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Abstract—We consider the meta-heuristic approach to opti-
mization as to be performed in four stages (model, optimality,
algorithm, verification), and point out the potential of varying
the optimality stage, in contrary to the design of new algorithms.
Thus, we can also apply the meta-heuristic approach to opti-
mization to the task of fair distribution of indivisible or elastic
goods, where the optimality is represented by (set-theoretic)
fairness relations. As a demonstration, we fix a meta-heuristic
algorithm (here a generalized version of the Strength Pareto
Evolutionary Algorithm SPEA2) and provide a set of 15 fairness
relations, along with the discussion of general design principles
for relations, to handle the Wireless Channel Allocation problem.
For validation, comparison with an equal-effort random search is
used. The demonstration shows that while all relations represent
a similar model (they are all directly or indirectly related to
the Bottleneck Flow Control algorithm), the performance varies
widely. In particular, representing fairness of distribution by
ordered proportional fairness or by exponential Ordered-Ordered
Weighted Averaging appears to be in favour of a successfull meta-
heuristic search.

Index Terms—fairness, optimality, meta-heuristic algorithm,
maxmin fairness

I. INTRODUCTION

In the well-studied meta-heuristic approach to optimization,
we can usually distinguish four stages. In the first stage, Mod-
eling (1), a real-world situation is represented by a model. The
common assumption is that functions, mappings, or relations
within the model refer to causes, effects, dependencies etc.
in the real-world situation. For practical reasons, models are
usually chosen in a generic way. For example, graphs are
used to represent real-world network connectivity pattern, or
systems of (partial) differential equations are used to represent
dynamic changes of matter. This is also the place where
we can find catalogs of problem complexities, like the class
of NP-complete combinatorial decision problems, as a kind
of shorthand of the representation of a real-world situation.
In the second stage, Optimality (2), the (generic) model is
equipped with the specification of an optimality criterion.
This is, in nearly all cases, the maximization or minimization
of a numerical value of a function derived from the mutual
relations between the components of the model. Recently, also
the use of a dedicated relation like the Pareto dominance has
become increasingly popular. Having something to maximize
or minimize, the most important stage (with regard to academic
research as well as applications), Algorithm (3), is the crafting
and speciation of a meta-heuristic search algorithm in order to
handle the Optimality task by a corresponding search proce-
dure. When using the term meta-heuristic instead of just simply
heuristic, one is also referring to the generic applicability of

such algorithms, once the Optimality stage is fixed. There
are well-known families of such meta-heuristic algorithms, for
example Evolutionary Computation, Swarm Intelligence, Tabu
Search, Evolutionary Multi-Objective Optimization (EMO) etc.
Last but not least, we consider the fourth stage, Verification
(4), as a means to validate the quality and degree of success
of the foregoing Algorithm stage. In general, here we want
to learn about the general applicability of an algorithm with
regard to the model problem. This is usually achieved by
comparative studies on benchmark problems or real-world
applications serving as models with given optimality criteria
and maybe even optimal states known in advance. With regard
to declaring it a stage here, we are more focusing on the means
to compare algorithms, esp. performance measures and proce-
dures that are established independently from the algorithm
(for example mutual coverage of Pareto fronts approximated
by different EMOs)1.

In these four stages, each stage can be an independent
item of discourse, since one stage is only directly refer-
ring to the outcome of the foregoing stage. Moreover, none
of the following stages can be completely entailed from a
foregoing stage. A suitable (meta-heuristic) algorithm cannot
be directly entailed from the optimality criterion, the means
for validation do not directly follow from the algorithm, but
also, the optimality criterion is not part of the generic model
formulation - “A rose is a rose is a rose.” However, it is
notable that the share of research activities related to either
one of the four stages differs much. It is beyond doubt that
most research was, and still is, devoted to the third stage,
the design of new or modification of existing meta-heuristic
search algorithms. Following next, there are also activities with
regard to evaluation and validation, i.e. the fourth stage2 but
the number (e.g. with regard to the number of independent
research publications) is already smaller. Stage 1 is either
handled on a case-by-case basis, or by the provision of a
“problem catalog” containing problems or their establishing
formal procedures. As a research theme, it is better handled by
other fields like system theory. Notably, the remaining second

1While it is not common to elaborate on philosophical issues in the context
of an engineering report, it should be mentioned here that the meta-heuristic
approach to optimization is a model of optimality as well. Its stages well
represent the four (Aristotle’s) causes: the model as the material cause, the
optimality as the final cause, the algorithm as the efficient cause, and the
validation as the formal cause. There are other models of optimality as well,
for example social choice and voting schemes, and parts of the following
contribution are derived from related concepts of mathematical economy.

2Also the No-Free-Lunch Theorems belong to this stage.



stage generally received few attention. Recent issues with the
handling of multi-objective optimization problems by meta-
heuristic approaches in case of a larger number of objectives
(then called many objectives) stimulated the development of
alternatives to the common Pareto dominance relation, and
the related non-dominated sets, as a means for representing
optimality [1]. Also, studies on fuzzy preference relations can
be considered as a longer termed undertaking with a focus
on the alternative (and also more flexible) representation of
optimality [2].

With the following, probably rather simple argument we
want to demonstrate that, nevertheless, this aspect of the
meta-heuristic approach to optimality has influence on all
following stages, and that a neglection of this fact can give
rise to deterioration of problem solving quality. We note that
a typical way of expressing optimality criteria is the use
of an error measure (fitting error in regression, classification
error in supervised learning etc.). The adjunction of an error
measure to a model, with the unspoken understanding that
this is something that should be minimized, seems to be a
straightforward and plain task, with slight flexibility regarding
the choice of a specific metric, assumed probability distribution
etc.

But now, we can find instances of trade-offs between
such error measures as well, even between seemingly
strongly correlated error measures like root mean square
error (RMSE) and mean absolute error (MAE). We con-
sider a simple example: from the set of values S =
(1, 2, 3, 5, 20, 40, 45, 60, 80, 200, 300) with n = 11 elements
we want to select 3 “prototype” values such that their differ-
ence to all other values becomes small. The procedure is to
replace each value with (one of) its closest prototype(s), and
compute the error that we make by such a replacement. If
pi indicates the replacing prototype for a value si ∈ S, then
we can compute the RMSE as

√
1/n

∑
i(pi − si)2 and the

MAE as 1/n
∑
|pi − si|. Figure 1 shows the pairs of RMSE

and MAE values for all 165 possible selections of 3 elements
from S.

It is obvious that both errors are strongly correlated, while
the detailed pattern of their distribution is rather complex3.
Even more, with regard to error minimization, there is a
trade-off. The Pareto set of the error value pairs contains 3
elements: e1 = (25.979, 19.4545), e2 = (32.0213, 16.2727)
and e3 = (32.0837, 16.0909), which means that for these
three error value pairs, and only for these, any improvement
in one error can only be achieved by a deterioration of the
other. The pair e1 corresponds to the minimum of the RMSE
of 25.979 (with value selection 20, 200, 300), and the third
to the minimum value of the MAE of 16.0909 (with value
selections (3, 60, 200) and (3, 60, 300)), but the second one
(which is obtained from the value selections (5, 60, 200) and
(5, 60, 300)) reflects neither an optimum of the RMSE nor
an optimum of the MAE. Also, the selections by RMSE and
MAE are qualitatively different: the RMSE is focussing on

3Note that different selections might result into equal error values.
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Fig. 1. Example for the trade-off between RMSE and MAE.

large prototypes, while the MAE (as well as e2) is focussing
on smaller prototypes. So the question is: which error to
choose? From the given model of the problem domain, this
question cannot be answered, and it means that we have to
take other criteria into account. With regard to the comments
given before, these other criteria can only be yielded either
from a refined model, or from a later stage in the meta-heuristic
approach to optimization (MAO). For the sake of keeping the
MAO generic, the former approach prohibits itself: once there
is a refined model, other issues can come up in the same
manner, and it would give the need for another, even more
refined model for a situation where the given optimization
criteria prove to be insufficient with regard to bounded trade-
offs. Thus, the latter approach, to delegate the selection of
error measures or optimization criteria for a given model to a
later stage, is the favoured one, and this point of view will be
solicited and promoted in this paper.

Another small comment on this example: we also have to
make sure that the various optimality criteria are somehow
“close” and that there is a sufficient number of examples where
the objective selections actually coincide. This is a rather weak
formulation, but sufficient for present purpose.

In this paper, we want to focus on an approach, where
we keep the algorithm fixed, but vary on the optimality
criterion. The subsections of the following section 2 will follow
the sequence of four stages that was mentioned above: the
model will represent the Wireless Channel Allocation problem,
the Optimality will be represented by fairness relations, the
Algorithm will be a generalization of the Strength Pareto
Evolutionary Algorithm SPEA2, able to handle non-dominated
sets of general relations, and the Validation is based on
a comparison with random samples. Some results will be
presented and discussed in the following section, and the paper
will conclude with a short summary.



II. META-HEURISTIC APPROACH TO WIRELESS CHANNEL
ALLOCATION

A. Model

We are going to study the Wireless Channel Allocation
(WCA) problem as a specific case of a task of fair distribution
of indivisible goods. In its most abstract form, the WCA
problem refers to the allocation of channels for a sequence
of consecuting time slots to a number of users by a base
station in a wireless communication network. For each channel,
time slot and user, there is a so-called channel coefficient,
representing the physical characteristics, by which a user can
send data through the channel at the specific time slot. Usually,
these values are predictions and are drawn from distributions
according to a physical model of the wireless infrastructure.
Seen as a combinatorial problem, and abstracting from the
specific set up, the conditions of the WCA can be given as
follows. A set of m channel-timeslot pairs, which we call
here cells4, has to be assigned to a set of n users ui. Each
user is specified by a vector of channel coefficients ci with m
components. The component cij (usually a real number from
[0, 1]) specifies the utility of the channel-timeslot pair j for
user ui. An allocation a is an index vector of size m, where
the index ai indicates the assignment of the channel-timeslot
pair i to user uai . The performance p of an allocation is the
vector of sums of channel coefficients for respective users:
the component pi equals

∑
j,aj=i

cij . Given such a set up,
stated informally, the goal is to find an allocation with “good”
performance.

However, if this would be represented by maximizing the
total performance (i.e. the sum of performances for all users)
then the allocation can be found easily: just select for each
cell a user with largest channel coefficient. Unfortunately, there
are settings of the channel coefficients for which some users
would never be selected, resulting in their performance to be 0.
Therefore, the problem is primarily not related to an optimality
criterion, and the task is not only to handle optimality, but
moreover to specify optimality at all. This is a typical case
of fair distribution, no matter how we are going to represent
fairness (equality, envy-freeness etc.).

B. Optimality

As mentioned already, Optimality will be represented by the
non-dominated set of various fairness relations. We will use
relations as a means to compare performances of allocations.
Here, a (binary) relation among elements of a set S is given
by a subset of S×S, i.e. as a set R ⊆ S×S of ordered pairs
(a, b) where the understanding is that a is in relation R to b5.
As we are focusing on relations representing “better” we will
use the notation a >R b. Relations, no matter if they refer
to ordering, equivalence, or similarity, all specify two special

4Note that in practice, the set up is rather given as a matrix, with colums
for time slots and rows for channels, and each matrix element is a user. But,
in fact, the matrix can be handled as a flat array, as usually no special relation
is assumed between a timeslot and a channel.

5In the following, we will use symbols a, b etc. to represent elements of
general sets, while symbols x, y etc. refer to elements of subsets of Rn.

subsets of S, the set of best elements (sometimes also called
greatest elements) and the maximum set, or set of maximal
elements. The best set is defined as all a ∈ S such that for
each other b 6= a a >R b holds. The maximum set is given by
all a such that there is no b 6= a with b >R a.

In general, this is fitting with the common approach of
extremizing a function value (using the order relation among
real numbers) or searching the Pareto front by EMO algorithms
(using the Pareto dominance relation). However, both of them
do not fit well to the WCA, as here, optimality could include
cases where to a user, cells might not be allocated at all.
Therefore, it is a fairness problem.

As a first design principle of fairness relations, we
can focus on an algorithm or a procedure that is commonly
understood to be fair. Then, for each feasible space within
the problem domain, the algorithm will assign (select, choose)
exactly one state from the feasible space. Rationalization [3]
of this assignment then corresponds to finding a relation such
that the assigned state is among the best or maximal elements
of the relation.

For space reasons, we cannot give all the details here, but
a very suitable algorithm for this purpose is the Bottleneck
Flow Control (BFC) [4]. Figure 2 shows an example: within
a network, given as a graph, and a set of end-to-end user
traffics, given by a set of paths, the BFC algorithms achieves
commonly-understood fairness for elastic traffic allocation to
each path. The algorithm is focusing on assigning the same
traffic amounts to the largest group of users as long as possible.

In [5] it was shown that there are at least three relations
that become maximized by this algorithm, maximized in the
sense that the traffic state assigned at the end corresponds to
the (single) best element of such a relation. The relations are
in particular:
(1) Lexmin relation. The lexmin relation is defined as a
relation between two points from Rn. Given two vectors x and
y from Rn, we consider the coordinates of both vectors sorted
in increasing order. It is said that x >lexmin y if and only
if the first coordinate of x, in that sorting, which is different
from y, is larger than the corresponding coordinate of y, in
that sorting.
(2) Maxmin fair dominance relation. It has already been
established [6][7] that the BFC algorithm is selecting the best
set element of another relation, the so-called maxmin fairness
dominance.

Definition 1. An element x of the feasible space is maxmin fair
dominating an element y of same space, if for each component
yi of y, which is larger than the corresponding component xi
of x there is another component xj of x which is (already)
smaller than or equal to xi and such that yj is smaller than
xj .

(3) Exponential OOWA.

Definition 2. Given a point x from Rn and a set of weights
w ∈ Rn, the exponential Ordered-Ordered Weighted Averaging
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Fig. 2. Example for the Bottleneck Flow Control Algorithm: the algorithm
starts traffic assignments for users along given paths at level 0, and gradually
increases this level until bottlenecks are appearing. Then, the algorithm stops
the further increase for the affected users, but continues for the other users.
Thus, it is attained to assign the same traffic to subsets of users as long as
possible. This algorithm also utilizes the specific network in the best way
(from [5]).

(OOWA) of x by w is defined as

OOWAw(x) =
n∑
i=1

w(n−i+1)x(i) (1)

under the additional constraint:

w(i) >

i−1∑
k=1

w(k) (2)

Then, for any valid choice of weights, the BFC algorithm
is maximizing this exponential OOWA [5].

The second design principle can be understood as hy-
bridization of relations achieved by the first design principle.
Here, we are trying to identify internal generic processing steps
for known relations, and make corresponding substitutions. An
example was introduced in [5] where the maxmin fairness
relation was extended to a number of other relations, by
employing a fuzzy fusion operation for replacing an internal
minimum operator.

In the following, x, y and s denote points from Rn, S is
a general set of points, T (a, b) is a t-norm of real numbers
a and b from [0, 1]. Note that the t-norm for any number of
arguments is computed by associativity. The following table
gives some notations used in the definition of the following
relations:

symbol meaning
A {xi |xi > yi}
C {xi |xi < yi}
s(i) i-th smallest component of point s

owa8(S) 0.8s(1) + 0.2s(2)
owa5(S) 0.5s(1) + 0.5s(2)
Tdp(a, b) ab/max[a, b, α] (α ∈ (0, 1))
Tham(a, b) ab/(a+ b− ab) (0, if a = b = 0)
Tluk(a, b) max(0, a+ b− 1)

i∗ smallest i for which x(i) 6= y(i)
OOWAexp(x)

∑
i 2
n−i+1x(i)

OOWAlin(x)
∑
i(n− i+ 1)x(i)

Then, Table I is giving a number of related definitons for
fairness relations.

In this table, we also find proportional fairness, as it was
introduced by Kelly[8] as a means to approximate maxmin
fairness.

Definition 3. A point x of feasible space (a subset of R+
n ) is

considered alpha fair dominating another feasible point y, if
and only if ∑

i=1,...,n

yi − xi
xαi

≤ 0 (3)

holds.

Here, for α = 1 we have the proportional fairness relation.
For α → ∞ it can be shown that alpha fairness converges to
maxmin fairness[9].

Another point that has to be mentioned with regard to Table
I is the relation number 15 that also serves as a hybrid of
relation 14: for the linear OOWA, we replace the exponential
OOWA requirement on the weights by a simple w(i) > w(i−1)

for all i > 1. The reason is that the requirement of an
exponential weight grow reflects strong link sharing. If the
paths in the network do not substantially overlap, a linear
OOWA might be sufficient as well. Thus, if linear OOWA and
exponential OOWA do not differ much with regard to best
elements, this is an indication of low dependencies among the
objectives. This aspect is more detailed in [10].

As a third design principle for (fairness) relations we can
consider the application of operands on a relation, or operations
between relations. In addition to rather simple operations like
the complement or the converse relation, in case of a vector
relation (all relations introduced so far are vector relations) we
can also define un-sorting: x >u(r) y holds iff there is at least
one permutation of the elements of x such that x >r y holds.
We can do similarily for the processing of over-sorting and
requiring x >r y for all permutations. Relations 3 and 4 in
Table I correspond to the un-sorted and over-sorted versions
of proportional fairness.



TABLE I
DEFINITIONS FOR ALL USED FAIRNESS RELATIONS (FFF - FUZZY FUSION FAIRNESS). POINTS x AND y ARE IN THE RELATION name IF AND ONLY IF THE

CORRESPONDING CONDITION IS FULFILLED.

nr. name symbol condition remark

1 maxmin fairness >mmf minA ≤ minC

2 proportional fairness >pf
P
i
yi−xi
xi

≤ 0

3 ordered proportional fairness >opf
P
i

y(i)
x(i)

≤ n

4 anti-ordered proportional fairness >aopf
P
i

y(n−i+1)
x(i)

≤ n

5 ordered-weighted FFF 1 >owa8 owa8(A) ≤ owa8(C)

6 ordered-weighted FFF 2 >owa5 owa5(A) ≤ owa5(C)

7 Dubois-Prade FFF >dp Tdp(A) ≤ Tdp(C) (here α = 0.5)
8 algebraic FFF >prod

Q
A xi ≤

Q
C xi

9 Hamacher FFF >ham Tham(A) ≤ Tham(C)

10 Lukasiewicz FFF >luk Tluk(A) ≤ Tluk(C)

11 α-fairness >α
P
i
yi−xi
xαi

≤ 0 (here α = 5)

12 lexmin >lm xi∗ > yi∗

13 average fairness >av E[[A]] ≤ E[[C]]

14 exponential OOWA >eo OOWAexp(x) > OOWAexp(y)

15 linear OOWA >lo OOWAlin(x) > OOWAlin(y)

To conclude this subsection, we also have to consider the
point mentioned at the end of the introduction: are the relations
“similar” with respect to the choice of maximal elements?
Instead of a general study, we just consider an example where
the feasible space can be fully searched for the special case of
3 users and 4 cells, with channel capacities given as

user cell 1 cell 2 cell 3 cell 4
user 1 0.2 0.3 0.7 0.1
user 2 0.4 0.8 0.9 0.4
user 3 0.5 0.5 0.1 0.6

Then, Table II lists all feasible allocations that appear at
least once within a maximum set of any of the relations 1 to 15.
As we can see, most relations select basically three different
allocations of the feasible space. Actually, the choices do not
differ much.

C. Algorithm
In this study, the algorithm is fixed. Actually, we use a

modification of the Strength Pareto Evolutionary Algorithm
SPEA2 [11], where internal processing using Pareto domi-
nance relation is replaced by a general relation. A study given
in [12] has already demonstrated the good performance of
this algorithm for maxmin fairness in comparison to related
extensions of other meta-heuristic algorithms.

Generalized Strength Pareto Evolutionary Algorithm

1) Given is a relation R by a set of pairs (a, b), where
(a, b) ∈ R mans that a is in relation to b.

2) Initialize the population with random allocation vectors
ai.

3) Repeat the following steps for a fixed number of gener-
ations:

4) Compute the performance vectors pi for all individuals
(allocations) ai.

5) For each individual i, compute the R-value Ri, i.e. the
number of other individuals j, for which pi is in relation
to pj (i.e. (pi, pj) ∈ R).

6) For each individual i, compute the S-value Si, i.e. the
sum of the R-values of all individuals j such that pj is
in relation to pi (i.e. (pj .pi) ∈ R).

7) Tournament selection: randomly select two individuals
and keep the one with the smaller S-value. If the S-
values are equal, take any one of the two. Repeat by se-
lecting again a pair and keeping the one with the smaller
S-value. This gives a “mating pair” of individuals.

8) Cross-over: generate a new allocation by randomly se-
lecting assignments from either the first or from the
second individual’s allocation vector.

9) Mutation: with some probability µm, modify each com-
ponent according to a given distribution.

10) The foregoing three steps establish the children for the
next generation. Put children and former population
(parents) together into a new intermediate population.
Compute all performance vectors and R and then S-
values and select the individuals with the smallest S-
values to establish the new generation.

In all experiments, the G-SPEA2 population had 10 indi-
viduals, and the algorithm run for 1000 generations. Before
continuous cross-over, tournament selection was used accord-
ing to the S-value of randomly chosen individuals. Polynomial
mutation was used with mutation distribution index 3 and
probability 0.3.

D. Evaluation and Validation

The feasible spaces of the WCA are rapidly growing,
therefore, knowledge about true maximal elements can only
be achieved in simple circumstances. We also have to note
that a problem, where number of cells and user are similar



TABLE II
ALL ALLOCATIONS OF USERS TO CELLS FOR THE EXAMPLE IN THE TEXT THAT ARE INCLUDED IN AT LEAST ONE MAXIMUM SET OF A RELATION. FOR THE

RELATION NUMBERING, SEE TABLE I.

allocation performance relations

(1 2 1 3) (0.9 0.8 0.6) 1 5 6 7 8 9 10 11 13
(1 2 2 3) (0.2 1.7 0.6) 4
(2 2 1 3) (0.7 1.2 0.6) 1 2 4 5 7 8 9 10 11 13
(3 2 1 2) (0.7 1.2 0.5) 4
(3 2 1 3) (0.7 0.8 1.1) 1 2 3 4 5 7 8 9 10 11 12 13 14 15
(3 2 2 1) (0.1 1.7 0.5) 4

TABLE III
RESULTS FOR G-SPEA COMPETING WITH RANDOM SEARCH. FOR EACH SETTING OF THE NUMBER OF USERS AND CELLS, AND FOR EACH RELATION >r ,

THE THREE CELLS INDICATE (1): THE NUMBER OF RANDOM SAMPLES AMONG 10,000 SAMPLES DOMINATING AT LEAST ONE ELEMENT OF THE MAXIMUM
SET OF THE POPULATION ACCORDING TO >r , (2): THE SHARE OF RANDOM SAMPLES DOMINATED BY THIS MAXIMUM SET, AND (3): THE SHARE OF

RANDOM SAMPLES EITHER DOMINATED BY THE MAXIMUM SET, OR BY A RANDOM SAMPLE THAT IS DOMINATED BY THE MAXIMUM SET.

relation 5 users, 6 cells 5 users, 10 cells 10 users, 20 cells

>mmf 472.3 0.640078 0.865507 96.3667 0.939146 0.997423 33.1333 0.967543 0.999657
>pf 70.9333 0.682005 0.721679 0.2 0.997135 0.999155 0.0 0.998249 0.999456
>opf 8.7 0.996182 0.998071 0.4 0.999777 0.999843 0.0 1.0 1.0
>aopf 87.7333 0.0521839 0.0552662 192.0 0.0917764 0.14455 15.5333 0.00179731 0.00179731
>owa8 528.2 0.580566 0.932439 256.133 0.86352 0.997824 44.4333 0.963234 0.999386
>owa5 754.267 0.588102 0.994326 938.633 0.705407 0.999456 70.6 0.904748 0.998043
>dp 480.9 0.758869 0.939714 145.767 0.89259 0.997036 48.4 0.959097 0.999576
>prod 366.233 0.712679 0.948795 232.033 0.734938 0.995039 60.5333 0.590663 0.946929
>ham 422.733 0.688648 0.943177 1277.5 0.787923 0.966667 3660.87 0.785979 0.9
>luk 491.933 0.792343 0.991931 234.8 0.68755 0.997057 35.5 0.573622 0.956845
>α 343.433 0.296823 0.4343 3.7 0.96802 0.996611 32.7667 0.95834 0.995653
>lm 34.6333 0.995258 0.995258 1.53333 0.99981 0.99981 0.166667 0.999983 0.999983
>av 642.867 0.589617 0.986392 284.067 0.785764 0.998104 24.6333 0.680072 0.970527
>eo 25.5333 0.996482 0.996482 0.6 0.999926 0.999926 0.2 0.99998 0.99998
>lo 21.1667 0.997079 0.997079 1.23333 0.999848 0.999848 0.0 1.0 1.0

establish the harder problems, as optimal states may refer to
permutations of the users. If the number of cells is considerably
larger than the number of users, repeated assignments to users
are needed, and the meta-heuristic search becomes simplified.
The results shown in the next section will base this claim.

However, for evaluating the performance of G-SPEA2 for
the various fairness relations, a suitable measure is the direct
comparison with random search. In this paper, we are focusing
on three related evaluations: after operating G-SPEA2 for a
particular relation from 1 to 15, we also sample 10000 random
vectors. So far, the G-SPEA2 has processed 10 individuals
times 1000 generations, thus 10000 points in the searchspace.
Then, we evaluate how many random points are dominated by
the maximum elements of the evolved population according to
the current relation, and how many random points dominate
that maximum set. In addition, we count how many points are
dominated by either the maximum set of the population, or by
a random point dominated by any element of the maximum
set of the population6. These three measures allow for the
qualification of the success of the algorithm to approximate
the maximum set of the particular relation.

6Note that most fairness relations are not transitive.

III. RESULTS

Table III shows the results of processing G-SPEA2 for
relations 1 to 15 (table I) with the proposed evaluation mea-
sure. For each entry, 30 random instances of a WCA were
generated, and the values show the average of the measures.
For the three table cells given for each relation and problem
dimension, smaller values in the first cell (where the maximum
possible “worst” value is 10000), and larger values in the
second and third cell (values between 0 and 1) indicate a better
performance.

It can be seen that while using the same algorithm, and
relations that represent related concepts of optimality, the
results differ very much. Some observations:

• Judging from the general performance differences, the
problems 5 users, 6 cells appear to be harder then a
problem with 10 users and 20 cells, for example.

• The best results are achieved for ordered proportional
fairness, exponential and linear OOWA. Also lexmin,
proportional fairness, alpha fairness demonstrate better
performance. Notably, these are relations with a rather
high probability of random occurrence (most of them are
even complete relations).



• If we follow the random occurrence argument, maxmin
fairness has rather fair performance (the probability of oc-
currence here falls linearly with searchspace dimension).

• There is only a small difference between the performance
of linear and exponential OOWA. This can be seen as an
indication that there is not much “sharing” between the
single user objectives.

• Despite the simlar concept, the fairness relations based
on using different T-norms differ much in performance.
Especially there is not much improvement in performance
if the number of cells is getting larger than the number
of users. The worst value of nearly 30% dominance by
random point appears for the use of Hamacher T-norm
for the case of 10 users and 20 cells. In general, these
relations do not perform good.

• Relations with a good performance generally show lower
differences between the entries in the second and third
cell, means with regard to dominating states in the
searchspace, they behave more like a transitive relation.

In summary, the most important aspect of the success of
a G-SPEA2 search seems to be the probability of random
occurrence. Note that especially the ordered proportional fair-
ness, achieved by un-sorting the proportinal fairness relation,
thus by applying the third design principle, gives a notable
“boost” in the performance especially for the hard problem, as
it introduces intrinsic parallelism in the search.

IV. SUMMARY

We have considered the meta-heuristic approach to opti-
mization and its four stages: model, optimality, algorithm,
verification, and the fact that the strongest weight was given
to the design of algorithms so far. There, it is understood that
the optimality criterion is already given in advance. However,
on a second glance it appears that none of these stages
allows for a complete entailment of the optimality criterion
that should be used. We have discussed the general idea to
represent optimality by set theoretic relations. In addition to
the “standard” relations > between real numbers and the Pareto
dominance relation, three design principles for the generation
of new relations were presented. While the discussion of the
underlying principles here had to be rather short, just for space
reasons, their formal definitions and application to represent
optimality in a fair distribution of indivisible or elastic goods
should have become clear. In simple words, instead of fixing
a “better” relation and varying the algorithm, we consider the
alternative approach to fix the meta-heuristic algorithm and
to vary the relation instead. The provided experiments clearly
demonstrate the feasibility of this approach, and that there
is no essential difference to the standard approach to design
and modify algorithms. In particular, a design of relations
focussing on their intrinsic parallelism (here-called un-sorting
of a relation) appears to be a means to strongly increase the
general performance of any vector relation.
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