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M. Köppen, Ch. Nowack, G. R¨osel
Department of Pattern Recognition,

Fraunhofer IPK-Berlin
Pascalstr. 8-9, 10587 Berlin, Germany

Abstract

This paper presents an approach to the generaliza-
tion of grayscale morphology to color images. Attain-
ing such a generalization is strongly related to the is-
sues of multivariate ranking and to the Pareto sets of
multiobjective optimization. Some ranking schemes for
multivariate data are recalled. For color morphology,
the most important underlying ranking scheme is re-
duced ordering (also referred to as total ordering). Also,
there is the partial ordering, which gives the impor-
tant class of Pareto-Morphologies. Since partial order-
ing by Pareto sets commutes with reduced ordering, a
so-called Pareto-Morphology is defined as a general-
ized multivariate morphology, for which the results will
not change, when its computations are restricted to the
Pareto set of the (local) neighborhood of a pixel. By fur-
ther applying the concept of fuzzy subsethood to color
values, a Pareto-Morphology can be designed, which is
not based on reduced ordering, hence providing a man-
ner for native color treatment. The properties of this
newly-proposed Fuzzy-Pareto-Morphology and exam-
ples of its application for the processing of color textile
images are given.

1 Introduction

Mathematical morphology can be considered as a theoretical
and practical means for analyzing spatial structures. It com-
prises a versatile toolset of techniques for image processing,
whose usefulness has been proven for the processing of bi-
nary images and grayscale images as well. Operations of
mathematical morphology are image-to-image transforma-
tions based on a structuring element, which acts like a probe
sensitive for structural information. As a result of the opera-
tion, some image features might be enhanced, suppressed or
preserved [10].

Basically there are two morphological operations, dilation
and erosion, which are used for the definition of more com-
plex morphological operations. Nowadays, definitions of di-
lation and erosion are fixed for the treatment of binary im-
ages and grayscale images. Other concepts includes the gen-
eralization of these basic definitions, considering aspects like
higher dimensions or fuzzy logic (consider e.g. [2][6][9]).

However, requirements for a generalized dilation as an

image-to-image operation, which employs a structuring el-
ements, are still discussed. As suggested in [8], there should
be three key ideas, based on which the dilation is defined1:
an idea of ranking due to a sort order; an idea of a supre-
mum due to this ranking; and the possibility of admitting an
infinity of operands.

This paper deals with the definition of dilation (and ero-
sion) within the context of color image processing. The fun-
damental lack of a “natural sort order” of multivariate data
and the numerical differences due to the choice of different
color spaces make it hard or even impossible to define some-
thing like a “color morphology.” But it could be expected
to transfer a large number of grayscale morphological tech-
niques to color images.

Very few past work dealt with such extensions. In [4], the
issue was intensively discussed and a definition of a color
morphology was presented, which will be generalized in this
paper as belonging to a larger class of color morphologies,
each of which is based on its own unique definition of the
dilation operation. In [3], a color morphology for the pro-
cessing of label images, i.e. images, wherein each pixel po-
sition is labeled by a color, indicating e.g. class membership,
is proposed. This approach is very useful for the morpholog-
ical treatment of e.g. classification and segregation results,
but it lacks some consistency within its basic definitions and
it assumes only a few colors to be present within the image.

In general, attaining a multivariate or color morphology
is strongly related to the issues of multivariate ranking and
to the Pareto sets of multiobjective optimization. The fun-
damental classification of ranking schemes for multivariate
data was given in [1]. For color morphology, the most im-
portant underlying ranking scheme is reduced sorting (also
referred to as total ordering). The approach of [4] belongs
to this class. Also, [1] considers the partial ordering. This
gives a new class of multivariate morphologies. Since par-
tial ordering by Pareto sets commutes with reduced order-
ing based on monotonic scalar functions, a so-called Pareto-
Morphology is defined as a generalized multivariate mor-
phology, for which the results will not change, when its com-
putations are restricted to the Pareto set of the (local) neigh-
borhood of a pixel. As stated, multivariate morphologies

1Generally, when the definition of a dilation is fixed, the erosion is de-
fined as the complementary operation.



based on reduced ordering partially belong to that class.
The core of this paper presents a new Pareto-Morphology

for multivariate data (including color images), which is tru-
ely not based on reduced ordering, comprising a more “na-
tive” treatment of color images. It is based on the concept
of fuzzy-subsethood, as introduced by [7], and the notion
of maxmin/minmax-operations as possible extensions of the
“one-dimensional” maximum operation, what was not seen
by Barnett in his seminal paper as an approach to multivari-
ate ranking [1].

This paper is organized as follows. Section 2 guides to the
definition of the newly-presented Fuzzy-Pareto-Morphology
(FPM). There, some requirements are given for generalized
dilation operations, the concept of a Pareto set is recalled,
Pareto-Morphology is defined and discussed, the definition
of fuzzy subsethood is recalled and finally, the definition of
the FPM is given. Then, in section 3, the FPM is discussed.
Some of its properties are given, and its relation to the re-
quirements for a generalized dilation is considered. Section
4 presents other operations, which could be defined on base
of the fuzzy-subsethood concept as well. Section 5 presents
examples of fault detection in color textiles to demonstrate
the usefulness of the newly-presented approach. The paper
ends with a short summary, an acknowledgment and the ref-
erence.

2 Fuzzy-Pareto-Morphology

2.1 Requirements for a generalized dilation

Be p : Dp � Z2 �! f0; : : :; pmaxg
3 a two-dimensional color

image function, withDp its domain, usually a rectangular
subset of the plain, andpmax the maximum intensity value for
one color channel. The chosen color space should be fixed in
the following. Bea andb structuring elements, e.g. defined
as a set of offsets witha;b� Z2 and with respect to a central
point. Thus, a structuring element defines a neighborhoodM
for each pixel of the image. Then, a generalized dilation�
will assign a new color valuepnew for each image position
(x;y) by means of its defining set functionP : M � U !
m2 U, with U a suitable superset of the neighborhood, as
follows:

pnew(x;y) = P �fp(k; l)jk= x+ i; l = y+ j ; i; j 2 ag:

The followingrequirements are considered to be important
for a generalized dilation operation� for color images:

1. The dilation should be vector-preserving, i.e.P should
just select one color value out of the setM of color val-
ues within the neighborhood of a pixel. This is quite
important for the processing of color images, due to the
fact, that newly introduced colors within the result im-
age might appear as artifacts or cluttering. This require-
ment could be relaxed by using the HSI color model
and preventing only the introduction of new H compo-
nents.

2. A generalized dilation should be an increasing opera-
tion, i.e.

p�a� p;

where the meaning of� is according to the key idea
of sorting, as it was mentioned in the introduction. It
could also be said, that a dilation commutes with the
supremum.

3. When�B assigns standard binary morphology, the gen-
eralized dilation should be compatible with this opera-
tion, i.e.

(p�a)�b= p� (a�B b):

4. In the context of multivariate data, a generalized dila-
tion should become a standard grayscale dilation, if the
definition ofP is restricted to the one-dimensional case.

2.2 Multivariate ranking

In order to fulfill requirements 1 and 2, the concept of rank-
ing n values should be extended to the ranking ofn vec-
tors. In [1], ordering principles were classified into four cate-
gories: marginal ordering, reduced ordering, partial ordering
and conditional ordering. Only marginal ordering, reduced
ordering and partial ordering can be used in order to define
the set function of a generalized dilation. An example for a
generalized dilation based on marginal ordering is given by
applying a one-dimensional set functionP component-wise:

P �f(px; py; pz)g = (P �fpxg;P �fpyg;P �fpzg):

However, marginal ordering would produce new color values
within the result image, thus for color images violating the
strong requirement 1.

By reduced ordering (also called total ordering), a scalar
parameter function is computed from the vector components
of each color value withinM. The ranking is performed ac-
cording to the resulting scalar values. This could be e.g.

P �f(px; py; pz)g= argmax
p2M

(px+ py+ pz);

with the scalar functionf (x;y;z) = x+ y+ z. This ap-
proach was used in [4] for defining a generalized morphol-
ogy for color images. Either functionf could be used, e.g.
f (x;y;z)=max(x;y;z) or f (x;y;z)= xy�z. It fulfills require-
ments 1, 3 and, according to the definition of f also require-
ment 4. Its relation to the requirement 2 will be discussed in
the next subsection.

The essential point here is the intrinsic transformation of
the color image to a single-channel image by taking the val-
ues of the scalar function at each image point. Then, the dila-
tion could be applied to this channel image as well. Reduced
ordering does not relate the color values within a structural
neighborhood. It assigns the ranking value toeach color in
before-hand. Every result achieved from this approach could
be achieved from a grayscale image (derived from the scalar



values of f ) as well. Color morphology based on reduced
ordering merely becomes grayscale morphology.

The third ranking scheme, partial ordering, differs from
marginal and reduced ordering by possibly selecting more
than one value out of the set of the unsorted values. Partial
ordering iteratively strips off subsets of the data set, until the
remaining set is empty. A common choice for a set function
P is the convex hull of the data set. In order to use partial
ordering for generalizing dilation operations, an additional
procedure has to be specified for selecting exactly one value
out of the set of the stripped off subsets.

There is a comparable problem in the field of multiobjec-
tive optimization. Recent approaches here make use of the
concept of a Pareto set [5]. If two vectors~a and~b are to be
compared, it is said that~a dominates~b, when each compo-
nent of~a is at least as large as the corresponding component
of~b, and at least one component is larger:

~a >D
~b  ! 8i(ai � bi)^9k(ak > bk):

The subset of all vectors, which are not dominated by another
vector, is the Pareto set (also Pareto front). We consider the
subset operatorP, which assigns the Pareto set to a set of
vectors.

The Pareto set describes the possible solutions of a mul-
tiobjective optimization problem. According to the prob-
lem statement, every solution, which gives an element of the
Pareto set, when its multiple criteria are computed, is optimal
in this generalized sense.

2.3 Pareto-Morphology

The concept of partial ordering based on the Pareto sets al-
lows for a reformulation of requirement 2, in order to have a
better specification of what is meant by�. If P is a mono-
tonic increasing scalar function used for a reduced ordering,
it gives the same results if this reduced ordering is applied
first and the Pareto set is computed then (the Pareto set of a
onedimensional data set is simply its supremum), or if the
reduced ordering is applied to the Pareto set first and the
supremum is selected then. With other words, in this case,
the Pareto operatorP commutes with the reduced morphol-
ogy.

Hence, the operatorP comprises a natural extension for
the basic idea of dilation operations to be operations which
commute with the supremum to the multivariate case. Re-
quirement 2 is now formulated as follows:

The result of the dilation must not be dominated by its origi-
nal value.

:9p : p >D p�a:

A generalized dilation is said to fulfill the Pareto property, if
its set functionP gives the same result for a neighborhood
M, if restricted toP(M).

Every morphology derived from a generalized dilation
with the Pareto property is referred to as Pareto-Morphology.

If the parametric functionf is non monotonic, the reduced
ordering may violate the Pareto-property. As an example,
consider f (x;y) = sinπ

2x+ sinπ
2y and its valuesf (1;1) =

2; f (2;2) = 0 and f (1;3) = 0. While the Pareto set is given
with f(2;2); (1;3)g, the supremum point select byf (x;y) is
(1,1).

At this point, the important question comes up, whether
there exists a Pareto-Morphology, which is not based on re-
duced ordering. The next two subsection will give the answer
to this intriguing question.

2.4 Fuzzy subsethood

Generally, a fuzzy set is given by the membership degrees of
its elements

M = (µ1;µ2; : : :;µn)

According to the fuzzy set approach of Kosko [7], fuzzy
sets could be considered as points in then-dimensional unit
square (or unit cube) by using the membership degrees as
coordinates. If the parallels to the coordinate axis are drawn,
a hyperrectangle is segregated. Hence,each fuzzy set corre-
sponds to a hyperrectangle in the unit square. Figure 1 shows
two two-dimensional fuzzy sets. This geometric interpreta-
tion of fuzzy sets guides to a redefinition of subsethood of
fuzzy sets. Initially, a fuzzy setA was considered as a subset
of fuzzy setB, if for all membership valuesai � bi is ful-
filled. Kosko extended the concept to degrees of subsethood,
hence fuzzifying subsethood itself. This degree is derived
geometrically from the hyperrectangles assigned to the fuzzy
sets. It equals the ratio of the volume of the intersection of
both hyperrectangles to the volume of the container hyper-
rectangle. Thus, even the whole set is a subset of each of its
“crisp” subsets to a certain degree2.
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Figure 1: Fuzzy sets as points in the unit square.

Fuzzy subsethood can be used to define a new ranking
scheme, which does not belong to one of the four categories
of Barnett [1]. At first, we consider maxmin operations of
the kind

argmax(min(~f (p))

2This was considered as fuzzy foundation of probability by Kosko.



and
argmin(max(~f (p)):

If ~f is the identity operation, which preserves the vectorp,
both definitions, employed as a ranking scheme, would not
lead to a new ranking scheme. While the minmax version
would violate the dominance relation, the maxmin version
merely is a reduced ordering. The parameter function here is
the distance to the main diagonal of the unit cube, wherein
the vectorp resides.

However, when~f is derived from fuzzy subsethood de-
grees of onepi within the set of otherpj , the resultant rank-
ing scheme is neither marginal nor reduced ordering. More-
over, it allows for the design of a generalized dilation. This
will lead to the Fuzzy-Pareto-Morphology.

2.5 Fuzzy-Pareto-Morphology

Finally, we can give the definition of the FPM. If the neigh-
borhoodM of a pixel is given byn pixels with color values
xi j with i = 1; : : :;n and j = 1;2 or j = 1;2;3 3, then the set
operationP is given by:

P � argmin
i

�
max
k6=i

∏ j min(xi j ;xk j)

∏ j xi j

�
: (1)

The dilation of FPM is derived from this set function, which
gives the replaced supremum value of a neighborhoodM of a
pixel. The accompanying erosion is given as the complement
of this operation according to the set function:

P � argmax
i

�
min
k6=i

∏ j min(xi j ;xk j)

∏ j xi j

�
: (2)

The FPM could be considered as a kind of competition
among the color values mapped from a pixel by the mask
M. The color values are considered as fuzzy sets4. Actually,
they are fuzzy sets by the extension principle. The member-
ship values indicates the degree, by which they are “white.”
Each color value enters into the competition by the maxi-
mum degree, by which it is a subset of other color values.
Each color value, which is dominated by another color value,
goes with the maximal possible value 1 into the competition.
The winner of the competition is the one with the minimal
maximum value. From this, it can be easily seen, that this
definition comprises a Pareto-Morphology as well.

Some remarks about the definition:

� If one of thexi j is 0, the fraction is not defined. In this
case, the corresponding parts of nominator and denom-
inator should be neglected, hence performing the com-
petition “one dimension below.” The question, whether
it is useful to neglect the corresponding parts of other
arguments of the maximum operation, wherein the di-
vision by zero occurred, will be left open in this paper.

3For the purpose of illustration, sometimes only two color-channels will
be considered

4The color components should be scaled to the[0;1] interval in before-
hand.

� It is useful to restrict the derivation of the terms in equa-
tion 1 to different values ofp, i.e. neglecting multiple
occurrences of the same color value inM.

� The value in equation 1 depends on the chosen color
model. This can not be prevented, for there will be no
ranking independent of the color model. In some cases,
several color values will give the same values (e.g. a
neighborhood in an RGB-image with one point red, one
point blue and one point green). From this, the argmin
operation becomes ambiguous. This is no contradic-
tion, because the approach does not prefer any one of
the basic colors. In this case, a fixed arrangement of
colors has to be taken as resultant color value, or a ran-
domly chosen one.

3 Properties of the FPM

From its definition, FPM is a Pareto-Morphology, because,
as it was just remarked, all dominated points goes with value
1 into the competition for the minimal value of the maximum
subsethood degree to all other points. The winner will be an
element of the Pareto set.

The FPM isnot a reduced ordering. This is the most im-
portant property, because it establishes FPM as a native color
operation instead of a grayscale image processing based one.
In order to proof this, consider figure 2. We assume, that
there is a parameter functionf , which gives the same rank-
ing as the FPM ordering scheme given with equation 1. If
we take the three points (1,10), (9,2) and (10,1), the selected
point by FPM is (1,10). If we take the three points (1,10),
(2,9) and (10,1), the selected element will be (10,1). But,
both sets have two points in common, which exchange their
ranking. If there is such anf , it must bef (1;10)> f (10;1)
from the first case, but alsof (1;10)< f (10;1) from the sec-
ond case. This is not possible, hence there is not such af .

For a better understanding of this fact, one has to consider,
what is finally selected by the ordering scheme of FPM. It
is the most “unusual” color value in the context of the other
color values. The “strengths” of each color value is influ-
enced by the presence of other color values. So, the alternat-
ing points (2,9) and (9,2) in the example just given, weaken
the “strengths” of the color values, to which they are nearby,
in the competition.

Nevertheless, for exactly two points it will be a reduced
ordering. The parameter function for ordering is the prod-
uct of the components ofp, as follows from examining the
expression of equation 1 for this case:

argmin
f1;2g

�
∏ j min(x1 j ;x2 j)

∏ j x1 j
;

∏ j min(x2 j ;x1 j)

∏ j x2 j

�
:

However, both nominators are equal, hence the selection is
equal to

argmax
f1;2g

 
∏

j
x1 j ;∏

j
x2 j

!
;
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Figure 2: Counterexample for reduced ordering.

i.e. the product of components is the scalar functions needed
for a reduced ordering.

FPM reduces to grayscale morphology, ifeach point is a
scalar value. This follows directly from the Pareto property,
because the Pareto set in the one-dimensional case has just
one element, the maximum value. Because FPM selects from
the Pareto set, itmust take the maximum. This is the set
functionP of grayscale morphology.

Compatibility with binary morphology, i.e. requirement
3, is not generally fulfilled by FPM. Due to the following
property of the Pareto set operatorP

P(A[B) = P(P(A)[P(B)) � P(A)[P(B)

for two setsA andB, the Pareto set by itself is compatible.
But, the ordering scheme could select different values.

To see, that FPM not necessarily selects the same value,
consider the structuring elements given in figure 3. Because
the left structuring elements contains two points, FPM is re-
duced ordering by the product of the components, as it was
just mentioned. This means, the consecutive application of
both structuring elements would select the color value with
the largest product of its components out of the four positions
covered by the structuring element on the right side of figure
3. But then, the FPM would be a reduced ordering accord-
ing to the product of elements for four points, too! We just
gave an example for three points for this to be impossible5.

5For the fourth point, choose one which is dominated by one of our ex-
ample, as (1,9) or so.

This demonstrates the fact, that FPM is not compatible with
binary morphology.

+ ++

+ =

Figure 3: Counterexample for binary compatibility.

However, it is compatible in a practical sense. The chance
of taking two different values out of the Pareto sets low-
ers with the number of elements of the Pareto set. The
more “structure” is within the image, the smaller the Pareto
sets will be. Violations of compatibility will become rare
for cases, for which morphological image processing is in-
tended. Random image parts, without any structure, will
have large Pareto sets. But here, the actually taken color
value by FPM ordering scheme will not be such important.

4 Other operations

Based on the concept of fuzzy subsethood, other operations
for color image processing can be designed. Some examples
will be given in the following:

� A color threshold operation can be defined, for which
the result image is not a binary but a grayscale image.
Given p= (px; py; pz), the grayvalue at each image po-
sition with color valuev is the degree of subsethood of
the color valuev in p.

� A fuzzy color image subtraction operation of two
images p1 and p2, by which the degree of fuzzy-
subsethood of the color value ofp1 in the correspond-
ing color value inp2, multiplied by the original color
value, is assigned to each image position.

This is important for e.g. the definition of the morpho-
logical gradient in FPM. In grayscale morphology, the
morphological gradient is the difference of dilated and
eroded image by the same structuring element. How-
ever, simply subtracting two color values would intro-
duce alien color values in the result image. By replac-
ing subtraction with the mutual fuzzy subsethood oper-
ation, this could be prevented6.

With this operation, edge operators from grayscale
morphology can be extended to color values.

� The selection scheme of equation 1 actually computes
values, for which the argument leading to the minimal
value is taken as result. However, the minimal value
itself can be taken as a grayvalue, and a grayscale image
can be constructed this way (the so-called M-image).
These operation may support the processing of color
images by the newly proposed FPM.

6Multiplying all components of a color value by the same scalar gives a
physiologically similar appearing color.



Examples for using these operations are considered in the
next section.

5 Examples

Our motivation to develop a suitable color morphology came
from the processing of colorized textiles. Instead of a gen-
eral procedure for processing either kind of a textiled sur-
face, it was decided to provide a toolset of operations, by the
combination of which complex problems could be solved.
From grayscale texture analysis, mathematical morphology
is well known to comprise such a toolset. Hence, this ver-
satility should be preserved for a color morphology. In the
following, some examples are given for the application of
the FPM in order to solve visual inspection tasks.

Example 1 (see figure 4) demonstrates the detection of
blots in a colorized texture. Figure 4a gives the original im-
age part7. Figure 4b shows the result of FPM dilation with
a structuring element of size 3� 3, figure 4c the result of
applying this operation twice, figure 4d for applying it three
times in a sequence. Figure 4e gives the M-image of the third
dilation, clearly indicating the blots.

Example 2 demonstrates the detection of a (synthetic) mis-
aligned pattern on a textured background. Figure 5a is a part
of a textile surface with a misalignment, figure 5b a similar
region, but with correct alignment, used as reference. For
both images, the morphological gradient by using FPM is
computed (figures 5c and 5d), and the fuzzy subtraction is
applied to the gradient images. The result is given in figure
5e, proving a clear indication for a misalignment.

In figure 6, the detection of thread faults in a color tex-
tile is demonstrated. The structural property of the thread’s
horizontal orientation is used by the FPM. The structuring
element is a vertically oriented mask of size 7. If opening,
i.e. dilation followed by erosion, is applied with this mask,
the thread “vanishes.”

Figure 7 gives two examples for the color threshold op-
erator, as defined in the last section, and demonstrates the
different treatment of different structures in the same image
by using two different color values as such “thresholds.”

6 Summary

In this paper, the Fuzzy-Pareto-Morphology (FPM) was pro-
posed and its relation to general issues of color morphol-
ogy was intensively discussed. Past theory of multivariate
ranking defined four classes of multivariate ranking schemes,
among them the class of reduced ordering (or total order-
ing) can be used for designing a color morphology, which
is vector-preserving, i.e. which will not introduce new
color values into the result image. Also, the concept of the
Pareto set of multivariate data sets gives a means for replac-
ing the supremum, which is used in grayscale morphology.

7The arrow is just for marking the fault, but it is processed as well.

A class of generalized morphologies, the so-called Pareto-
Morphologies, was proposed, which includes generalized
morphologies based on reduced ordering by a monotonic
ordering function. A generalized morphology is a Pareto-
Morphology, if its result does not change, when its compu-
tations on the pixel neighborhood are restricted to the Pareto
set of this neighborhood of a pixel. This property extends the
usually required property of a dilation to commute with the
supremum.

The question, whether there is a Pareto-Morphology,
which is not based on reduced ordering, got a positive an-
swer with the proposal of the FPM. In order to design the
FPM, the concept of fuzzy subsethood of fuzzy sets within
other fuzzy sets was applied to color values.

The advantage of the FPM of being not based on reduced
ordering is the more native color treatment of color images.
It was shown, that FPM is vector preserving, too, and that
it becomes the standard grayscale morphology, if it is con-
sidered for the case of one-dimensional data. However, the
requirement of compatibility is not fulfilled for structureless
(noisy) images.

Other operations can be designed, based on the FPM (e.g.
opening, closing, morphological gradient), or based on the
concept of fuzzy subsethood (fuzzy subtraction of two im-
ages, color value “thresholding”). Also, intermediate results
of the computations of FPM can be re-used as new image
processing operators (like the M-image).

The FPM’s and its accompanying operation’s versatil-
ity for solving complex color image processing tasks was
demonstrated by some examples, which were taken from the
field of color textiles fault detection.

Currently, we are studying the interplay of different color
spaces with the FPM outcome, and the adaptation of the
scalar function of reduced ordering based morphologies to
the color appearance in a textile image.
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