
Comparative Study on Meta-Heuristics for Achieving Parabolic Fairness in Wireless
Channel Allocation
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Abstract—We present the results of a comparative study on
the design of meta-heuristic algorithms for achieving parabolic
fairness in wireless channel allocation. Wireless channel al-
location (WCA) is a basic problem of fair distribution of
indivisible goods, in this case the allocation of channels to
users in a wireless schedule. Parabolic fairness represents
a state that coincides with maxmin fairness in fair end-
to-end user traffic rate allocation. This state can also be
represented by maximization of a special case of the ordered
weighted averaging operator. The related task then is to find an
algorithm to approximate that maximum value for the WCA as
close as possible. Here, several heuristic approaches are taken
into account: a simple annealing heuristic, its integration into
an Iterated Local Search (ILS) and also the integration of ILS
as local search of a memetic algorithm. The comparison gives
that best results can be achieved by the ILS, with up to 2-
3 times improved performance compared to other algorithms
and for practically relevant problem dimensions.
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I. INTRODUCTION

Recently, for the design, control and utilization of data
and communication networks and distribution of network
resources, the awareness for aspects of economics is rapidly
increasing. One reason for this can be seen in growing
demands in response to expanded opportunities of network
services. The natural consequence here is the need to share
limited resources in an efficient manner. In this context,
the common paradigm of global optimality often becomes
infeasible, esp. in circumstances where subjective valuations
interfere with abstract objective measures of network perfor-
mance. This can refer to situations where users are virtually
exempted from resource access for the “sake of global
optimality.” Economics is offering a rich palette of con-
cepts (like envy-freeness, Pareto stability, utility, prospect,
fairness, equity) to avoid or circumvent such situations,
but the offer of practical tools to achieve such goals is
rather limited. For example, with regard to equity, we could
consider fair division “cake cutting” concepts to allocate
traffic rates in a wired network and end-to-end user traffic
under link-capacity restraints, but this approach needs to
specify utilities for each user and each traffic rate. Usually,

there is neither the opportunity, nor the time to question all
users about their opinion about a traffic rate, and also, it
might be hard for a human to assess fine-grained numerical
values. But without these values, equity cannot be achieved.
Similar problems arise for other related concepts. A notable
exception here is the allocation of traffic rates by the
Bottleneck Flow Control algorithm (BFC) [1]. The final
state achieved by this algorithm can be characterized in
several ways. With regard to uniqueness, the algorithm gave
raise to the definition of maxmin fairness, and also it is
known to maximize the minimal rate allocated to any user.
Recently, another unique characterization of the final state
of the BFC algorithm, called parabolic fairness, has been
introduced [2]. There, it was shown that a functional value,
calculated from user traffic rates alone (i.e. without reference
to the link capacities) exists, which is maximized by the
BFC allocation, and that there is no other rate allocation
with a larger or equal value. The function is a special
ordered weighted averaging operator with anti-ordered and
exponentially increasing weights - expOOWA for short. For
above mentioned traffic rate allocation problem, the state
with maximum expOOWA value is exactly the maxmin fair
state. This allows for a convenient extension of the concept
of “BFC-fairness” to other domains, by direct function
maximization and without the need to provide a logical
counterpart for other logical concepts of the BFC algorithm
like link capacities and the procedure of “flooding.”

Traffic rate allocation is sharing of an (infinitely) dividable
resource, and also, traffic rates can be directly manipulated.
Many other problems in networking do not show this charac-
teristic, and we rather find individable resources to share, and
performance measures that cannot be directly manipulated.
These problems are usually of discrete and combinatorial
nature. The allocation of carrier channels to mobile agents
for wireless network access can be seen as a basic problem
here, since it represents the essential combinatorial aspect of
a number of recent challenging problems for the operation
of wireless networks. Currently, IEEE 802.16j task group is
working on relay-based multi-hop wireless access standards.
Also here, the major aspect that influences efficiency is
a combinatorial task of relay station allocation to mobile



agents (cooperative relaying) together with modality choices
for the relays (whether amplify-and-forward or decode-and-
forward mode), and sub-carrier allocation to mobile agents
in OFDMA, i.e. all facets of distribution of indivisible
goods. But then, they also mix with “traditional” continuous
optimization problems like power allocation to stations with
regard to achievable SNR and relay placement, often under
QoS or territory constraints, and we can define an endless
number of constrained optimization problems (see [3] for a
nice introduction).

The Wireless Channel Allocation problem (WCA), where
the focus is on the task of assigning channels over a number
of time slots to mobile agents (“users”) and by fusing
the various infrastructure and physical aspects of channel
transmission for each user, timeslot and channel into a
single numerical value, a so-called channel coefficient, has
already gained some attention, and several approaches have
been proposed. Examples include the use of bidding or
auction systems [4], payment systems, we find related game-
theoretic approaches, or approximations to maxmin fairness
[5]. However, the direct application of such concepts to
network configuration and operation remains a challenging
task. Therefore, here we focus on the more direct approach
to define a computable criterion for efficient manipulation
represented by parabolic fairness and the corresponding
expOOWA maximization. In [6] it was already investigated
how parabolic fairness fits into the frame spanned by other
well-studied fairness relations like maxmin fairness, lex-
imin fairness, or proportional fairness. However, exhaustive
search of all possible allocations to find the maximum
state(s) for such relations becomes impossible even for
smaller problem scales due to combinatorial explosion, and
also here, exact and tractable algorithms are not yet known.
This is a good chance to study the use of heuristic and
meta-heuristic approaches in more detail. In [6], a simple
annealing heuristic based on properties of the expOOWA
was already presented, with some chance to achieve good
results, but also some risk to “drift away” from the true
maximum state. Here, we want to consider the option to
wrap this heuristic into a conservative framework algorithm,
and study several design alternatives, in particular Iterated
Local Search and Memetic Algorithms.

This paper is organized as follows: next section will
recall the needed concepts and definitions. In Section III
the various design alternatives of a meta-heuristic approach
to parabolic fairness are studied. Corresponding results are
summarized in Section IV.

II. TERMS AND CONCEPTS

A. Wireless Channel Allocation

In Wireless Channel Allocation, a blank matrix B of
channel-timeslot pairs with a total of M cells bi, a set
U = (ui) of N users and an M ×N matrix C of channel
coefficients of real values from [0, 1] are given. The task is

to enter at most one user into each blank cell in B, i.e. to
provide an allocation a : B → U of cells to users with
|{u ∈ U | a(b) = u}| ≤ 1 for all cells b ∈ B. Each entry
cij of the matrix C represents the utility for user ui in case
of assignment of cell bj , as a model abstraction of all the
physical and logistic circumstances of the wireless access.
For a given allocation a, the performance for each user is
given by

p(ui) =
∑

j,a(bj)=ui

cij (1)

i.e. the sum of channel coefficents for all channels allocated
to the same user. Channel allocation has to be performed
such that, in some sense, all users are “satisfied” with their
individual performances as good as possible. The actual
problem is to specify the meaning of “satisfied” in an
efficient way. For example, considering maximization of the
sum of all performances is not a good way to satisfy all
users: the optimization problem could be easily solved by
selecting for each cell one of the users with a maximal
channel coefficient. But this way it can happen that then
some users will never get any channel allocated, and these
users are exempted from wireless access. Therefore, the
economics of WCA becomes relevant, especially aspects of
fairness.

B. Parabolic Fairness

Within the feasible domain of all end-to-end user traffic
rate allocations in a network with link-capacity constraints
(i.e. linear inequality constraints), the maxmin fair state
is characterized such that for each user getting better off
there is at least one other user, already equal or worse
off, that must become even more worse off. This state of
traffic rates can be achieved by the BFC algorithm. In [2]
it was shown that this state can be exactly characterized by
the maximization of a special ordered weighted averaging
operator. In general, if there is a set of n real numbers xi

with i = 1, . . . , n and a set of n real-valued weights wi, and
if (i) as a sub-script indicates the i-th smallest element of
an ordered set, then the ordered-ordered weighted averaging
operator is defined as

OOWAw(x) =
∑

i

w(i)x(n−i+1) (2)

which means that we compute a weighted average of the x-
values where the largest value is weighted with the smallest
weight, the second-largest value with the second-smallest
weight etc. For representing the maxmin fair state for any
set of link-capacity constraints, it is necessary and sufficient
that the weights also increase exponentially, i.e. the sum
of the i-th smallest weights is smaller than the (i + 1)-th
weight. In this case, we use the notation expOOWAw(x).
A convenient choice for the weights is wi = 2(i−1).

Parabolic fairness then is the transfer of this concept of
maxmin fairness to other domains in the sense of analogy, as



the literature style of a parable does, by imposing expOOWA
maximization as the means of efficient state allocation.
Then, if we consider the user’s performance vector, we can
introduce a concept of maxmin fairness in the WCA problem
as well.

C. Annealing Heuristic

In [6] also an annealing heuristic for maximizing the
expOOWA value of a WCA problem was studied, which was
based on mathematical properties of the expOOWA operator.
For a given allocation, two modifying operators where tested
whether their application fulfills a given condition. If the
condition is fulfilled, the modification is accepted. Even in
case the criterion is not fulfilled, with a small annealing
probability it is accepted as well. Otherwise it is rejected.
The two operators and their conditions are:

1) the REPLACE operator, where for a given allocation
of users to cells, a random cell will be selected and
its assigned user replaced with a randomly selected
different user. If the average of the performances
of both users will not decrease, and the absolute
difference will decrease, the REPLACE is accepted.

2) the SWAP operator, where we select two cells with
different user allocation at random, and swap their user
allocation. If this increases the performances for both
users, the SWAP will be accepted.

D. Iterated Local Search

Iterated Local Search (ILS) is a recent meta-heuristics that
utilizes a local search to handle the optimization problem at
hand. The ILS concept is a generic one, as it needs only
to specify the so-called “local heuristic” and a modality
of its repeated application. Assume we have such a local
heuristic that gets stuck into a local optimum after a number
of steps. Often it is observed that instead of increasing the
number of iteration steps it is more efficient to restart the
algorithm from a different initial position in the search space,
but keeping the same (smaller) number of iterations. This
observation became a rule for the ILS: after applying the
local heuristic for a number of iterations, a new starting
point is derived, and the local heuristic is started again.

One feature in this regard that distinguishes ILS from
e.g. stochastic hillclimbing is the iterated application of the
local search, i.e. it first modifies the currently known local
extremum, then modifies the modified one etc. Thus, the
algorithm has a better chance to progress much further in
the searchspace, depending on the probability that a better
solution is nearby known good solutions.

Thus, the efficiency of this algorithm can vary strongly,
depending on configuration settings. However, the high
genericity and flexibility, easy implementation and set up,
and also successful application especially for combinatorial

optimization problems makes ILS a good and straightfor-
ward candidate algorithm to “wrap” the formerly studied
annealing heuristic.

E. Memetic Algorithms

Memetic algorithms refer to a family of meta-heuristic
search algorithms, where an evolutionary or other population
based approach (like swarm intelligence) is enhanced by
integrating a separate individual (particle) learning or local
improvement procedure (local search). The most simple case
here is the addition of local search for better solutions by
each parent in a genetic algorithm. ILS an be used as such
a local search procedure.

III. ALGORITHM DESIGN EXPERIMENTS

Often, results of the application of heuristic or meta-
heuristic algorithms are not predictable, or only rough
bounds can be specified, and are known to be sensitive to
parameter settings and to algorithm configuration. So the
question about a good approach can usually be answered
only experimentally. Here, we will follow a procedure to
design a good meta-heuristic for maximizing the expOOWA
operator for a random set up of a WCA problem, in order
to find a fairmost allocation of channels to users. The
annealing heuristic will be integrated into an ILS, and the
best performing ILS configuration then will be integrated
into a memetic algorithm.

A. Configuration of Iterated Local Search

We recall that we are considering two local modifications,
REPLACE and SWAP. If a random modification fulfills
an indicator criterion, the modified solution (here a user’s
allocation to channels) is accepted. If not, it is usually re-
fused, but with some probability (the annealing probability)
it might be accepted as well.

We will formally indicate a configuration of ILS as
ILS(n + m, N, p1, p2) with the meaning: the Local Search
is composed of n-times application of REPLACE with
annealing probability p1 and m-times application of SWAP
with annealing probability p2. After n + m applications,
the solution with the highest expOOWA value replaces
the former maximum solution. Then, this Local Search is
iterated N times.

Different settings for these values were tested for the
WCA problem with 10 users and 12 cells. Each time, the
ILS algorithm was tested on 30 random instances of the
WCA problem, and the values of the ILS were set such
that the total number of samples remained constant (i.e.
N(n + m) = 10, 000) to allow for a fair comparison.
We took the set up ILS(5000 + 5000, 1, 1, 1) as “master
configuration” and divided the performance of the other
ILS variants by the performance of this ILS (for each
random instance of the WCA separately). This ILS is in
fact not an ILS but the plain application of SWAP and
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Figure 1. Results for various configurations of Incremental Local Search
(ILS). See text for the meaning of algorithm formulas.

REPLACE without any repetition of the Local Search, and
without annealing. The results can be seen in the boxplots
in Fig. 1. There, the y-axis value 1 corresponds to the
ILS(5000 + 5000, 1, 1, 1) performance.

The first observation are strong differences in performance
for various settings. In more detail, we can see:
• ILS using SWAP only perform rather weak (last three

box plots in the figure), while ILS with REPLACE only
(boxplots 2, 4 and 5) perform better than the master
ILS.

• ILS with SWAP only performs (slightly) better when
using annealing (here the value 0.2 in boxplot 8).

• ILS with REPLACE only perform better for smaller
number of Local Search iterations (boxplot 5 shows
the drop in performance when increasing this number
from 10 steps to 100).

• The annealing has no notable influence on the per-
formance for ILS using REPLACE alone (compare
boxplot 2 and 4).

• While using SWAP heuristic alone is deteoriating per-
formance, mixing it with REPLACE gives an increase
in performance (boxplots 1 and 3).

From this comparison, we can see that a set up of ILS
as ILS(5 + 5, 1000, 0.2, 0.2) is giving best results for the
application of ILS.

B. Memetic Algorithm

As mentioned before, we can try to even further increase
performance by integrating the ILS into a Genetic Algorithm
(GA) as local search procedure. However, also here, we
can consider different ways of doing such an integration.
Formally, a GA can be seen as population based search,
starting with a random initial configuration of Np parents.
Then, from parents, the same number of children is gen-
erated by application of genetic operators, usually (fitness-
related) cross-over and (contingent, i.e. fitness-independent)
mutation, and from the union of parents and children, after
another evaluation by the specified fitness function, the Np

best individuals are selected to become the next parent
generation. So, the “formula” for a standard GA can be
written in operator notion as parents + children(parents)

to specify the construction of the pool from which the
individuals of the new generation are selected.

If we integrate another operator, called memetic() we
have to specify which pool undergoes the local search, and
how it is combined with the other operator results into the
selection pool. Then, we can consider the following 5 more
relevant modifications:

Mode 1: parents + children(memes(parents))
Mode 2: parents + memes(parents)
Mode 3: parents + memes(par.) + children(par.)
Mode 4: parents + memes(children)
Mode 5: memes(parents) + children(parents)

For example, in Mode 1 we apply ILS to the parents, and
then the standard GA operators in order to generate children,
which are combined with the parents into the selection pool.

Also here, we apply the different versions of the memetic
algorithm to random instances of the WCA problem for 10
users, 12 cells, in each case repeating 30 times. The ILS
was the one showing best performance in the experiments
that were performed before, i.e. ILS(5 + 5, 1000, 0.2, 0.2).
There were no changes applied to the GA parameters itself:
Np = 10, using tournament selection and polynomial
mutation with exponent 2.5. The number of iterations was
set in a manner to ensure that each modification in total
evaluates 11010 positions in the search space (note that
this odd number comes from the fact that each modality
evaluates a different number of individuals, and also to make
sure to have integer values for the number of evaluations).

Corresponding boxplots are shown in Fig. 2(b), after di-
viding the maximum value of the exponential OOWA found
in corr. memetic mode with the maximum value yielded
from applying the standard GA. Then, figure 2(a) shows
the same for 1101 evaluations of search space positions
(i.e. about 100 generations). The evaluation of this result
is rather simple: all modifications perform much better than
the standard GA (about 1.5 times), but the differences among
them are rather minor. Only mode 1 seems to evolve more
slowly towards the maximum value than all other. A slight
advantage can be seen for mode 4, where the memetic search
is applied to the children only. In lack of any stronger
distinguishing criterion, we will go ahead with this modality
of the memetic algorithm.

C. Algorithm Comparison

As a result of the foregoing subsections, we consider
the set up ILS(5 + 5, 1000, 0.2, 0.2) as local search in the
memetic algorithm parents+memes(children) (gails) and
want to compare the performance of this algorithm with the
“standalone” ILS (ils), the GA without ILS (ga) and also
with random search (rand). All four algorithms were tested
on random instances of the WCA problem for 10 users and
12 cells, 10 users and 30 cells, and 30 users, 50 cells. The
base performance (value 1.0) was computed by using the
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Figure 2. Boxplots of performances achieved for the various modes of integrating ILS into GA.
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Figure 3. Comparison of performances for increasing problem dimension, in each sub-figure from left to right: GA, ILS, and random search performances,
each divided by the performance of GA with imputed ILS.

memetic algorithm gails. Again, 30 random instances of the
WCA problems were tested in each case.

The results can be seen in Fig. 3. Some observations:
• The memetic algorithm gails does not perform better

than ils. An even slightly better ils performance can be
observed for increased problem scale.

• The standard GA is always outperformed by gails, and
providing about 0.7 times smaller maximum values of
the expOOWA.

• For smaller problem dimension, ga is even closer to
random search, but “matures” from random search for
larger problem dimensions. The related observation:
random search becomes highly inefficient for larger
problems.

In summary, whether used alone or in combination with a
GA, the most efficient approach as a meta-heuristic appears
to be the ILS. An explanation of the weaker performance
(or better lack of any notable improvement) of gails might
be seen in problems with the encoding of an allocation
into an individual and the corresponding “large jumps”
in search space as an effect of the application of genetic
operators. While testing the ILS, it was obvious that the
SWAP heuristic, affecting TWO positions, already gave a
strong drop in performance, compared to the REPLACE
heuristic, affecting only ONE position. A related simple ex-
periment not reported here in detail confirmed the tendency
of performance decrease when affecting more and more
positions in an allocation. We think that the GA operators
are doing exactly this, affecting several positions, and this
is resulting into a rather weak performance that is not fully

captured by the more sophisticated interplay of the genetic
operators.

D. Other Evaluations

Finally, having found that an ILS using 5 REPLACE and
5 SWAP, both with annealing probability 0.2 is giving the
most promising performance values, we want to see a few
other aspects of using this algorithm. One aspect is related
to potential real-time use of the algorithm. We want to
consider the trade-off between number of iterations (N ) and
performance loss by using a smaller number of evaluations.
This is shown in Fig. 4 for the same problem dimensions as
in the foregoing section, and repeated 30 times, but using
only 10, 100, and 1000 iterations of Local Search.

The base value 1 here is the performance after 10,000
iterations. It can be clearly seen that for all problems, nearly
the same performance is already achieved after 1000 itera-
tions, so from practical point of view the remaining 9000
iterations do not really provide a gain in performance. The
question whether 100 iterations might also suffice is related
to an estimated 10% drop in performance (but note that in
none of these cases we know the exact maximum value, as
the huge size of the search spaces forbids any attempt of an
exhaustive evaluation). In any case, 10 iterations will never
provide a suitable performance, except a few “lucky” cases
for the smaller problem size.

Finally, we want to investigate the question if all these
evaluations are related to the use of parabolic fairness at
all. Figure 5 shows a similar comparison of performances
of ga, gails, ils and rand, i.e. for 10 users, 12 cells, but
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Figure 4. Illustration of progress of ILS for 10, 100 and 1000 local evaluations vs. 10000 evaluations for increasing problem dimension.

using the minimum performance of a user in an allocation
as the fitness function that we want to optimize. Also here, it
seems that ils alone performs best, and also nearly same as
gails, but there are two notable differences: (1) the extreme
value of minimal ils performance can be 0! This refers to
allocations that do not contain some of the users, and cannot
be easily repaired by the local heuristics, if more than one or
two users are not appearing in the allocations. On the other
hand, from only comparing the minimum performances,
there is no guidance towards allocations including more
users. In comparison, changing allocations always affects
the value of the expOOWA numerically, and when using
this measure, the algorithm can escape this “trap.” (2) The
performance of standard GA is very likely that of a random
search. Also here, the explanation is the same: the leximin
measure does not acknowledge changes apart from the user
with minimum allocation, and a heuristic search is prevented
from progress. This small experiment also confirms the
better suitability of parabolic fairness with regard to heuristic
search guidance.

IV. CONCLUSIONS

In this paper, we have investigated various designs for
meta-heuristic algorithms to approximate the parabolic fair-
ness state in Wireless Channel Allocation. The optimiza-
tion goal here is to maximize a special ordered weighted
averaging operator, called expOOWA. Focus was given to
the stepwise integration of simpler heuristics into meta-
heuristics. As a result, in a hierarchical sense, a plain an-
nealing heuristics alone appears to be incapable of handling
this optimization task, while its integration as local heuristic
into an Iterated Local Search algorithm then performs better
than the annealing heuristic, as well as the integration of
the ILS itself into a memetic algorithm. We can confirm the
good performance of an ILS using a smaller number of local
steps (here 10), along with a rapid approximation already
within 100-1000 iterations of the local search for technically
relevant problem scales. Note that this is a general results
since we did not make any specific model assumptions
for wireless transmission. The necessary continuation of
this work is the study of further opportunities of parabolic
fairness and related expOOWA maximization under limited
knowledge of the current network situation.
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Figure 5. Comparable result for using leximin relation instead of the
expOOWA (same order as in Fig. 3).
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