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Abstract
The segmentation of image objects by humans has
recently been modelled as a two-step process by the
BCS/FCS model of Grossberg. First, regions of
homogeneous greyvalue distribution or with similar
texture patterns are recognized. Second, these regions are
progressively grown until they fill-in the whole scene or
image. Object boundaries are defined when growing
regions with different characteristics meet. In this paper,
we use this approach in texture segmentation. We show,
that the marker-controlled segmentation based on the
watershed transformation is best suited for implementing
this model. In order to generate appropriate marker and
edge images for a wide variety of input images, we
present the texture segregation/region growing approach
which extends the conventional feature classification
approach of texture analysis.

1. Introduction

Texture segmentation is a long-termed research field in
image processing [hara85, vangool85, rao90]. Texture
refers to the subjective impression of the appearance of a
surface structure. There is strong evidence, that human
recognition is based on the evaluation of textural
information. However, sensor devices like CCD cameras
do not recognise textures as such, they only sense the
magnitudes of physical properties like brightness and
color. It is the task of image processing algorithms to
detect the uniform distribution of physical properties
over connected regions of a surface which appear as
"textures.'' The physiological mechanisms leading to
this impression are still unresolved. However, the
concept of feature classification gives a handsome tool
for the emulation of perceptual perceivement abilities.

Since the early days of computer vision, the feature
classification approach has become the essential texture
analysis technique for the treatment of images of textured
surfaces. The key steps of the feature classification
approach are  Image Acquisition, Preprocessing, Feature
Calculation, Feature Selection and Feature Classification
[hara73, hara85].

Main research fields are the search for well-suited texture
feature calculation methods and the design of appropriate
classification techniques. Since the upcoming of Soft
Computing at the end of the 80's, intelligent techniques
have been introduced to apply the feature classification
approach to a growing class of surface textures.

New inspirations for improving the feature classification
approach came from biology [hulle89, hulle92, toll92]
especially from the work maintained by Grossberg and
his Boundary/Feature Contour Systems or BCS/FCS
model [gross85, gross93, gross89].

The BCS model is based primarily on psychophysical
data related to perceptual illusions. Its processing stages
are linked to stages in the visual pathway: LGN Parvo-
>Interblob->Interstripe->V4. The BCS model generates
emergent boundary segmentations that combine edge,
texture, and shading information. The BCS operations
occur automatically and without learning or explicit
knowledge of the environment. The system performs
orientational decomposition of the input data, followed
by short-range competitive and long-range cooperative
interactions among neurons. The competitive
interactions combine information of different positions
and different orientations, and the cooperative
interactions allow edge completion. The BCS has been
shown to be robust and has been successfully used in
different real applications like: processing of synthetic
aperture radar images, segmentation of magnetic
resonance brain images, and segmentation of images of
pieces of meat in an industrial environment.

The FCS is complementary to the BCS, and is a model
for invariant brightness perception under variable
illumination conditions. This is achieved by using
monocular preprocessing and featural filling-in.

In the language of the feature classification approach, the
BCS/FCS model extends the whole approach by the
inclusion of a second kind of image information, the
edge information. However, the Grossberg approach has
two main drawbacks. The first drawback is that it is
completely model-driven. The BCS/FCS model makes
use of neuron dynamics modelled by differential
equations. The second one, as a consequence of the first
one, is the large processing time. For the adaptation of
model data to image data, iterative procedures are used.
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Improvements of the Grossberg approach concentrated
on the simplification of the processing equations to
reduce processing time [vidal93, ruiz95]. However, the
experiences of the application of the feature classification
approach have seldom been used to improve the
Grossberg approach.

In the scope of this paper, a framework is presented
wherein the Grossberg approach is revised and which is
capable of segmenting arbitrary two-dimensional
textures. The essential modification is to make the
Grossberg approach data-driven. This allows for the
application of Soft Computing tools. The modifications
are, in summary:

• The model-driven attribute assignment to certain
loci of the visual field is replaced by the calculation
of texture features in texture windows.

• The uniform approach of edge detection used by
Grossberg (mainly based on Gabor filtering) is
replaced by an arbitrary edge detection operation.

• The feature region growing, which is controlled by
edge intensities in the image, is modelled in the
Grossberg approach by a diffusion process. This is
replaced by a marker-based watershed transformation.

All together the proposed approach follows the
Grossberg paradigm but implement it with different,
more efficient algorithms.

The following sections give some considerations about
the revisions of the Grossberg approach mentioned
above and present the application of the new framework
for texture segmentation. The paper is organized as
follows. Section 2 gives an overview of the presented
texture segregation / region growing (TS/RG) approach.
The revisions of the Grossberg approach are detailed and
discussed in section 3. Section 4 recalls the definition of
watershed transformation and proposes a modification of
it, which allows for the use of the watershed
transformation as a substitute for the diffusion step in the
Grossberg approach. Before concluding, we illustrate the
TS/RG approach for segmenting textiles and inner-tube
socket scenes.

2. The texture segregation/region growing
(TS/RG) approach for texture segmentation

The TS/RG approach for texture segmentation is mainly
based on the feature classification approach. A diagram
summarizing the proposed TS/RG approach is presented
in figure 1. The following definitions are used:

Texture segregation: The process of assigning texture
class numbers as labels to every pixel of a texture
window. It is assumed that all pixels of a texture
window belong to only one texture class.
Texture segmentation by region growing: The
process of assigning a texture class to every pixel
position in a texture image. This is quite different from
texture segregation. A texture window is classified by
means of features calculated from the pixel's greyvalues
in the window. No further knowledge is given whether
all pixels belong to the same texture class or not. The
task of segmentation is to provide these additional
information by other means. It is performed by means of
a region growing procedure (see section 4).

Image acquisition

Preprocessing

Texture segregation Edge detection

Label image Edge image

Texture segmentation by region growing

Segmented image

Figure 1: The texture segregation/region growing
approach for texture segmentation.

3. Label and edge image generation

For the application of our approach, a label and an edge
image need to be found. The label image is the result of
the feature classification framework. For feature
classification, the image is divided into texture
windows. From the greyvalues of the texture window,
textural features are computed. Many methods for the
computation of textural features have been proposed so
far. These methods, which are model-driven, can be
divided into some main groups, to name a few:
statistical features (including the well-known statistical
features of the co-occurrence matrix), frequency-domain
based features (e.g. Fourier descriptors), Gaussian
Random Field features (e.g. Markov processes, Gibbs
fields), fractal features (e.g. Hausdorff dimension,
lacunarity), and features derived from Wavelet and Gabor
decomposition.

Classifiers for the features are standard ones: minimum
distance classifier for simple problems, Bayesian
classifier or multilayer backpropagation neural networks
for complex textures. A Bayesian classification with
multiple self-organizing maps (one for every feature
class) was proposed by one of the authors [bieb96].



Also, an approach based on a supervised variant of the
ASSOM [koho95a,b] was proposed by two of the
authors [ruiz96b, ruiz97].

The generation process of the label image can not solve
an important problem in texture segmentation, the
positioning of texture boundaries. Texture windows are
positioned within the image due to a fixed recipe. Due
to varying image contents, they can be "misplaced" in
some manner, e.g. they may contain a texture boundary.

One approach would be to define new texture classes for
texture windows containing more than one texture. This
is an ill-posed approach, due to at least one reason.
Consider the classification of a sequence of texture
windows. The first window contains texture A only, the
last window texture B only. In the sequence, every
window contains a decreasing amount of texture A and
an increasing amount of texture B. When does the
classifier "switch'' its recognition from class A to class
B? Sure, it is not the "Half-A-Half-B" case. The features
of different clusters may not be "neighbours" in the
feature space, and the linear change of texture amount
may not result in a linear change of the corresponding
features. Even misclassifications are possible. Hence, the
texture windows containing texture boundaries can not
be expected to be a compact class suitable for
classification. Also, the more texture classes are given,
the harder it is to train a classifier.

The second image is an edge image used for
constraining the filling-in of the pre-labelled regions.
The intensity value of a pixel of the edge image
corresponds to the strength of the edge information at
this point (see [mart72, marr80] for edge detection
approaches).

4. Watershed transformation

The watershed transformation [beuch82] stems from
mathematical morphology [serra82, serra88, soille98].
For a detailed description and implementation issues,
refer to [meyer90, beuch93, soille90, vinc91, serra94].

For watershed transformation, the edge image is
considered as a topographic surface, the greyvalue of a
pixel standing for its elevation. Now, let a drop of water
fall onto such a topographic surface. According to the
law of gravitation, it will flow down along the steepest
slope path until it reaches a given minimum. The whole
set of points of the surface whose steepest slope paths
reach a given minimum constitutes the catchment basin
associated with this minimum. The watersheds are the
zones dividing adjacent catchment basins.

In the TS/RG framework, the label image is
preprocessed in such a way that image minima
correspond to texture segments. Segment opening is the
morphological operation of opening applied to one
segment only. Repeating this process for all segments
and unifying the results, one gets the required
preprocessing of the label image. A comprehensive
algorithm refered to as emergent opening of all segments
assigns value 0 to all pixel positions, where the dilation
and erosion of the image with a structuring element
differ, and the common value of dilation and erosion to
all other pixel positions.

The reason for this preprocessing is as follows: the
watershed transformation is applied only onto regions of
the image, where the emergent opening of all segments
results in greyvalue 0. All other positions have got a
texture class assigned from the foregoing segregation.
The "cleared" regions are that of uncertain class
membership. The decision about class membership is
made by the watershed transformation by looking for
segments that grow into these regions, but their
growing is under control of the intensities of edges.

Figure 2: Segmentation of a textile image with
four texture regions.
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This is the main advantage of the watershed
transformation. Naturally, texture boundaries may be
represented by image edges or not. If there are only
virtual texture boundaries, the region growing is not
controlled by edge intensities, the regions grow until
they meet the catchment bassin of another minima.
However, these is a boundary too! Due to its virtual
nature, there is no further evidence for the texture
boundary. On the other side, if there are many edge-like
structures in the image, they may influence the growing
of regions. But an edge which is not a texture boundary
has segments of the same label on both sides. When
both catchment basins meet on top of this edge, they
will not constitute a watershed, because both catchment
bassins belong to the same minima (as marked in the
label image). Hence, only relevant edges, laying on
texture boundaries, constitute real watersheds.

5. Examples

To prove the texture segmentation abilities of the
presented framework, some examples are given in the
following. In figure 2, the segmentation of a textile
image is shown using the proposed approach. For

segregation, four texture classes have been defined. From
40 texture windows of size 20x20 pixels per class, 14
co-occurrence feature were computed and a multilayer
backpropagation neural network (14 input neurons, 16

Figure 3: Segmentation of an inner-tube socket 
hidden neurons and 4 output neurons) was trained for
20,000 generations.

The trained neural network was used to segregate the
image, thereby generating the label image. The edge
image was generated by the application of standard
image processing operations (Gabor filtering with a
mask with 45 degree orientation and size of 7 pixels to
suppress the small line-like structures, and morpholgical
gradient with a structuring element of size 7x7 pixels to
improve the edge contrast). After that, the label image
was preprocessed by emergent opening of all segments
with a structuring element of size 7x7 pixels, and the
watershed transformation was applied resulting in the
segmented image of figure 2.
The extensibility of the presented approach can be seen
from the example of figure 3. The image is taken from a
sewage pipe scene. It shows a socket from a
perpendicular view. The task is to segmentate the socket
scene into its three relevant segments (socket region,
wall region and intermediate region). Here, segregation
is performed by a simple histogram-based clustering of
greyvalues. The image histogram of its greyvalue
distribution is separated into its three peaks. This is
done automatically by a simplified variation of the

watershed transformation [soille96]. For the edge image,
a morphological gradient of size 7x7 pixels was used.
The preprocessing of the label image is equal to the one
used in figure 2. This segmentation approach is part of a

ne with three segments (wall, border & socket).



superposed approach to automatization of sewage pipe
inspection, as presented in [ruiz95, ruiz96a, loh94].

Concluding Remarks

A new approach for texture segmentation, the texture
segregation/region growing approach, was proposed. It
is based on a combination of the standard feature
classification approach and the watershed transformation.
In order to apply the marker-based watershed
transformation, an edge image and a label image have to
be generated. Therefrom, the approach is quite similar to
the BCS/FCS model of Grossberg. However, it
modifies the BCS/FCS approach by making some
replacements. The FCS part is replaced by the feature
classification approach which results in image
segregation. Texture classes are used as labels for the
pixels contained in the texture window. The BCS part
is replaced by either edge operator. This is possible due
to the robustness of the watershed transformation against
missing or irrelevant edges within the image.
Alltogether, the watershed transformation, which
replaces the filling-in, is used as a marker-based one, i.e.
the minima are assigned before the transformation starts.
The markers are taken from the label image after this is
processed by the emergent opening of all segments
operation. Two examples among a lot of succesfull
applications of the framework are given.
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