ 2𝑁, and 𝑆 ∩ 𝑇 = 0. It implies
𝜇(𝑆 ∪ 𝑇) ≥ 𝜇(𝑆) + 𝜇(𝑇) for any 𝑆, 𝑇 ∈ 2𝑁 satisfying 𝑆 ∩ 𝑇 = 0.
The second assertion is obtained in a similar manner.

Proposition 6. 𝜇 is supermodular if and only if 𝜇𝑑 is sub-
modular. Similarly, 𝜇 is submodular if and only if 𝜇𝑑 is
supermodular.

Proof. Assume that 𝜇 is supermodular.Then, we have, for any
𝑆, 𝑇 ∈ 2

𝑁,

𝜇
𝑑
(𝑆 ∪ 𝑇) + 𝜇

𝑑
(𝑆 ∩ 𝑇)

= 𝜇 (𝑁) − 𝜇 ((𝑆 ∪ 𝑇)
𝑐
) + 𝜇 (𝑁) − 𝜇 ((𝑆 ∩ 𝑇)

𝑐
)

= 2𝜇 (𝑁) − 𝜇 (𝑆
𝑐
∩ 𝑇

𝑐
) − 𝜇 (𝑆

𝑐
∪ 𝑇

𝑐
)

≤ 2𝜇 (𝑁) − 𝜇 (𝑆
𝑐
) − 𝜇 (𝑇

𝑐
)

= 𝜇
𝑑
(𝑆) + 𝜇

𝑑
(𝑇) .

(3)

Following the above in reverse, we obtain the converse.
Replacing ≤ with ≥, we obtain the second assertion.

Proposition 7. If 𝜇 is a superadditive fuzzy measure, then
𝜇
𝑑
(𝑆) ≥ 𝜇(𝑆) for any 𝑆 ∈ 2𝑁.

Proof. We have 𝜇(𝑆) + 𝜇(𝑆𝑐) ≤ 𝜇(𝑁) by superadditivity of 𝜇.
Hence, 𝜇(𝑆) ≤ 𝜇(𝑁) − 𝜇(𝑆𝑐) = 𝜇𝑑(𝑆).

Definition 8 (𝜆-fuzzy measure). A fuzzy measure 𝜇 is a 𝜆-
fuzzy measure if there exists 𝜆 > −1 such that 𝜇(𝑆 ∪ 𝑇) =
𝜇(𝑆)+𝜇(𝑇)+𝜆𝜇(𝑆)𝜇(𝑇) for any 𝑆, 𝑇 ∈ 2𝑁 satisfying 𝑆∩𝑇 = 0
and 𝜇(𝑁) = 1.
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Definition 9 (𝜒-fuzzy measure). A fuzzy measure 𝜇 on finite
set𝑁 = {1, 2, . . . , 𝑛} is a 𝜒-fuzzy measure if there exists

𝜒 ≥ 1 −
min

𝑖∈𝑁
𝜇 ({𝑖})

∑
𝑖∈𝑁
𝜇 ({𝑖})

(4)

such that

𝜇 (𝑆) = 𝜒
|𝑆|−1

∑

𝑖∈𝑆

𝜇 ({𝑖}) (5)

for any 𝑆 ∈ 2𝑁. Here, |𝑆| denotes the cardinal number of 𝑆.

𝜆 ≥ 0 and 𝜒 ≥ 1 imply superadditivity, and 𝜆 ≤ 0 and
𝜒 ≤ 1 imply subadditivity. The dual measure of a 𝜆-fuzzy
measure and of a 𝜒-fuzzy measure are not necessarily a 𝜆-
fuzzy measure and a 𝜒-fuzzy measure.

Proposition 10. Let 𝜇 be a 𝜆-fuzzy measure. Then, 𝜇 is
superadditive if and only if 𝜇 is supermodular. Similarly, 𝜇 is
subadditive if and only if 𝜇 is submodular.

Proof. The sufficiencies hold by Proposition 5. We show the
necessities.

Assume 𝜇 is a superadditive 𝜆-fuzzy measure; that is, 𝜆 ≥
0. Then, we have, for any 𝑆, 𝑇 ∈ 2𝑁,

𝜇 (𝑆 ∪ 𝑇) + 𝜇 (𝑆 ∩ 𝑇)

= 𝜇 (𝑆) + 𝜇 (𝑇 \ 𝑆) + 𝜆𝜇 (𝑆) 𝜇 (𝑇 \ 𝑆) + 𝜇 (𝑆 ∩ 𝑇)

≥ 𝜇 (𝑆) + 𝜇 (𝑇 \ 𝑆) + 𝜆𝜇 (𝑆 ∩ 𝑇) 𝜇 (𝑇 \ 𝑆) + 𝜇 (𝑆 ∩ 𝑇)

= 𝜇 (𝑆) + 𝜇 (𝑇) .

(6)

Replacing ≤ with ≥, we obtain the second assertion.

Definition 11 (Choquet integral [19]). Given a fuzzy measure
𝜇 : 2

𝑁
→ [0, 1] and a nonnegative function 𝑓 on 𝑁, the

Choquet integral of 𝑓 with respect to 𝜇 is defined by

(𝐶) ∫𝑓𝑑𝜇 = ∫

+∞

0

𝜇 ({𝑥𝑓 (𝑥) > 𝑟}) 𝑑𝑟. (7)

In the case that𝑁 is a finite set, (7) can be rewritten as

(𝐶) ∫𝑓𝑑𝜇 :=

𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝑎

𝑖−1
) 𝜇 (𝑆

𝑖
) , (8)

where 𝑎
𝑖
:= 𝑓(𝑖), 𝑎

0
= 0, 𝑎

1
≤ 𝑎

2
≤ ⋅ ⋅ ⋅ ≤ 𝑎

𝑛
, and

𝑆
𝑖
:= {𝑖, . . . , 𝑛}. (cf. Figure 1). Note that this computation will

include a permutation reordering of the 𝑎
𝑖
to ensure that they

are in nondecreasing order.
The Choquet integral can be generalized to general

functions, which are not necessarily nonnegative, in several
ways. Here, we show the following two generalizations, the
asymmetric Choquet integral and the symmetric Choquet
integral.

Definition 12 (asymmetric Choquet integral [18]). Given a
fuzzy measure 𝜇 : 2𝑁 → [0, 1] and a function 𝑓 on 𝑁, the

a
n

a
n−1

a
3

a
2

a
1

a
0

S
n

S
2

S
1

Figure 1: Choquet integral.

asymmetric Choquet integral of𝑓with respect to 𝜇 is defined
by

(ASC) ∫𝑓𝑑𝜇 := ∫

0

−∞

(𝜇 ({𝑥 | 𝑓 (𝑥) > 𝑟})

−𝑚 (𝑁)) 𝑑𝑟

+∫

+∞

0

𝜇 (𝑥 | 𝑓 (𝑥) > 𝑟) 𝑑𝑟.

(9)

Definition 13 (symmetric Choquet integral [20]). Given a
fuzzy measure 𝜇 : 2𝑁 → [0, 1] and a function 𝑓 on 𝑁, the
symmetric Choquet integral of 𝑓 with respect to 𝜇 is defined
by

(SC) ∫𝑓𝑑𝜇 := −∫
+∞

0

𝜇 ({𝑥 | 𝑓
−
(𝑥) > 𝑟}) 𝑑𝑟

+ ∫

+∞

0

𝜇 ({𝑥 | 𝑓
+
(𝑥) > 𝑟}) 𝑑𝑟,

(10)

where 𝑓+
:= 𝑓 ∨ 0, 𝑓

−
:= −(𝑓 ∧ 0).

Proposition 14. Consider

(ASC) ∫𝑓𝑑𝜇

= −∫

0

−∞

𝜇
𝑑
({𝑥 | 𝑓

−
(𝑥) > 𝑟}) 𝑑𝑟

+∫

+∞

0

𝜇 ({𝑥 | 𝑓
+
(𝑥) > 𝑟}) 𝑑𝑟.

(11)
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Proof. Because

∫

0

−∞

(𝜇 ({𝑥 | 𝑓 (𝑥) > 𝑟}) − 𝜇 (𝑁)) 𝑑𝑟

= ∫ (𝜇 ({𝑥 | −𝑓
−
(𝑥) > 𝑟}) − 𝜇 (𝑁)) 𝑑𝑟

= −∫ (𝜇 ({𝑥 | 𝑓
−
(𝑥) ≤ 𝑟}) − 𝜇 (𝑁)) 𝑑𝑟

= −∫𝜇
𝑑
({𝑥 | 𝑓

−
(𝑥) > 𝑟}) 𝑑𝑟.

(12)

by this proposition, we can say that the difference between
the asymmetricChoquet integral and the symmetricChoquet
integral is based on which measure are used for integrating
the negative part of 𝑓.

3. Description of Fairness by
the Choquet Integral

In this section, we discuss the generalized Choquet integrals
in terms of describing fairness by the Choquet integral. Let 𝜇
be a fuzzy measure on 2𝑁 and 𝑓 = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
) a function

on 𝑁. For example, 𝑁 corresponds to a set consisting of
𝑛 players and 𝑓 corresponds to a distribution of resources,
where 𝑓 can take negative values. The more players are
satisfied, the fairer the distribution is.

Example 15. Let 𝑛 = 3 and there are 6 resources. Then,
𝑓
1
= (2, 2, 2) is fairer than 𝑓

2
= (4, 2, 0) and 𝑓

2
is fairer

than 𝑓
3
= (6, 0, 0). To describe this, we use the Choquet

integral with respect to a submodular function. Suppose that
𝜇(𝑆) takes the same values according to |𝑆| (note that in this
case the Choquet integral becomes an OWA operator and
properties like submodularity depend on the choice of OWA
weights). If 𝜇 is submodular, then we have

(𝐶) ∫𝑓1𝑑𝜇 ≥ (𝐶)∫𝑓2𝑑𝜇 ≥ (𝐶)∫𝑓3𝑑𝜇. (13)

Next, we consider the negative distribution.

Example 16. Let 𝑛 = 3 and there are −6 resources. Then, 𝑓
1
=

(−2, −2, −2) is fairer than𝑓
2
= (−4, −2, 0) and𝑓

2
is fairer than

𝑓
3
= (−6, 0, 0). Let 𝜇 be a submodular function. If we use the

symmetric Choquet integral, then we have

(SC) ∫𝑓1𝑑𝜇 ≤ (SC) ∫𝑓2𝑑𝜇 ≤ (SC) ∫𝑓3𝑑𝜇, (14)

where all integrals take negative values. And if 𝜇 would be
another but superadditive fuzzy measure, then we obtain

(SC) ∫𝑓1𝑑𝜇

≥ (SC) ∫𝑓2𝑑𝜇


≥ (SC) ∫𝑓3𝑑𝜇

 (15)

which is not what we wanted. In other words, we can
never describe both positive fairness and negative fairness

by one fuzzy measure using the symmetric Choquet inte-
gral. On the other hand, using the asymmetric Choquet
integral with respect to 𝜇 where 𝜇𝑑 is superadditive, we
obtain

(ASC) ∫𝑓1𝑑𝜇 ≥ (ASC) ∫𝑓2𝑑𝜇 ≥ (ASC) ∫𝑓3𝑑𝜇. (16)

If 𝜇 is a supermodular fuzzy measure, then 𝜇 is superadditive
and 𝜇𝑑 is subadditive. Therefore, using the asymmetric Cho-
quet integral with respect to a supermodular fuzzy measure,
we can describe both positive fairness and negative fairness
by one fuzzy measure.

According to these examples, the asymmetric Choquet
integral with respect to a superadditive fuzzy measure is
better suited for describing fairness. The Möbius transform
enables us to construct fuzzy measure easily.

Definition 17 (Möbius transform). The Möbius transform of
𝜇, denoted by𝑚𝜇

: 2
𝑁
→ [−1, 1], is defined by

𝑚
𝜇
(𝑆) := ∑

𝑇⊆𝑆

(−1)
|𝑆\𝑇|

𝜇 (𝑇) (17)

for any 𝑆 ∈ 2𝑁. Conversely, we obtain

𝜇 (𝑆) = ∑

𝑇⊆𝑆

𝑚
𝜇
(𝑇) (18)

by the inverse Möbius transform for any 𝑆 ∈ 2𝑁, and there is
a one-to-one correspondence between 𝜇 and𝑚𝜇.

Note that if the sum of all Möbius masses is 1, then the
corresponding fuzzy measure of the whole set is 1.

Proposition 18. If 𝑚𝜇
(𝑆) ≥ 0 for any 𝑆 ∈ 2

𝑁, then 𝜇 is
supermodular.

Proof. Assume, for any 𝑆 ∈ 2𝑁, 𝑚𝜇
(𝑆) ≥ 0. Then, denoting

that 𝑟 := 𝑆 \ 𝑇, 𝑠 := 𝑆 ∩ 𝑇, 𝑡 := 𝑇 \ 𝑆 for 𝑆, 𝑇 ∈ 2𝑁, we have

𝜇 (𝑆 ∪ 𝑇) + 𝜇 (𝑆 ∩ 𝑇)

= ∑

𝐶⊆𝑆∪𝑇

𝑚
𝜇
(𝑈) + ∑

𝑈⊆𝑆∩𝑇

𝑚
𝜇
(𝑈)

= (∑

𝑈⊆𝑟

+ ∑

𝑈⊆𝑠

+ ∑

𝑈⊆𝑡

+ ∑

𝑈⊆𝑟∪𝑠,𝑈∩𝑟 ̸= 0,

𝑈∩𝑠 ̸= 0
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+ ∑

𝑈⊆𝑠∪𝑡,𝑈∩𝑠 ̸= 0,

𝑈∩𝑡 ̸= 0

+ ∑

𝑈⊆𝑟∪𝑡,

𝑈∩𝑟 ̸= 0,𝑈∩𝑡 ̸= 0

+ ∑

𝑈⊆𝑟∪𝑠∪𝑡,𝑈∩𝑟 ̸= 0,

𝑈∩𝑠 ̸= 0,𝑈∩𝑡 ̸= 0

)𝑚
𝜇
(𝑈) + ∑

𝑈⊆𝑠

𝑚
𝜇
(𝑈) ,

𝜇 (𝑆) + 𝜇 (𝑇) = ∑

𝑈⊆𝑆

𝑚
𝜇
(𝑈) + ∑

𝑈⊆𝑇

𝑚
𝜇
(𝑈)

= (∑

𝑈⊆𝑟

+ ∑

𝑈⊆𝑠

+ ∑

𝑈⊆𝑟∪𝑠,𝑈∩𝑟 ̸= 0,

𝑈∩𝑠 ̸= 0

)𝑚
𝜇
(𝑈)

+ (∑

𝑈⊆𝑠

+ ∑

𝑈⊆𝑡

+ ∑

𝑈⊆𝑠∪𝑡,𝑈∩𝑠 ̸= 0,

𝑈∩𝑡 ̸= 0

)𝑚
𝜇
(𝑈) ,

(19)

so that we obtain

(𝜇 (𝑆 ∪ 𝑇) + 𝜇 (𝑠)) − (𝜇 (𝑆) + 𝜇 (𝑇))

= ( ∑

𝑈⊆𝑟∪𝑡,

𝑈∩𝑟 ̸= 0,𝑈∩𝑡 ̸= 0

+ ∑

𝑈⊆𝑟∪𝑠∪𝑡,𝑈∩𝑟 ̸= 0,

𝑈∩𝑠 ̸= 0,𝑈∩𝑡 ̸= 0

)𝑚
𝜇
(𝑈) ≥ 0.

(20)

Remark 19. The converse of Proposition 18 is not necessarily
true. In fact, define𝑚𝜇 on𝑁 = {1, 2, 3} by

𝑚
𝜇
(𝑆) :=

{{{

{{{

{

0, 𝑆 = 0,

1, 𝑆 ̸= 0, {1, 2, 3} ,

−
1

2
, 𝑆 = {1, 2, 3} .

(21)

Then, we obtain a supermodular fuzzy measure,

𝜇 (0) = 0, 𝜇 ({1}) = 𝜇 ({2}) = 𝜇 ({3}) = 1,

𝜇 ({1, 2}) = 𝜇 ({1, 3}) = 𝜇 ({2, 3}) = 3,

𝜇 ({1, 2, 3}) =
11

2
.

(22)

4. Fairness Relation Using the Asymmetric
Choquet Integral

Definition 20 (Choquet Integral relation). Let 𝑥 = (𝑥
1
,

𝑥
2
, . . . , 𝑥

𝑛
), let 𝑦 = (𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
), and let 𝜇 be a fuzzy

measure. 𝑥 is said to CI-dominate 𝑦, denoted by 𝑥≥
𝜇
𝑦, if and

only if

(ASC) ∫ (𝑥 − 𝑦) 𝑑𝜇 ≥ 𝜃. (23)

Assume𝑁 is a set of all players 𝑥 and 𝑦 are distributions
of resources to all players. Then, 𝑥 − 𝑦 means each degree
of satisfaction of the distribution 𝑥 compared with the
distribution 𝑦. Since the more players are satisfied, the fairer
the distribution is, 𝑥≥

𝜇
𝑦 means 𝑥 is at least as fair as 𝑦. By

𝑥>
𝜇
𝑦 we denote the corresponding strict relation.

Proposition 21. Let𝜇 be a superadditive fuzzymeasure on 2𝑁.
Then, it is an antisymmetric relation; that is, 𝑥≥

𝜇
𝑦 and 𝑦≥

𝜇
𝑥

implies 𝑥 = 𝑦 for any functions 𝑥, 𝑦 on𝑁.

Proposition 22. If 𝜇 is a supermodular measure on 2𝑁, then
>
𝜇
is a transitive relation; that is, if 𝑥≥

𝜇
𝑦 and 𝑦≥

𝜇
𝑧, then 𝑥≥

𝜇
𝑧

for any functions 𝑥, 𝑦, 𝑧 on𝑁.

By Propositions 21 and 22, using the asymmetric Choquet
integral with respect to supermodular functions, we obtain a
fair ordering relation.

The proofs for Propositions 21 and 22 will be given in the
Appendix of this paper.

5. Decision Making by CI-Fairness: A
Numerical Example

In this section, we want to demonstrate how CI-fairness
relation can be used for decisionmaking. Consider a situation
where resources have to be allocated to 3 agents 𝐴, 𝐵, and 𝐶,
but sets of agents can utilize resources differently (e.g., giving
a commodity to one agent, how many items can she produce
within a time unit?). Such resource utilization can be assessed
by a fuzzy measure:

subset 𝑆 𝜇 (𝑆)

0 0

𝐴 0.1

𝐵 0.3

𝐶 0.5

𝐴, 𝐵 0.5

𝐴, 𝐶 0.5

𝐵, 𝐶 0.8

𝐴, 𝐵, 𝐶 1

(24)

Here, for example, 𝐶 appears to be the best in resource
utilization, but 𝐴 is good in collaboration. The measure is
superadditive. We can also see that this is a supermodular
measure. There are 3 cases to check; the other follow from
subsethood or superadditivity:

(1) 𝜇({𝐴, 𝐵}∪{𝐴, 𝐶})+𝜇({𝐴, 𝐵}∩{𝐴, 𝐶}) = 𝜇({𝐴, 𝐵, 𝐶})+
𝜇({𝐴}) = 1.1 ≥ 𝜇({𝐴, 𝐵}) + 𝜇({𝐴, 𝐶}) = 1.0;

(2) 𝜇({𝐴, 𝐵}∪ {𝐵, 𝐶})+𝜇({𝐴, 𝐵}∩ {𝐵, 𝐶}) = 𝜇({𝐴, 𝐵, 𝐶})+
𝜇({𝐵}) = 1.3 ≥ 𝜇({𝐴, 𝐵}) + 𝜇({𝐵, 𝐶}) = 1.3;
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(1, 2, 3)

(1, 3, 2)

(2, 3, 1) (3, 1, 2)
(2, 1, 3)

(3, 2, 1)

Figure 2: CI-Fairness relation among six possible allocations. The
connections include transitivity.

(3) 𝜇({𝐴, 𝐶}∪{𝐵, 𝐶})+𝜇({𝐴, 𝐶}∩{𝐵, 𝐶}) = 𝜇({𝐴, 𝐵, 𝐶})+
𝜇({𝐶}) = 1.5 ≥ 𝜇({𝐴, 𝐶}) + 𝜇({𝐵, 𝐶}) = 1.3;

(1, 2, 3) ≥𝜇 (1, 3, 2)

(1, 2, 3) ≥𝜇 (2, 1, 3)

(1, 2, 3) ≥𝜇 (2, 3, 1)

(1, 2, 3) ≥𝜇 (3, 1, 2)

(1, 2, 3) ≥𝜇 (3, 2, 1)

(1, 3, 2) ≥𝜇 (2, 3, 1)

(1, 3, 2) ≥𝜇 (3, 1, 2)

(1, 3, 2) ≥𝜇 (3, 2, 1)

(2, 1, 3) ≥𝜇 (2, 3, 1)

(2, 1, 3) ≥𝜇 (3, 1, 2)

(2, 1, 3) ≥𝜇 (3, 2, 1)

(2, 3, 1) ≥𝜇 (3, 2, 1)

(3, 1, 2) ≥𝜇 (3, 2, 1) .

(25)

We find the allocation (1, 2, 3) in relation to all other alloca-
tions, but no allocation is in relation to (1, 2, 3).This is natural,
given the order of resource utilization weights for the three
agents. By rank, we can now also order the other 5 allocations.

Now, we want to allocate three shares of a resource of
6 units (1, 2, 3) among 𝐴, 𝐵, 𝐶 and compare the 6 possible
permutations of (1, 2, 3) by the Choquet integral relationwith
𝜃 = 0. For example, to see if allocation 𝑥 = (1, 2, 3) is in
relation to the allocation 𝑦 = (2, 3, 1), we have to test

(𝐶) ∫ [𝑥 − 𝑦]
+
𝑑𝜇 ≥ (𝐶)∫ [𝑦 − 𝑥]

+
𝑑𝜇

𝑑
. (26)

In this case, [𝑥 − 𝑦]+ = (0, 0, 2) and [𝑦 − 𝑥]+ = (1, 1, 0). So,
the first integral becomes 2 × 𝜇({𝐶}) = 1.0 and the second
integral 1 × 𝜇𝑑({𝐴, 𝐵}) = (1 − 𝜇({𝐶})) = 0.5. From 1.0 ≥ 0.5,
then 𝑥≥

𝜇
𝑦 follows.

Among all possible 30 pairs (𝑥, 𝑦) with 𝑥 ̸= 𝑦, we can find
13 cases in total where the Choquet integral relation holds.

Figure 2 shows the Hasse diagram of the relation for the 6
possible allocations. We can see that, as an effect of the better
collaboration weight of 𝐴, allocation (2, 1, 3) is promoted
and appears on the same rank as the strong allocation
(1, 3, 2) (strong with regard to single agent utilization of
a resource) and also of better rank than the allocation
(2, 3, 1)—expressing the preference for 𝐶 as partner of 𝐴
when comparing possible wins and losses in the allocation.
Finally, as expected, there is no case to allocate 3 shares to 𝐴.

6. Experiments

In this section, we will show how the CI-fairness can be
applied in a practical situation. We study wireless channel
allocation in the network layer; a base station BS that is
connected to the backbone can command over a number
𝑚 of wireless transmission channels and allocates them to a
number 𝑛 of users (or subscriber stations, mobile stations,
relay stations, etc.—depending on the specific network archi-
tecture) for uplink or downlink traffic. In the most abstract
notation, the BSmakes the allocation based on ameasured or
estimated channel state information; if it allocates a channel 𝑖
to user 𝑗 there will be a channel coefficient 𝐶

𝑖𝑗
from [0, 1] that

represents (in a simplified form) to what degree the user can
employ that channel. For example, remote users are likely to
have smaller channel coefficients than users that are close to
the BS. Here, an allocation is seen as feasible if each channel
is allocated to one user and to each user at least one channel
is assigned.

The sum of all channel coefficients of allocated channels
for a specific user is seen as the performance of the allocation
for that user. Then, the optimality task is related to the
performance vector for all users. This is a direct reference to
a relation between performance vectors, and various fairness
relations can be easily and conveniently studied in this
context. If the number of channels and users is not too large,
exhaustive search for maximum sets is possible. For example,
for 4 users and 6 channels, there are 1560 feasible allocations,
which means about 2.4 Mio. pairwise comparisons.

In this model, channel allocation ignores low channel
interferences between users and specific channels by the
restriction that each channel is allocated to exactly one user.
However, if implementing a wireless access where some users
can use the same channel for transmission, it might be hard
to decide the exact schedule of such multiple assignments,
or to decide if installing such a scheme at all. Therefore,
we follow a more simplified approach; channel interference
will be represented by a conflict matrix between users,
where low elements for pairs of users indicate the option
to use multichannel assignment. Then, we use the converse
elements of the conflict matrix as masses in the Möbius
transform. More specifically, the Möbius masses for single
element sets are set to equal values, the masses for two-
element are set to 1 minus the corresponding element of the
conflictmatrix, and all other are set to 0.Then, themassvector
is normalized to a total of all masses of 1 to ensure that
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Table 1: Comparison of total performances for capacity, propor-
tional, and maxmin fairness.

Fairness relation Average performance
Conflict matrix range 0 to 1

CI 4.2882
Proportional 4.54661
maxmin 4.14688

Conflict matrix range 0.9 to 1
CI 4.56051
Proportional 4.51135
maxmin 4.22561

Conflict matrix range 0 to 0.2
CI 4.09365
Proportional 4.41848
maxmin 4.04879

for the fuzzy measure the measure for the whole set is 1.
The inverse Möbius transform of such a mass vector gives a
supermodularmeasure that can be used to specify a CI-based
fairness relation according to Definition 20.

Now, this relation is applied to all feasible channel
allocations—it means we are not considering a specific use of
multichannel assignment but we are looking for the influence
that such amultichannel allocation could have on the specific
selection of maximal elements. Then, the focus is on the
disadvantage that some pairs of users can experience if their
favoured situation (e.g., to be distant enough to use the same
channel) is not taken into account. The similar approach can
be considered for cognitive radio, opportunistic networking,
P2P, vehicular networks, and so forth.

We might especially look for the price of fairness [1],
compared to a standard proportional fair or maxmin fair
allocation.

Some example results are shown in Table 1. There, for the
case of 4 users and 6 cells, the maximum sets over all feasible
allocations were computed for CI-fairness using a measure as
described above, proportional fairness, andmaxmin fairness.
The conflictmatrix elements for the CI-fairness were uniform
randomly set within specific ranges. All results are averaged
over 30 repetitions. Note that average sizes of maximum sets
were found to be 4.2 formaxmin fairness, 6.1 for proportional
fairness, and 41.9 for CI-fairness, so the CI-fairness produces
larger maximum sets, an issue that should be addressed in
futureworks.The table now shows average performances over
all maximal elements.

We see with regard to efficiency the well-known fact that
proportional-fair allocations are in average more efficient
than maxmin fair allocations. The CI-fairness appears to
select maximal relations with a total performance between
proportional fairness and maxmin fairness. In case of strong
interferences (where a multichannel assignment is not rea-
sonable), it is very close to proportional fairness, while in case
of low interference it appears to be more close to maxmin
fairness, that is, the fairness relation favouring least elements.
Thus, such an empirical result can be understood in the sense
that the neglecting of the potential multichannel assignment

corresponds with the neglection of strong users. This is also
particularly appearing for the general case, where all conflict
matrix elements were randomly selected between 0 and 1; also
here, the average performance appearsmore close tomaxmin
fairness than proportional fairness.

7. Conclusion

A fairness relation among vectors based on the asymmetric
Choquet integral was studied. It formally follows the Nash
standard of comparison where the relative losses and wins
are replaced by absolute losses and wins, but instead taking
weights for groups of vector components into account. Thus,
it can represent, for example, pairs of users that are in
a favourable situation regarding resource allocation. The
appealing points of this CI-relation are as follows. (1) In
case a supermodular measure is used for the integration,
the relation will be transitive, which suits faster search for
maximal elements; (2) it can be parametrized by giving
a weight to each subset of vector components (while in
practice this might be relevant only for smaller subsets). The
representation of the fuzzy measure by its Möbius transform
appears to be a convenient way to yield a supermodular
fuzzy measure; the masses just need to be all nonnegative.
Thus, the relation can be conveniently applied in many prac-
tical applications to specify optimality. Slight disadvantages
are with the complexity of the involved calculations, and
some empirical evidence for specifying larger maximum sets
than other fairness relations like proportional fairness and
maxmin fairness.

In case of wireless channel allocation, how CI-fairness
can be used to help deciding whether implementations of
more complex allocation schemes are indeed worth the effort
was suggested. This method can be applied to many other
problems of higher efficiency of network resource utilization.
In future work, we will consider the use of advanced fuzzy
integrals like balancing and fusion Choquet integral and
the adjustment of related CI-fairness parameters to specific
situations and what can be concluded from such parameters.
We will also more intensively study the performance issues
with regard to computational effort and search for maximal
elements and study conditions where also greatest elements
exist.

Appendix

Proofs of Theorems

In the following, we provide the proofs for Propositions 21
and 22. For formal convenience of the proofs, the notation
will be a little bit changing; therefore, we repeat the basic
definitions.

We define the Choquet-integral-based (fairness) relation
as follows: be 𝑥 and 𝑦 two vectors from 𝑅

𝑛. By [𝑥]+, we
indicate the positive support of a vector 𝑥; that is, the 𝑖th
component of [𝑥]+ is 𝑥

𝑖
if 𝑥

𝑖
≥ 0 or 0 if 𝑥

𝑖
< 0. The Choquet

integral is denoted by (𝐶) ∫𝑥 𝑑𝜇. There, 𝜇 is a fuzzy measure.
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Also, 𝜇𝑑 denotes its dual measure (i.e., 𝜇𝑑(𝐴) = 𝜇
𝑋
− 𝜇(𝐴

𝐶
)).

Then, 𝑥 is said to CI-dominate 𝑦 if and only if

𝑥≥
𝜇
𝑦 ←→ (𝐶)∫ [𝑥 − 𝑦]

+
𝑑𝜇 ≥ (𝐶)∫ [𝑦 − 𝑥]

+
𝑑𝜇

𝑑
. (A.1)

We can alternatively rewrite this as the asymmetric Choquet
integral:

𝑥≥
𝜇
𝑦 ←→ (ASC) ∫ (𝑥 − 𝑦) 𝑑𝜇 ≥ 0 (A.2)

since the right-hand side condition of (A.1) exactly cor-
responds with the definition of the asymmetric Choquet
integral.

First, we can show the following.

Lemma 23. If 𝜇 is a superadditive fuzzy measure where for
each 𝐴, 𝐵 ̸= 0 and 𝐴 ∩ 𝐵 = 0 𝜇

𝐴
+ 𝜇

𝐵
< 𝜇

𝐴∪𝐵
, then for

𝐴 ̸= 0 𝜇
𝑑

𝐴
> 𝜇

𝐴
.

Proof. Since 𝜇 is superadditive, for𝐴 ̸= 0 𝜇
𝐴
+𝜇

𝐴
𝐶 < 𝜇

𝐴∪𝐴
𝐶 =

𝜇
𝑋
. Then, 𝜇

𝐴
< 𝜇

𝑋
− 𝜇

𝐴
𝐶 = 𝜇

𝑑

𝐴
follows directly.

Theorem 24. If 𝜇 is superadditive, then from 𝑥≥
𝜇
𝑦 and

𝑦≥
𝜇
𝑥𝑥 = 𝑦 follows.

Proof. 𝑥≥
𝜇
𝑦means (𝐶) ∫ [𝑥 − 𝑦]+𝑑𝜇 ≥ (𝐶) ∫ [𝑦 − 𝑥]+𝑑𝜇𝑑. If

𝑥 ̸= 𝑦, we can use Lemma 23 to obtain

(𝐶) ∫ [𝑥 − 𝑦]
+
𝑑𝜇

𝑑
> (𝐶)∫ [𝑥 − 𝑦]

+
𝑑𝜇

≥ (𝐶)∫ [𝑦 − 𝑥]
+
𝑑𝜇

𝑑
> (𝐶)∫ [𝑦 − 𝑥]

+
𝑑𝜇;

(A.3)

that is, (𝐶) ∫ [𝑦 − 𝑥]+𝑑𝜇 ̸≥ (𝐶) ∫ [𝑥 − 𝑦]
+
𝑑𝜇

𝑑. This would
mean that 𝑦≥

𝜇
𝑥 would not hold. Therefore, it must be 𝑥 =

𝑦.

For a supermodular measure and nonnegative vectors 𝑥
and 𝑦, we have the known property (𝐶) ∫ 𝑥 𝑑𝜇+ (𝐶) ∫ 𝑦 𝑑𝜇 ≤
(𝐶) ∫(𝑥 + 𝑦)𝑑𝜇. Since the dual measure of a supermodular
measure is submodular, it also holds that (𝐶) ∫ 𝑥 𝑑𝜇 +
(𝐶) ∫ 𝑦 𝑑𝜇 ≥ (𝐶) ∫(𝑥 + 𝑦)𝑑𝜇. Using this, the following can
be shown.

Theorem25. If𝜇 is supermodular, then the relation>
𝜇
is cycle-

free.

Proof. We will only show the case of nonexistence of a 3-
cycle; here, the concept generalizes directly to any other case.
Assume that 𝑥>

𝜇
𝑦 and 𝑦>

𝜇
𝑧. First, we note that

[𝑥 − 𝑦]
+
+ [𝑦 − 𝑧]

+
+ [𝑧 − 𝑥]

+

= [𝑦 − 𝑥]
+
+ [𝑧 − 𝑦]

+
+ [𝑥 − 𝑧]

+
,

(A.4)

and therefore

(𝐶) ∫ ([𝑥 − 𝑦]
+
+ [𝑦 − 𝑧]

+
+ [𝑧 − 𝑥]

+
) 𝑑𝜇

= (𝐶)∫ ([𝑦 − 𝑥]
+
+ [𝑧 − 𝑦]

+
+ [𝑥 − 𝑧]

+
) 𝑑𝜇.

(A.5)

Using Lemma 23, we yield

(𝐶) ∫ ([𝑦 − 𝑥]
+
+ [𝑧 − 𝑦]

+
+ [𝑥 − 𝑧]

+
) 𝑑𝜇

𝑑

> (𝐶)∫ ([𝑥 − 𝑦]
+
+ [𝑦 − 𝑧]

+
+ [𝑧 − 𝑥]

+
) 𝑑𝜇,

(A.6)

and from supermodularity of 𝜇 and submodularity of 𝜇𝑑

(𝐶) ∫ [𝑦 − 𝑥]
+
𝑑𝜇

𝑑
+ (𝐶)∫ [𝑧 − 𝑦]

+
𝑑𝜇

𝑑
+ (𝐶)∫ [𝑥 − 𝑧]

+
𝑑𝜇

𝑑

> (𝐶)∫ [𝑥 − 𝑦]
+
𝑑𝜇 + (𝐶)∫ [𝑦 − 𝑧]

+
𝑑𝜇

+ (𝐶)∫ [𝑧 − 𝑥]
+
𝑑𝜇.

(A.7)

However, 𝑥>
𝜇
𝑦means (𝐶) ∫ [𝑥 − 𝑦]+𝑑𝜇 ≥ (𝐶) ∫ [𝑦 − 𝑥]+𝑑𝜇𝑑

and 𝑦>
𝜇
𝑧 means (𝐶) ∫ [𝑦 − 𝑧]+𝑑𝜇 ≥ (𝐶) ∫ [𝑧 − 𝑦]

+
𝑑𝜇

𝑑.
Therefore, above inequality can only hold if

(𝐶) ∫ [𝑧 − 𝑥]
+
𝑑𝜇 < (𝐶)∫ [𝑥 − 𝑧]

+
𝑑𝜇

𝑑 (A.8)

which means 𝑧 ̸>
𝜇
𝑥.

If the measure 𝜇 is supermodular, also transitivity of
the relation can be shown. Before we can show this, we
need to introduce a notation and a corresponding lemma.
The notation refers to computing the (asymmetric) Choquet
integral of 𝑥 by measure 𝜇 in a “different order.” If 𝑥

𝑥(𝑖)

indicates the 𝑖th largest element of 𝑥, then the Choquet
integral is calculated as

(𝐶) ∫ 𝑥𝑑𝜇 = 𝑥𝑥(1)𝜇𝑥(1)

+

𝑛

∑

𝑖=2

𝑥
𝑥(𝑖)
[𝜇

𝑥(1)𝑥(2)⋅⋅⋅𝑥(𝑖)
− 𝜇

𝑥(1)⋅⋅⋅𝑥(𝑖−1)
] .

(A.9)

For any other𝑦, we can compute the same expression, just
following the order of the elements of 𝑦 instead of 𝑥. Then,
𝑥
𝑦(𝑖)

indicates the element of𝑥with the index of the 𝑖th largest
element of 𝑦, and we define (for convenience, we still use the
symbol for the Choquet integral, keeping in mind that it is
not a real fuzzy integral anymore):

(𝐶) ∫
(𝑦)

𝑥𝑑𝜇 = 𝑥
𝑦(1)
𝜇
𝑦(1)

+

𝑛

∑

𝑖=2

𝑥
𝑦(𝑖)
[𝜇

𝑦(1)𝑦(2)⋅⋅⋅𝑦(𝑖)
− 𝜇

𝑦(1)⋅⋅⋅𝑦(𝑖−1)
] .

(A.10)
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Consequently, we could also write (𝐶) ∫
(𝑥)
𝑥𝑑𝜇 for the

“original” Choquet integral. We can do the same for the
asymmetric Choquet integral, by applying the resorting to the
negative components of the vector 𝑥 as well, and will use the
notation (ASC) ∫

(𝑦)
𝑥 𝑑𝜇 here. Now, we have the following.

Lemma 26. If 𝜇 is a supermodular measure, then for any
𝑦 ( ASC ) ∫

(𝑦)
𝑥 𝑑𝜇 ≥ ( ASC ) ∫

(𝑥)
𝑥𝑑𝜇.

Proof. A moment of reasoning gives that any sorting of the
indizes can be achieved by suitable application of a sequence
of three kinds of “neighbour swaps”, starting from the order
𝑥(1)𝑥(2) ⋅ ⋅ ⋅ 𝑥(𝑛)).

Swap 1. In the computation of the integral, a larger or
equal nonnegative element 𝑑

𝑖
at index 𝑖 is swapped with its

immediate nonnegative neighbour 𝑑
𝑖+1

to the right. Then,
what was computed as 𝑑

𝑖
(𝜇

𝑎,𝑖
−𝜇

𝑎
) +𝑑

𝑖+1
(𝜇

𝑎,𝑖,𝑖+1
−𝜇

𝑎,𝑖
) before

the swap changes to 𝑑
𝑖+1
(𝜇

𝑎,𝑖+1
−𝜇

𝑎
) + 𝑑

𝑖
(𝜇

𝑎,𝑖,𝑖+1
−𝜇

𝑎,𝑖+1
) after

the swap, all other parts of the resorted asymmetric Choquet
integral expression remain the same (by 𝑎 we indicate the
index order before index 𝑖). Thus, the total change is

𝑑
𝑖
(𝜇

𝑎,𝑖,𝑖+1
− 𝜇

𝑎,𝑖+1
− 𝜇

𝑎,𝑖
+ 𝜇

𝑎,𝑖
)

− 𝑑
𝑖+1
(𝜇

𝑎,𝑖,𝑖+1
− 𝜇

𝑎,𝑖
− 𝜇

𝑎,𝑖+1
+ 𝜇

𝑎,𝑖
) ,

(A.11)

and from 𝑑
𝑖
≥ 𝑑

𝑖+1
and 𝜇

𝑎,𝑖,𝑖+1
+ 𝜇

𝑎
≥ 𝜇

𝑎,𝑖+1
+ 𝜇

𝑎,𝑖

(supermodularity of 𝜇) it directly follows that the computed
value will not decrease by this swap.

Swap 2. In the computation of the integral, a larger or
equal negative element 𝑑

𝑖+1
at index 𝑖 + 1 is swapped with

its immediate negative left neighbour 𝑑
𝑖
. From a similar

evaluation as for Swap 1, it can be seen that also here, the value
of the computed expression will not decrease after the swap.

Swap 3. A nonnegative element at index 𝑖 is swapped with
its immediate negative neighbor to the right with index
(𝑖 + 1). Then, before the swap, we compute 𝑑

𝑖
(𝜇

𝑎,𝑖
− 𝜇

𝑎
) −

𝑑
𝑖+1
(𝜇

𝑎,𝑖,𝑖+1
− 𝜇

𝑎,𝑖
) (𝑑

𝑖+1
is the absolute value of the negative-

valued neighbour of 𝑑
𝑖
) and after the swap this part of the

expression changes to −𝑑
𝑖+1
(𝜇

𝑎,𝑖+1
− 𝜇

𝑎
) + 𝑑

𝑖
(𝜇

𝑎,𝑖,𝑖+1
− 𝜇

𝑎,𝑖+1
).

Then, the total change is

𝑑
𝑖
(𝜇

𝑎,𝑖,𝑖+1
− 𝜇

𝑎,𝑖+1
− 𝜇

𝑎,𝑖
+ 𝜇

𝑎
)

− 𝑑
𝑖+1
(𝜇

𝑎,𝑖+1
− 𝜇

𝑎
− 𝜇

𝑎,𝑖,𝑖+1
+ 𝜇

𝑎,𝑖
) .

(A.12)

Supermodularity of 𝜇 gives 𝜇
𝑎,𝑖
+ 𝜇

𝑎,𝑖+1
≤ 𝜇

𝑎
+ 𝜇

𝑎,𝑖,𝑖+1
and

therefore the factor of 𝑑
𝑖
in former expression is nonnegative

and the factor of 𝑑
𝑖+1

(which is the negation of the factor of
𝑑
𝑖
) is negative or 0.Therefore, the total change is nonnegative

as well.
Thus, with each of these swap operations, we will never

decrease the value of the expression, and starting from the
asymmetric Choquet integral for 𝑥 upon reaching the final
order the final value will be larger or equal.

An example might be helpful. Assume that the order in 𝑥
is (1 2 3 − 4 − 5) (a negative index should indicate that

the corresponding element of 𝑥 is negative) and in 𝑦 we have
the order (−5 3 1 2 −4) (so, 𝑦

5
is the largest component of

𝑦 and 𝑦
4
the smallest). Then, the order of swaps is as follows:

Swap 1 applied as (1 2 3
←→

−4 −5) gives (1 3 2 −4 −5);
Swap 1 applied as (1 3

←→
2 −4 −5) gives (3 1 2 −4 −5).

Next, Swap 2 applied as (3 1 2 −4 − 5
←→

) gives (3 1 2 −

5 − 4), Swap 3 applied as (3 1 2 − 5
←→

− 4) gives (3 1 −

5 2 − 4), Swap 3 applied as (3 1 − 5
←→

2 − 4) gives (3 −

5 1 2 −4), and finally Swap 3 applied as (3 − 5
←→

1 2 −4)

gives the order (−5 3 1 2 − 4) of 𝑦. Note also that in case
the elements of 𝑥 are not in that order we can always relabel
the indizes and measures correspondingly.

This means if we compute (using 𝑥 =

(𝑥
1
, 𝑥

2
, 𝑥

3
, −𝑥

4
, −𝑥

5
))

(ASC) ∫
(𝑦)

𝑥𝑑𝜇

= −𝑥
5
𝜇
5
+ 𝑥

3
(𝜇

3,5
− 𝜇

5
) + 𝑥

1
(𝜇

1,3,5
− 𝜇

3,5
)

+ 𝑥
2
(𝜇

1,2,3,5
− 𝜇

1,3,5
) − 𝑥

4
(𝜇

1,2,3,4,5
− 𝜇

1,2,3,5
)

(A.13)

instead of

(ASC) ∫ 𝑥 𝑑𝜇

= 𝑥
1
𝜇
1
+ 𝑥

2
(𝜇

1,2
− 𝜇

1
) + 𝑥

3
(𝜇

1,2,3
− 𝜇

1,2
)

− 𝑥
4
(𝜇

1,2,3,4
− 𝜇

1,2,3
) − 𝑥

5
(𝜇

1,2,3,4,5
− 𝜇

1,2,3,4
) ,

(A.14)

then (ASC) ∫
(𝑦)
𝑥 𝑑𝜇 ≥ (ASC) ∫ 𝑥 𝑑𝜇.

Using this Lemma, we can now easily show the following.

Theorem 27. If 𝜇 is a supermodular measure, then ≥
𝜇
is a

transitive relation.

Proof. For transitivity, we have to show that for any 𝑥, 𝑦, and
𝑧 such that 𝑥≥

𝜇
𝑦 and 𝑦≥

𝜇
𝑧 it follows that 𝑥≥

𝜇
𝑧. Now, 𝑥≥

𝜇
𝑦

means (ASC) ∫(𝑥 − 𝑦)𝑑𝜇 ≥ 0 and 𝑦≥
𝜇
𝑧 means (ASC) ∫(𝑦 −

𝑧)𝑑𝜇 ≥ 0. From supermodularity of 𝜇 and Lemma 26, then it
also follows that

(ASC) ∫
(𝑥−𝑧)

(𝑥 − 𝑦) 𝑑𝜇 ≥ (ASC) ∫ (𝑥 − 𝑦) 𝑑𝜇 ≥ 0,

(ASC) ∫
(𝑥−𝑧)

(𝑦 − 𝑧) 𝑑𝜇 ≥ (ASC) ∫ (𝑦 − 𝑧) 𝑑𝜇 ≥ 0.
(A.15)

However, by using the fact that

(ASC) ∫
(𝑥−𝑧)

(𝑥 − 𝑦) 𝑑𝜇 + (ASC) ∫
(𝑥−𝑧)

(𝑦 − 𝑧) 𝑑𝜇

= (ASC) ∫ (𝑥 − 𝑧) 𝑑𝜇,
(A.16)

we see that also

(ASC) ∫ (𝑥 − 𝑧) 𝑑𝜇 ≥ 0 (A.17)

which means 𝑥≥
𝜇
𝑧.
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[15] M. Köppen, “Relational optimization and its application: from
bottleneck flow control to wireless channel allocation,” Infor-
matica, vol. 24, no. 3, pp. 413–433, 2013.

[16] M. Sugeno, Theory of fuzzy integrals and its applications [Ph.D.
thesis], 1974.

[17] S. Michio, “Fuzzymeasures and fuzzy integrals: a survey,” Fuzzy
Automata and Decision Processes, vol. 78, no. 33, pp. 89–102,
1977.

[18] D. Denneberg, Non-Additive Measure and Integral, vol. 27,
Springer, 1994.

[19] G. Choquet, “Theory of capacities,”Annales de l’Institut Fourier,
vol. 5, pp. 131–295, 1954.
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