
On the Benchmarking of Multiobjective
Optimization Algorithm

Mario Köppen

Fraunhofer IPK
Dept. Security and Inspection Technologies

Pascalstr. 8-9, 10587 Berlin, Germany

Abstract. The ”No Free Lunch” (NFL) theorems state that in average
each algorithm has the same performance, when no a priori knowledge of
single-objective cost function f is assumed. This paper extends the NFL
theorems to the case of multi-objective optimization. Further it is shown
that even in cases of a priori knowledge, when the performance measure is
related to the set of extrema points sampled so far, the NFL theorems still
hold. However, a procedure for obtaining function-dependent algorithm
performance can be constructed, the so-called tournament performance,
which is able to gain different performance measures for different multi-
objective algorithms.

1 Introduction

The ”No Free Lunch” (NFL) theorems state the equal average performance of
any optimization algorithm, when measured against the set of all possible cost
functions and if no domain knowledge of the cost function is assumed [3]. Usually,
the NFL theorem is considered in a context of design of algorithms, especially
it became well-known in the scope of evolutionary computation. However, the
NFL theorem has also some other facettes, one of which is the major concern of
this paper. So, the NFL theorem can also be seen as stating the impossibility to
obtain a concise mathematical definition of algorithm performance.

In this context, this paper considers multi-objective optimization and how
the NFL theorems apply in this field. After recalling some basic definitions of
multi-objective optimization in section 2, esp. the concept of Pareto front, the
standard NFL theorem is proven for the multi-objective case in section 3. Then,
the proof is extended to the case where sampling of extrema is also involved
in the performance measure in section 4, proving that there is no gain in using
such a measure. Only the case that two algorithms are compared directly give
rise to so-called tournament performance and a heuristic procedure to measure
algorithm performance. This will be presented in section 5.

2 Basic Definitions

In multi-objective optimization, optimization goal is given by more than one
objective to be extreme [1]. Formally, given a domain as subset of Rn, there are



assigned m functions f1(x1, . . . , xn), . . . , fm(x1, . . . , xn). Usually, there is not a
single optimum but rather the so-called Pareto set of non-dominated solutions:

For two vectors a and b it is said that a (Pareto-)dominates b, when each
component of a is less or equal to the corresponding component of b, and at
least one component is smaller:

a >D b ←→ ∀i(ai ≤ bi) ∧ ∃k(ak < bk). (1)

Note that in a similar manner Pareto dominance can be related to ”>”-relation.
The subset of all vectors of a set M of vectors, which are not dominated by

any other vector of M is the Pareto set (also Pareto front) PF . The Pareto set
for univariate data (single objective) contains just the maximum of the data.

The task of multi-objective optimization algorithm is to sample points of the
Pareto front. A second instantiation (often called decision maker) is needed to
further select from the Pareto front.

3 NFL-Theorem for multi-objective optimization
algorithms

A slight modification extends the proof of the single-objective NFL theorems
given in [2] to the multi-objective case. Be X a finite set and Y a set of k
finite domains Yi with i = 1, . . . , k. Then we consider the set of all sets of k
cost functions fi : X → Yi with i = 1, . . . , k, or f : X → Y for simplicity.
Let m be a non-negative integer < |X|. Define dm as a set {(dx

m(i), dy
m(i) =

(f(dx
m(i)))}, i = 1, . . . ,m where dx

m(i) ∈ X ∀ i and ∀ i, j, dx
m(i) (= dx

m(j).

Fig. 1. A deterministic algorithm derives next sampling point dx
m+1(m + 1) from the

outcome of foregoing sampling dm.

Now consider a deterministic search algorithm a which assign to every pos-
sible dm an element of X \ dx

m (see fig. 1):

dx
m+1(m + 1) = a[dm] (∈ {dx

m}. (2)

Define Y (f,m, a) to be the sequence of m Y values produced by m successive
applications of the algorithm a to f . Let δ(., .) be the Kronecker delta function
that equals 1 if its arguments are identical, 0 otherwise. Then the following holds:



Lemma 1. For any algorithm a and any dy
m,

∑
f

δ(dy
m, Y (f,m, a)) =

k∏
i=1

|Yi||X|−m.

Proof. Consider all cost functions f+ for which δ(dy
m, Y (f+,m, a)) takes the

value 1, 2 asf. of the sequence dy
m:

i) f+(a(∅)) = dy
m(1)

ii) f+(a[dm(1)]) = dy
m(2)

iii) f+(a[dm(1), dm(2)]) = dy
m(3)

. . .

where dm(j) ≡ (dx
m(j), dy

m(j)). So the value of f+ is fixed for exactly m
distinct elements from X. For the remaining |X| − m elements from X, the
corresponding value of f+ can be assigned freely. Hence, out of the

∏
i |Yi||X|

separate f , exactly
∏

i |Yi||X|−m will result in a summand of 1 and all others
will be 0.

Then, we can continue with the proof of NFL theorem in multi-objective
case. Take any performance measure c(.), mapping sets dy

m to real numbers.

Theorem 1. For any two deterministic algorithms a and b, any performance
value K ∈ R, and any c(.),∑

f

δ(K, c(Y (f,m, a))) =
∑

f

δ(K, c(Y (f,m, b))).

Proof. Since more than one dy
m may give the same value of the performance

measure K, for each K the l.h.s. is expanded over all those possibilities:∑
f

δ(K, c(Y (f,m, a))) =

=
∑

f,dy
m∈Y m

δ(K, c(dy
m))δ(dy

m, Y (f,m, a)) (3)

=
∑

dy
m∈Y m

δ(K, c(dy
m))

∑
f

δ(dy
m, Y (f,m, a))

=
∑

dy
m∈Y m

δ(K, c(dy
m))

k∏
i=1

|Yi||X|−m (by Lemma 1)

=
k∏

i=1

|Yi||X|−m
∑

dy
m∈Y m

δ(K, c(dy
m)) (4)

The last expression does not depend on a but only on the definition of c(.).



4 Benchmarking measures

The formal proof of the NFL theorems assumes no a priori knowledge of the
function f . This can be easily seen in the proof of Theorem 1, when the expansion
over f is made (line 3 of the proof): it is implicitely assumed that the performance
measure c(.) does not depend on f . There are performance measures depending
on f , for which Theorem 1 does not hold and that can be easily constructed (as
e.g. derived from the requirement to scan (x, y) pairs in a given order).

This is a reasonable assumption for evaluating an algorithm a. Domain knowl-
edge of f could result in algorithm a somehow designed in a manner to show
increased performance on some benchmark problems. However, common proce-
dure to evaluate algorithms is to apply them onto a set of so-called ”benchmark
problems.” This also holds in the multi-objective case. From a benchmark func-
tion f , usually analytic properties (esp. the extrema points) are given in advance.
In [1], an extensive suite of such benchmark problems is proposed, in order to
gain understanding of abilities of multi-objective optimization algorithms. So,
for each benchmark problem, a description of the Pareto front of the problem is
provided. The task given to a multi-objective optimization algorithm is to sample
as many points from the Pareto front as possible. To name it here again: clearly,
such a performance measure is related to a priori of f itself. NFL theorems given
with Theorem 1 do not cover this case.

However, in the following, it will be shown that NFL theorems even apply in
such a case. It is based on the following lemma:

Lemma 2. For any algorithm a it holds⋃
f

{a ◦ f} |Y = Y |X|

A given algorithm a applied to any f gives a sequence of values from Y . The union
of all those sequences will be the set of all possible sequences of |X| elements
chosen from Y . Or, in other words: each algorithm, applied to all possible f
will give a permutation of the set of all possible sequences, with each sequence
appearing exactly once.

Proof. Assume that for two functions f1 and f2 algorithm a will give the same
sequence of y-values (y1, y2, . . . , y|X|). This also means that the two correspond-
ing x-margins are permutations of X. Via induction we show that then follows
f1 = f2.
Verification. Since we are considering deterministic algorithms, the choice of
the first element x1 is fixed for an algorithm a (all further choices for x values
are functions of the foregoing samplings). So, both f1 and f2 map x1 to y1.
Step. Assume f1(xi) = f2(xi) for i = 1, . . . , k (and k < |X|). Then according
to eq. 2, algorithm a will compute the same dx

k+1(k + 1) since this computation
only depends on the sequence dm that is equal for f1 and f2 by proposition.
Since the y-margins are also equal in the position (k + 1), for both f1 and f2

xk+1 = dx
k+1(k + 1) is mapped onto yk+1.



This completes the proof. It has to be noted that not each permutation of Y |X|
can be accessed by an algorithm (what can be easily seen from the fact that
there are much more permutations than possible algorithm specifications).

Following this lemma, all performance calculations that are independent of
the sorting of the elements of Y |X| will give the same average performance,
independent on a. Sampling of Pareto front elements after m algorithm steps is
an example for such a measure. For illustration, table 1 gives these compuations
for the simple case Y = {0, 1}× {0, 1} and X = {a, b, c}.

Table 1. Performance measure Pareto sampling after two steps in the example case
Y = {0, 1}2 and |X| = 3.

y1 y2 y3 PF c(2) y1 y2 y3 PF c(2) y1 y2 y3 PF c(2) y1 y2 y3 PF c(2)

00 00 00 00 1 01 00 00 00 1 10 00 00 00 1 11 00 00 00 1
00 00 01 00 1 01 00 01 00 1 10 00 01 00 1 11 00 01 00 1
00 00 10 00 1 01 00 10 00 1 10 00 10 00 1 11 00 10 00 1
00 00 11 00 1 01 00 11 00 1 10 00 11 00 1 11 00 11 00 1
00 01 00 00 1 01 01 00 00 0 10 01 00 00 0 11 01 00 00 0
00 01 01 00 1 01 01 01 01 1 10 01 01 01, 10 2 11 01 01 01 1
00 01 10 00 1 01 01 10 01, 10 1 10 01 10 01, 10 2 11 01 10 01, 10 1
00 01 11 00 1 01 01 11 01 1 10 01 11 01, 10 2 11 01 11 01 1
00 10 00 00 1 01 10 00 00 0 10 10 00 00 0 11 10 00 00 0
00 10 01 00 1 01 10 01 01, 10 2 10 10 01 01, 10 1 11 10 01 01, 10 1
00 10 10 00 1 01 10 10 01, 10 2 10 10 10 10 1 11 10 10 10 1
00 10 11 00 1 01 10 11 01, 10 2 10 10 11 10 1 11 10 11 10 1
00 11 00 00 1 01 11 00 00 0 10 11 00 00 0 11 11 00 00 0
00 11 01 00 1 01 11 01 01 1 10 11 01 01, 10 1 11 11 01 01 0
00 11 10 00 1 01 11 10 01, 10 1 10 11 10 10 1 11 11 10 10 0
00 11 11 00 1 01 11 11 01 1 10 11 11 10 1 11 11 11 11 1

Sum 16 16 16 11
Average Performance 59/64 ∼ 0.92

Table 1 displays all possible functions f : X → Y and the corresponding
Pareto set PF . The column c(2) shows the number of Pareto set elements that
have already been sampled after two steps. The computation of the average
performance does not depend on the order in which the functions are listed,
thus each algorithm a will have the same average performance cav(2) = 59/64 .

A remark on the single-objective case: in the foregoing discussion, multi-
objectivity of f was not referenced explicitely. Hence, the discussion holds also
for the ”single-objective” version, in which an algorithm is judged by its ability
to find extrema points within a fixed number of steps. The NFL theorems also
appy to this case.



5 Tournament performance

Among the selection of function-dependent performance measures, one should
be pointed out in the rest of this paper. For obtaining ”position-dependence”
of the measure on a single function f , the value obtained by applying a base
algorithm A is taken. Algorithm a now runs competively against A. In such a
case, the NFL theorem does not hold. For seeing this, it is sufficient to provide
a counterexample.

Before, we define the difference of two Pareto sets PFa and PFb as the set
PFa \ PFb, in which in PFa all elements are removed, which are dominated by
any element of PFb.

Be Y = {0, 1}2 and X = {a, b, c}, as in the foregoing example. Now algorithm
A is as follows:

Algorithm A: Take the dx
m in the following order: a, b, c.

And be

Algorithm a: Take a as first choice. If f(a) = {0, 1} then select c as next point,
otherwise b.

Table 2 shows the essential part of all possible functions f , in which algorithms
A and a behave different.

Table 2. Tournament performance of algorithm a after two steps.

f(a) f(b) f(c) PF (dy
2(A, f)) PF (dy

2(a, f)) PF (dy
2(A, f)) \ PF (dy

2(a, f)) "|.|
01 00 00 00 00 00 0
01 00 01 00 01 00 0
01 00 10 00 01, 10 00 0
01 00 11 00 01 00 0
01 01 00 01 00 - -1
01 01 01 01 01 01 0
01 01 10 01 01, 10 01 0
01 01 11 01 01 01 0
01 10 00 01, 10 00 - -2
01 10 01 01, 10 01 01, 10 0
01 10 10 01, 10 01, 10 01, 10 0
01 10 11 01, 10 01 01, 10 0
01 11 00 01 00 - -1
01 11 01 01 01 01 0
01 11 10 01 01, 10 01 0
01 11 11 01 01 01 0

Total -4



For ”measuring” the performance of a at step m, we compute the size of the
Pareto set difference

|PF (dy
m(A, f)) \ PF (dy

m(a, f))| . (5)

and take the average over all possible f as average performance. For functions
that do not start with f(a) = {0, 1}, both algorithms are identical, so in these
cases . = 0. For functions mapping x-value a onto {0, 1}, we see . = −4.

Now taking other algorithms:

Algorithm b: Take a as first choice. If f(a) = {1, 0} then select c as next point,
otherwise b.

Algorithm c: Take a as first choice. If f(a) = {1, 1} then select c as next point,
otherwise b.

For b and c, a similar computation gives . = −4 and . = −5 respectively. In
this sense ”strongest” algorithm (i.e. in comparison to A) is to sample in the
order a, c, b with a performance . = −13.

It should be noted that this performance measure is also applicable to the
single-objective case. However, more studies on this measure have to be per-
formed.

Based on this, a heuristic procedure to measure performance of multi-objective
optimization algorithm a might look like:

1. Let algorithm a run for k evaluations of cost function f and take the set M1

of non-dominated points from Y obtained by the algorithm.
2. Select k random domain values of X and compute the Pareto set M2 of the

corresponding Y values.
3. Compute the set M3 of elements of M2 that are not dominated by any

element of M1.

The relation of |M1| to |M3| gives a measure how algorithm a performs against
random search.

References

1. Carlos A. Coello Coello, David A. Van Veldhuizen, Gary B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,
2002.

2. Mario Köppen, David H. Wolpert and William G. Macready, “Remarks on a recent
paper on the ”no free lunch” theorems,” IEEE Transactions on Evolutionary
Computation, vol. 5, no. 3, pp. 295–296, 2001.

3. David H. Wolpert and William G. Macready, “No free lunch theorems for opti-
mization,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp.
67–82, 1997.


