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Abstract— This paper presents a generic fuzzy scheme for
the ranking of multivariate data. The scheme is based on a
comparison function of two numbers. The comparison function
values are fused by a T-norm for all components of two vectors,
giving the comparison values. For each vector in a set of vectors,
the smallest value of its comparison values with all other elements
of the set is assigned to this vector as its ranking value. Then,
all further processing is based on the ranking values alone. As
a suitable comparison function, bounded division is identified.
The application of the scheme to define a color morphology
and an evolutionary multiobjective optimization algorithm is
demonstrated.

I. INTRODUCTION

In several research fields like multi-objective optimization,
color image processing, multi-sensorial fusion, just to name
a few, the need often arises to rank multivariate data. In
general, there is no unique way to achieve this [1]. The most
common approach is to use a scalar function f (~a), mapping
a real valued vector ~a into R, and to sort a set of vectors
~ai with respect to the magnitudes of the function values
f (~ai). However, it can be shown that not all ranking schemes
can be based on this approach. Considering the usage of
fuzzy concepts in such a context might help to overcome this
limitation. The basic idea is to represent a set of multivariate
data by a set of ranking values from [0,1] and to restrict all
further ranking operations to this set. The essential extension
of the scalar function approach here is that the ranking values
can depend on the other elements of the set. These ranking
values, in a fuzzy sense, represent the degrees of any data
value to be of that rank, which it has in the ranking of its
corresponding ranking value among all the ranking values. For
example, selecting the element(s), to which the highest ranking
value was assigned, can be used to expand the maximum
operation to multivariate data.

This approach is considered in more detail in this pa-
per. Section II is considering the fuzzification of the Pareto
dominance relation in general, while section III gives a
ranking scheme for multivariate data, which is based on the
fuzzification of Pareto dominance. Section IV considers two
possible applications of this scheme: the definition of color
morphology operators (dilation and erosion) and the definition
of an evolutionary multiobjective optimization algorithm. The
paper finishs with a short conclusion section.

II. FUZZIFICATION OF PARETO DOMINANCE RELATION

In this section, we will consider approaches to the fuzzifi-
cation of the Pareto dominance relation between two vectors.
For two vectors ~a and~b it is said that ~a (Pareto-)dominates ~b,
when each component of~a is less or equal to the corresponding
component of ~b, and at least one component is smaller:

~a >D ~b ←→ ∀i(ai ≤ bi)∧∃k(ak < bk). (1)

Note that in a similar manner Pareto dominance can be
related to >-relation, depending on the application context.

The subset of all vectors of a set M of vectors, which are
not dominated by any other vector of M is the Pareto set
(also Pareto front). The Pareto set for univariate data (single
objective) contains just the maximum of the data.

There are basically two ways of considering a fuzzy ex-
tension of this dominance relation. The first way is to extend
the logical relation between two vectors ~a and ~b by a (non-
symmetric and monotone) degree function D(~a,~b), which
assigns 0 to the vector pair if ~b dominates ~a, which assigns
1 if ~a dominates ~b, and a value between 0 and 1 if there is
no dominance relation between ~a and ~b. We assume that all
vector components are from [0,1]. Figure 1 gives the set-up of
such a function for the case of vectors of two components (the
rather complex case of vectors of more than two components
will not be considered here). If the two vectors are denoted

0

1

(a,b)

c1

1

T

T

S

S

1/2

d

0

Fig. 1. Specification of a degree function D((a,b),(c,d)) by splitting the
unit square into four areas. For the two hatched areas, T- and S-norms can be
used to define D, as e.g. T ( c−a

1−a , d
b ) for the T-norm expression in the bottom

right area.



by (a,b) and (c,d), then vector (a,b) splits the unit square
into four areas. It can be seen that the degree function is not
continuous at the point (a,b) = (c,d) itself, but it is reasonable
here to make a fixed assignment like D((a,b),(a,b)) = 1/2.
For the bottom left area c ≤ a,d ≤ b the function D has the
unique value 0, and for the top right area c ≥ a,d ≥ b the
unique value 1. For giving an appropriate extension of the
degree function for the bottom right and top left area, we may
use a monotone function g(x,y) mapping [0,1]× [0,1] onto
[0,1] and fulfilling the following two boundary conditions:

g(0,y) = 0
g(x,1) = 1

(2)

Then, g is mapped from the unit square to the rectangle with
corner (a,b) and (1,0) for the bottom right area, and onto
the rectangle spanned by the corner points (0,1) and (a,b)
and rotated counterclockwise by π/2 for the top left area.
While the first property characterizes g as a T-norm in its
first argument, the second property characterizes g as a S-
norm in its second argument. Further studies will consider the
corresponding class of such functions. Here, we will give only
two examples for such functions g:

g1(x,y) =

 T (x,y) : x+ y < 1
1/2 : x+ y = 1

S(x,y) : x+ y > 1
(3)

with T (x,y) and S(x,y) a corresponding pair of T-norm and
T-conorm (or S-norm), or

g2(x,y) =
x√

x2 +(y−1)2
(4)

and g2(0,1) = 1/2. The second definition relates the degree
function to the sinus of the angle 6 (0,0)(0,1)(x,y).

It has to be noted that this is just the definition for the case
of vectors of two components. The extension to vectors of
more components is not straightforward and is making use of
rather complex functions. Also, considering the degree values
within a set of vectors, all dominating and dominated vectors
will not be distinguishable since the degree functions uniquely
assigns 1 or 0 to them.

Therefore, we propose a second way of fuzzifying the dom-
inance relation, which somehow goes halfway the definition
of a degree function that was just given. This is achieved by
skipping either the requirement of D to be 0 in case ~a is
dominated by~b, or by skipping the requirement D(~a,~b) = 1 in
case ~a is dominating~b. Then, vectors dominating other vectors
become comparable according to their degree of dominating
other vectors. How such a degree function can be constructed
and used to rank multivariate (vector) data will be given in
the next section.

III. MULTIVARIATE FUZZY RANKING SCHEME

A generic fuzzy ranking scheme for a set S of multivariate
data (vectors) ~ai with real-valued components ai j and 1≤ i≤N
is presented and studied. The scheme is based on the provision

of a comparison function fx(y) : R×R→ [0,1] and a T-norm.
Then, the following two steps are performed:

1) We compute the comparison values for any two vectors
~ai = (aik) and ~a j = (a jk) by c~ai(~a j) = T ( faik(a jk) |k =
1, . . . ,N) with N the number of components of each
vector.

2) We compute the ranking values for any element ~ai of S
by rS(~ai) = max[c~ai(~a j)| j 6= i].

Then, we consider vectors with lower numerical ranking values
to be on a higher ranking position. For step 2, instead of max
the min operator can be used as well, depending on the ranking
to be favoured in increasing or decreasing order.

Of particular interest are ranking values with the following
three properties:
• Scale independency: if all vector components are multi-

plied by a scalar k, the ranking values will not change.
• Relative ranking values: We consider a ranking between

two vectors ~a and ~b as absolute if the ranking values of
both vectors in any set will always be in the same ranking
relation. If these relation depends on the other elements
of the set, we consider the ranking as set-relative.

• Marginality: If the data are univariate, the ranking value
is lowest for the maximum of the values.

All these properties are fulfilled when the comparison function
is a bounded division

fx(y) =

{
min[x,y]

y : y 6= 0
1 : y = 0

(5)

or

fx(y) =
{ min[x,y]

x : x 6= 0
1 : x = 0

(6)

and the algebraic (or product) norm is used as T-norm.
When we use this function, the comparison values might
have different interpretations, depending on the application
context. Initially, this function has been introduced by Kosko
to compute subsethood degrees of fuzzy sets [7], but it can be
considered e.g. a ”fuzzy dominance” relation as well. Using
bounded division and product norm, the fuzzification of Pareto
dominance relation can be written as follows: It is said that
vector ~a dominates vector ~b by degree µa with

µa(~a,~b) = ∏i min(ai,bi)
∏i ai

(7)

and that vector ~a is dominated by vector ~b at degree µp with

µp(~a,~b) = ∏i min(ai,bi)
∏i bi

(8)

Note that the definitions differ in the denominator and thus
are not symmetric: ”dominating by degree µ” and ”being
dominated by degree µ” have different fuzzy values. For
~a Pareto-dominating ~b, µa(~a,~b) = 1 and µp(~b,~a) = 1, but
µp(~a,~b) < 1 and µa(~b,~a) < 1. Figure 2 gives a numerical
example for the fuzzy Pareto dominance considered here.

This ranking scheme is obviously scale-independent, and it
will become the algebraic norm max or min if N = 1, thus it is
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a marginal operation. It also fulfills the requirement for being
a set relative ranking. It can be shown that there is no scalar
function of vector components of one vector at all, which will
give the same ranking of the vectors of a set M. This can be
shown by a simple counterexample.
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Fig. 3. Counterexample: no scalar function of P components can give the
same ranking as the proposed FPD ranking.

Consider figure 3. We assume, that there is a scalar function
f , which gives the same ranking as the fuzzy ranking scheme.
If we take the set of three vectors {(1,10),(9,2),(10,1)}, the
vector with lowest ranking value is (1,10). If we take the set
{(1,10),(2,9),(10,1)}, the vector with lowest ranking value
will be (10,1). If there would be such an f , it has to be
f (1,10) > f (10,1) from the first case, but also f (1,10) <
f (10,1) from the second case. This is a contradiction, hence
there is not such a f . The ranking value of P2 strictly depends
on the set of points, to which the vector belongs.

IV. APPLICATIONS

A. Color Morphology

In color image processing, the ranking scheme can be
used to extend the definition of dilation and erosion to color
images, thus it bases other operations of color mathematical
morphology as well [2][3][10][5]. A color image is usually
given by a mapping I of a set B = {0, . . . ,w−1}×{0, . . . ,h−
1} into a set of feasible color values C. The color values
are related to a color space. Here, we are considering the
intensity-based technical color space RGB, with each color
component red (R), green (G) and blue (B) taken from the
set {0, . . . ,cmax} (usually cmax = 255). The mapping can be
written as I(x,y) = (r(x,y),g(x,y),b(x,y)) where (x,y) ∈ B is the
so-called image coordinate, and the image function I assigns
a three-valued vector to each image coordinate (the pixel).

In the image processing discipline of Mathematical Mor-
phology, this definition is extended by the so-called structuring
element (SE) (see [8] and [9] for an comprehensive introduc-
tion into mathematical morphology). The SE is given by a
neighborhood operator that assigns a set of image coordinates
to any pixel. Commonly used neighborhoods are the four (or
eight) direct neighbors of a pixel in the image domain. Then,
the goal is to define an operation that selects one out of the
neighboring pixels and replaces the color value of the pixel
itself with the color value of the selected pixel from the SE.
Thus, a color image I1 is transformed into a color image I2. If
the selection from SE is based on some ranking concept, the
corresponding operation is called a dilation or erosion. There
are different proposals for extending dilation and erosion for
grayscale images to color images.

The proposed fuzzy ranking scheme can be used to define
various morphological operations, different from the ones
proposed so far. We have to distinguish between the two
choices for the bounded division and the ranking order, thus
yielding four different operations. For the operations described
in Table I, a = (ai) and b = (bi) refer to two color vectors that
have to be compared (i ∈ (r,g,b)) and S to the set of neighbor
pixels of a. The terms ”active” and ”passive” in the names
of the operations should indicate that either the degree of a
dominating b (active) or the degree of a being dominated by
b (passive) is considered.

TABLE I
DEFINITIONS FOR COLOR MORPHOLOGIES BASED ON THE PROPOSED

FUZZY RANKING SCHEME.

Operation fai (bi) ca(b) rS(a) selection

active erosion max[ai,bi]
ai

∏i fai (bi) minS\a[ca(b)] argmax

active dilation min[ai,bi]
ai

∏i fai (bi) maxS\a[ca(b)] argmin

passive erosion min[ai,bi]
bi

∏i fai (bi) maxS\a[ca(b)] argmin

passive dilation max[ai,bi]
bi

∏i fai (bi) minS\a[ca(b)] argmax

In Table I it can be seen how different these operations
behave, as e.g. in the dominance case. To consider the active
dilation as an example: in case a is (max)dominated by any
b from its neighborhood, a will never be selected. If all



components of a are smaller or equal than the components
of b, ai ≤ bi, then for all i fai(bi) = 1, giving ca(b) = 1 and a
has the ranking value rS(a) = 1. This is the highest possible
value for a ranking value, so the selection by argmin will
never select a (at least b has a ranking value below 1). The
same can be seen for the other three definitions. Here is, in

(a) (b)

(c) (d)

Fig. 4. Application of active erosion onto color Lena image: (a) original
image; (b) result of active erosion applied with nearest neighbors as SE; (c)
difference between (a) and (b); (d) positions, for which active erosions selects
different than the argmin of the sum of color values r +g+b.

summary, the sequence of steps that are performed for any
image coordinates (x,y) in order to apply any of these four
operations:

1) Select all neighbours of (x,y) by the SE. The RGB color
values of all the neighbours comprise the set S.

2) For each a ∈ S compute all comparison values ca(b) for
any b ∈ S\a.

3) From the set of all comparison values for a derive the
ranking value rS(a) of a.

4) Select the a from S according to the selection criteria
(argmin or argmax of the ranking values). In case there
are more than one a with the same maximum (or
minimum) ranking value, select by an additional criteria
(as the highest/lowest sum of components).

5) Assign the color value of the selected pixel at position
(x,y) in the result image.

As an additional operation mode, the subset of all dominated
vectors can be removed in advance. Figure 4 shows the result
of applying active erosion on the standard Lena image, and
compares the result to the original and the scalar-function
based ranking (i.e. from the neighborhood the color value with
the smallest sum of r,g and b is selected, see introduction
section).

B. Evolutionary Multiobjective Optimization

In this subsection, we will show how the fuzzy ranking
scheme easily extends a standard genetic algorithm to the
multi-objective case.

In multiobjective optimization, the optimization goal is
given by more than one objective to be extreme. Formally,
given a domain as subset of Rn, there are assigned m functions
f1(x1, . . . ,xn), . . . , fm(x1, . . . ,xn). Usually, to solve an multiob-
jective optimization problem, the Pareto set of non-dominated
solutions has to be approximated by the heuristic search
procedure.

We may use the dominance degrees of eq. 8 to rank the set
M of multivariate data (vectors) given by the fitness values
of a multiobjective optimization problem. Each element of
M is assigned the maximum degree of being dominated by
any other element of M, and the elements of M are sorted
according to the ranking values in increasing order:

rM(~a) = max
~b∈M\{~a}

µp(~a,~b) (9)

Note again that this definiton is related to a set. A ranking
value of ~a within M can only be assigned with reference to a
set M containing ~a.

By sorting the elements of M according to the ranking val-
ues in increasing order (FPD ranking, FPD for Fuzzy-Pareto-
Dominance), we obtain a partial ranking of the elements of
M.

From the definition of the ranking scheme, it can be seen
that an individual has two ways to reduce its comparison
values: by increasing the objectives (thus increasing the de-
nominator in the comparison values), or/and by being larger
in some components than other vectors, i.e. being diverse from
other vectors. Thus, both goals of evolutionary multi-objective
optimization are met: to approach the Pareto front, and to
maintain a diverse population.

The foregoing discussion leads to the (Fuzzy-Dominance-
Driven) FDD algorithm, a Genetic Algorithm (GA) variant that
employs the fuzzy ranking values of the fitness values (rep-
resented as vectors in case of multiobjective optimization) for
defining selection operators. The algorithm and its components
can be seen in fig. 5.
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Fig. 5. Schematic view of FDD algorithm.

FDD maintains four pools of individuals:
• Population: contains n individuals as in standard GA.



• Mating Pool: Contains individual pairs that were selected
for crossover operation.

• Habitat: This pool is composed of individuals from other
pools and used to replace the population of generation n
by generation n+1.

• α-Set: In this pool, all non-dominated individuals are
collected. This pool also gives the output of the FDD
algorithm.

After random initialization of the population, the FDD al-
gorithm iteratively repeats the following steps until a stopping
criteria (number of generations, size of α-Set) is met:

1) Rank population by FPD ordering of fitness vectors of
the individuals in the population (see section 1).

2) Select best individual a from the ranked population (one
individual with lowest ranking value) and conditionally
add it to the α-set. Adding a to the α-set is only possible,
when fitness of a is not dominated by the fitness of any
individual already in the α-set, and if fitness of a is not
equal to any individual’s fitness there. In case a is added,
all individuals in the α-set with fitness values dominated
by fitness of a are removed from the α-set.

3) Add best pn of population individuals, according to FPD
ordering ranking values, to the habitat (0≤ p≤ 1).

4) Select (1− p)n pairs from population by tournament
selection, using ranking values of the ranked population
for tournament decision (lower ranking value counts
better), and put these pairs into mating pool.

5) Apply crossover and mutation to the individuals of the
mating pool, and add these newly created individuals to
the habitat as well.

6) Replace population by habitat.
The FDD algorithm acquires non-dominated (with respect to

their fitness values) individuals in the α-set. In an evolutionary
sense, those ”FDD Pareto Set” approaches the Pareto front of
the multiobjective optimization problem under study.

The algorithm has been verified by using test function
MOP6 from the set suggested by Coello Coello [4].
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Fig. 6. Location of individuals in α-set after 2000 generations of FDD
algorithm for MOP6 problem.

The FDD was tested against random search algorithm. The
performance was measured as follows:

1) Let FDD run for k generations and take the fitness values
of the α-set as set M1.

2) Select k× n random domain values (with n the num-
ber of individuals of FDD algorithm) and compute all
corresponding fitness values, giving set RM2.

3) Compute the Pareto set M2 of RM2.
4) Compute the set M3 of elements of M2 that are not

dominated by any element of M1.
The relation of |M1| to |M3| gives a measure how FDD
performs against random search.

MOP6([4], p. 111) is defined as follows:

F = ( f1(x,y), f2(x,y))

where

f1(x,y) = x

f2(x,y) = (1+10y) ∗

∗
[

1−
[

x
1+10y

]α

− x
1+10y

sin(2πqx)
]

(10)

with 0≤ x,y≤ 1 and the paramter choices q = 4 and α = 2.
FDD was applied to this problem, with the following

configuration:
• x and y values were encoded into bitstrings of size 40,

with 20 bits for binary representation of each number.
• Population size was 50, with keeping 20 (p = 0.4) best

from former generation in each new generation. The 20
best were selected by FPD ranking.

• Mating pool was obtained by tournament selection of
60 individuals according to FPD ranking. Two-point
crossover was used, as well as bitwise one-point mutation
with probability of 0.01.

TABLE II
PERFORMANCE OF FDD AGAINST RANDOM SEARCH. M1 IS THE SET OF

NON-DOMINATED FDD INDIVIDUALS AFTER n GENERATIONS, M2 THE SET

OF NON-DOMINATED INDIVIDUALS FOUND BY RANDOM SEARCH, AND M3

THE SUBSET OF M2 THAT IS NOT DOMINATED BY ANY INDIVIDUAL OF M1 .
LISTED ARE AVERAGE VALUES OF SET SIZES AFTER 10 FDD RUNS. AFTER

ABOUT 100 GENERATIONS, FDD OUTPERFORMS RANDOM SEARCH.

Generations |M1| |M2| |M3|
20 5.0 11.5 10.6
50 9.7 15.3 11.2
100 32.2 22.4 7.2
200 69.4 30.8 5.2
1000 411.2 122.0 0.0

Figure 6 gives the α-set fitness values of a FDD run after
2000 generations. The gray areas underlying the plot gives
the range of MOP6 function values and were computed by
Monte Carlo method with 5×107 test points. Note that fig. 6
only shows a part of the complete range of MOP6, containing
the Pareto front. The α-set clearly has approached the Pareto
front of the test problem. To illustrate the implicite niching of
the FDD algorithm, fig. 7 shows the Pareto fronts of MOP6
problem, as approximated by the FDD algorithm and with



higher values of q (where the value of q equals the number of
different connected components of the Pareto front).

Table II shows the decrease of size of set |M3| (the randomly
found individuals that are not dominated by any individual in
the α-set) towards 0.

V. CONCLUSION

A generic fuzzy scheme for the ranking of multivariate
data has been presented. The basic approach was to provide a
fuzzification of the Pareto dominance relation. The approach
to extend the logical relation itself was shown to be hard to
handle and gives raise to a new class of functions, behaving
like T-norms in some arguments, and like S-norms in other
arguments. Instead of this, the scheme considered in this
paper is based on a comparison function of two numbers.
The comparison function values are fused by a T-norm for
all components of two vectors, giving the comparison values.
For each vector in a set of vectors, the smallest value of its
comparison values with all other elements of the set is assigned
to this vector as its ranking value. Then, all further processing
is based on the ranking values alone. As a suitable comparison
function, bounded division is identified. The application of
the scheme to define a color morphology and an evolutionary
multiobjective optimization algorithm has been demonstrated
and shortly discussed. However, other applications are possi-
ble. Current studies consider the usage of the fuzzy ranking
scheme in feature-based database retrieval. Here, the schema
can be evoked to select probes from the most similar datasets.
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