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Summary. Data clustering is concerned with the division of a set of objects into groups of
similar objects. In social insects there are many examples of clustering processes. Brood sort-
ing observed in ant colonies can be considered as clustering according to the developmental
state of the larvae. Also nest cleaning by forming piles of corpse or items is another example.
These observed sorting and cluster capabilities of ant colonies have already been the inspira-
tion of an ant-based clustering algorithm.

Another kind of clustering mechanism can be observed in flocks of birds. In some rain-
forests mixed-species flocks of birds can be observed. From time to time different species
of birds are merging to become a multi-species swarm. The separation of this multi-species
swarm into its single species can be considered as a kind of species clustering.

This chapter introduces a data clustering algorithm based on species clustering. It com-
bines methods of Particle Swarm Optimization and Flock Algorithms. A given set of data
is interpreted as a multi-species swarm which wants to separate into single-species swarms,
i.e., clusters. The data to be clustered are assigned to datoids which form a swarm on a two-
dimensional plane. A datoid can be imagined as a bird carrying a piece of data on its back.
While swarming, this swarm divides into sub swarms moving over the plane and consisting
of datoids carrying similar data. After swarming, these sub swarms of datoids can be grouped
together as clusters.

1 Introduction

In nature a swarm is an aggregation of animals as, e.g., flocks of birds, herds of land
animals or schools of fishes. The formation of swarms seems to be advantageous
to protect against predators and increase the efficiency of foraging. To maintain the
structure of the swarm, each swarm-mate behaves according to some rules as, e.g.,
keep close to your neighbors or avoid collisions. Even mixed-species flocks (i.e.,
multi-species swarms) of birds can be observed in nature [10].

Data clustering is concerned with the division of data into groups (i.e., clusters)
of similar data. If a single species is considered as a type of data, then a multi-
species swarm can be considered as a set of mixed data. The rules of the presented
Data Swarm Clustering (DSC) algorithm divide this multi-species swarm of data into
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several single-species swarms consisting of similar data. This way a data clustering
is performed. Each single-species swarm represents a cluster of similar data.

Also in social insects clustering processes can be observed [2]. For instance,
brood sorting in ant colonies can be considered as clustering according to the de-
velopmental state of the larvae. Nest cleaning by forming piles of corpse or items is
another example.

Deneubourg et al. introduced in [3] two models of larval sorting and corpse clus-
tering. These models have been the inspiration of an ant-based clustering algorithm.
Ant-based clustering [4] simulates the clustering and sorting behavior of ants. The
data items to be clustered are assigned to items on a two-dimensional grid. These
items on the grid are piled up by the simulated ants building this way the data clus-
ters. The ants walk randomly over the grid and every time they find an isolated or
wrong placed item they pick it up and put it down close to the first randomly found
similar item somewhere else.

Monmarche et al. hybridized the Ant-based clustering approach with thek-means
algorithm as introduced in [9]. They applied the Ant-based clustering algorithm for
a fixed number of iterations to create an initial partitioning of the data. Afterwards,
they refined this initial partition by using thek-means algorithm. In [6] a very similar
approach to [9] is used. But instead ofk-means the fuzzyc-means algorithms is used
to refine the initial partition created by the ants.

Another type of clustering was introduced by Omran et al. [12]. They used Par-
ticle Swarm Optimization [7] to determine a given number of cluster centroids (i.e.,
center of clusters). For this, they used particles which contain all centroid vectors
in a row. If ci j denotes thejth cluster centroid of particlexi, then a particle encod-
ing N clusters is defined asxi = (ci1, · · · ,ci j, · · · ,ciN). This way a particle has the
dimensionality of number of centroidsN times dimension of centroids. The swarm
consists of many possible centroid vector sets. In [15] van der Merwe and Engel-
brecht hybridized this approach with thek-means algorithm. A single particle of the
swarm is initialized with the result of thek-means algorithm. The rest of the swarm
is initialized randomly.

In some rainforests mixed-species flocks of birds can be observed [10]. Different
species of birds are merging to become a multi-species swarm. The separation of this
multi-species swarm into its single species can be considered as a kind of species
clustering.

The method presented in this chapter is based on a simulation of species cluster-
ing. The data items to be clustered are assigned to objects called datoids placed on
a two-dimensional plane. Similar to ant-based clustering the data items aren’t clus-
tered in their attribute space, but in the space of the datoids. This is an advantage,
because data items belonging to the same class don’t need to be close in the attribute
space. They get close in the space of the datoids, if they belong together. Instead of
randomly moving, the datoids have an affinity to move to their similar neighbors. The
similar neighbors are determined based on a similarity distance function. In contrast
to ant-based clustering, the data items (datoids) move on the two-dimensional plane
by themself and aren’t moved by additional entities like, e.g., ants.
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This chapter is organized as follows. Section 2 gives a brief overview of clus-
tering. Flock Algorithms and Particle Swarm Optimization are described in sections
3 and 4. The Data Swarm Clustering algorithm is described in section 5. The used
experiments and results are presented in sections 6 and 7. Finally, in section 8 some
conclusions are drawn.

2 Data Clustering

The task of data clustering is to divide a set of dataX into sub-setsCi ⊆ X containing
similar data. In Figure 1 a set of data containing three different kinds of objects is
presented.

Clustering produces a setC = {Ci} of all sub-setsCi ⊆ X as shown in Figure 2. A
sub-setCi is called a cluster and all clusters together result inX (i.e.,X =

�
i Ci). That

means that each element ofX is assigned to a cluster. Usually clusters are pair-wise
disjoint (i.e.,

�
i Ci = /0). That means that each element ofX is assigned to exactly

one cluster. The data contained within one clusterCi are similar in some way and
dissimilar to the data contained in other clusters.

Often the data are pointsdi = (di1, · · · ,din)T ∈ A in an n-dimensional attribute
spaceA = A1× ·· · ×An. Eachdiv ∈ Av (1≤ v ≤ n) represents a single variable or
attribute.

For instance, if a set of points{(xi,yi)} on a two-dimensional planeR2 shall be
clustered, thenR2 is the attribute space, the dimensions are the attributes and the
coordinatesxi,yi ∈ R are attribute values.

Often simply the distances between points in the attribute space are used as sim-
ilarity measure to determine whether or not they are belonging to the same cluster
(e.g., as ink-means).

Clustering is applied in a lot of fields as, e.g., character recognition, image seg-
mentation, image processing, computer vision, data and web mining.

Clustering algorithms can be grouped among others into hierarchical clustering,
partitioning relocation clustering, density-based partitioning and grid-based meth-
ods. Berkhin gives an extensive survey of clustering algorithms in [1].

3 Flock Algorithms

Flock Algorithm is a generic term for algorithms mimicking the natural aggregation
and movement of bird flocks, herds of land animals or schools of fishes. Reynolds
developed a distributed behavior model to compute the movement of flocks of birds
within virtual environments [13] to get rid of modelling each single bird explicitly.
A single entity of this model is called boid (bird-oid) and implements the following
behavior:

• Collision Avoidance
Each boid has to avoid collisions with nearby flock-mates.
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X =

Fig. 1. A set of data containing three types of objects.

C =

C1

C2

C3

Fig. 2. A set of clustersC = {C1,C2,C3} containing three clusters (|C|= 3) of similar objects.
Here, the similarity is based on the outer shape of the objects.
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• Velocity Matching
Each boid attempts to match the velocities of nearby flock-mates.

• Flock Centering
Each boid tries to stay close to nearby flock-mates. For this, it steers to the center
of thek nearest neighbors.

• Obstacle Avoidance
Within virtual environments it is intended to avoid collision with obstacles (e.g.,
houses).

• Following a Path
Usually the boids follow a specified path within the virtual environment.

Although this type of algorithm was thought for computer graphic purposes, it
has been the inspiration for other algorithms as, e.g., the Particle Swarm Optimiza-
tion.

4 Particle Swarm Optimization

Particle Swarm Optimization (PSO), as introduced by Kennedy and Eberhart [7] [8],
is an optimization algorithm based on swarm theory. The main idea is to model the
flocking of birds flying around a peak in a landscape.

In PSO the birds are substituted by particles and the peak in the landscape is the
peak of a fitness function. The particles are flying through the search space forming
flocks around peaks of fitness functions.

Let Ndim be the dimension of the problem (i.e., the dimension of the search space
R

Ndim), Npart the number of particles andP the set of particlesP = {P1, · · · ,PNpart}.
Each particlePi = (xi,vi, li) has a current position in the search space (xi ∈ R

Ndim),
a velocity (vi ∈ R

Ndim) and the locally best found position in history, i.e., the own
experience (li ∈R

Ndim) of this particle.
In PSO, the set of particlesP is initialized at time stept = 0 with randomly

created particlesP(0)
i . The initial li are set to the corresponding initialxi. Then, for

each time stept, the next positionx(t+1)
i and velocityv(t+1)

i of each particleP(t)
i is

computed as shown in Eqns. (1) and (2).

v(t+1)
i = w(t)

I v(t)
i + wLr1(l

(t)
i − x(t)

i )+ wNr2(n
(t)
i − x(t)

i ) (1)

x(t+1)
i = x(t)

i + v(t+1)
i (2)

Here,r1 and r2 are random numbers in[0,1]. n (t)
i ∈ R

Ndim represents the best
found local position of the best neighbor particle at timet. Because there are several
possibilities to define the neighborhood of a particle [8], the best neighboring particle
can be, e.g., the best particle of a pre-defined neighborhood; the best particle of
the nearest neighbors according to the distance in search space; the globally best

particle etc. The inertia weightw(t)
I determines the influence of the particle’s own
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velocity, i.e., it represents the confidence of the particle to its own position (typically
wI ∈ [0.1,1.0]). To yield a better convergence, this weight is decreased over time [14]

[8]. The typical way to decrease the inertia weightw (t)
I is to subtract a fixed amount

(e.g., 0.001) each iteration.wL is the influence of the locally best position found so
far. The influence of the best particle of the neighborhood is denoted withw N .

After computing, the next velocityv(t+1)
i is added to the position of the particle to

get the new position. To avoid chaotic behavior, this new velocityv (t+1)
i is clamped

to a pre-defined interval[−Vmax,+Vmax].
The fitness of a particle is determined by a fitness functionF which maps a

position vector to a real number (Eq. (3)).

F : R
Ndim →R (3)

If the new positionx(t+1)
i has a better fitness than the best solution found so far

for particlePi, it is stored in memory as shown in Eq. (4) (in case of minimization).

l(t+1)
i =

{
x(t+1)

i , F(x(t+1)
i ) < F(l(t)i )

l(t)i , otherwise
(4)

The best solution of the run is found at particlePb with the best local solution
lb. Best solutionlb is always element of the set of all best local solutions{li},∀i ∈
{1, · · · ,Npart}. Equation (5) determines the best fitness valueF(lb) simply as the
minimal fitness value of all local solutions.

F(lb) = min
∀i∈{1,···,Npart}

{F(li)} (5)

5 Data Swarm Clustering

The Data Swarm Clustering (DSC) algorithm mimicks a sort of separation of dif-
ferent species forming one big multi-species swarm into sub-swarms consisting only
of individuals of the same species (i.e., single-species swarms). The multi-species
swarm can be considered as a set of mixed dataX and a sub-swarm as clusterCi ⊆ X .

To realize this, a PSO method with two-dimensional particles is used. The PSO
particle is modified to hold one data object ofX . Because a data object can be of
every possible type or structure, an entity of DSC is called datoid (data-oid) instead
of particle.

The separation (i.e., clustering) of a swarm of datoids can be described with three
rules:

1. Swarm Centering of Similar Datoids
Each datoid tries to stay close to similar nearby swarm-mates. For this, it steers
to the center of thek nearest similar neighbors.
⇒ This is the moving power to build the raw sub-swarms of similar datoids.



Data Swarm Clustering 7

2. Approach Avoidance to Dissimilar Datoids
Each datoid avoids to approach to the nearest dissimilar swarm-mate.
⇒ This helps to prevent dissimilar sub-swarms to merge.

3. Velocity Matching of Similar Datoids
Each datoid attempts to match the velocity of the nearest similar neighbor.
⇒ This advantages the emergence of synchronized sub-swarms which build a
better unity.

These rules are modified versions of the rules of Reynolds Flock Algorithm as
described in section 3. The modifications include:

• The differentiation of similar and dissimilar neighbors.
• Collision avoidance is replaced by an approach avoidance to dissimilar datoids.
• Velocity is matched only to the nearest similar neighbor instead to all nearby

flock-mates.

Data Swarm Clustering consists of three phases: (1) initialization, (2) multiple
iterations and (3) retrieval of the formed clusters.

A swarm of datoids can be described quite similar as in PSO. LetNdat be the
number of datoids andD the set of datoidsD = {D(1), · · · ,D(Ndat)}. Each datoid
D(i) = (xi,vi,oi) consists of a current position on a two-dimensional plane (x i ∈R

2),
a velocity (vi ∈ R

2) and the data object bound to this datoid (o i ∈ X). Each datoid
is placed on a quadratic two-dimensional plane with a side length ofX max. That is,
Xmax restricts the two-dimensional plane in both dimensions. The maximal possible
distancedmax between two datoids is simply the diagonal of the two-dimensional
plane as computed in Eq. (6).

dmax =
√

X2
max + X2

max (6)

If Niter denotes the number of iterations, the main algorithm can be described as
follows:

1. InitializeD with randomly created datoids (see section 5.1).
2. Forn = 1 toNiter: iterate swarm (see section 5.2).
3. Retrieve the clusters (see section 5.3).

5.1 Initialization

The initialization phase creates the setD with randomly created datoids. Because all
datadi ∈ X have to be clustered, the number of datoidsNdat is set to the number of
data inX (i.e.,Ndat = |X |).

For each datoidD(i) ∈ D,∀i ∈ {1, · · · ,Ndat} the following initialization is per-
formed. First, the data objectoi bound to the datoidD(i) is set to the corresponding
data itemdi ∈ X .

Afterwards, the position of the datoid on the two-dimensional plane is set ran-
domly. For this, each element of the position vectorx i is set to a random number
between 0 andXmax.
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At last, each element of the velocity vectorvi of datoidD(i) is set to a random
number between−Vmax and+Vmax. Vmax restricts the velocity as in PSO (see section
4).

The whole algorithm is shown in the following (Ra,b means a random-number
betweena andb):

Ndat ← |X |
for i = 1 to Ndat

oi← di ∈ X
xi← (R0,Xmax ,R0,Xmax)

T

vi← (R−Vmax,+Vmax ,R−Vmax,+Vmax)
T

end for i

5.2 Iteration

While iterating, a similarity function is needed to provide a similarity measure be-
tween two datoids. This similarity function as shown in Eq. (7) gets the data objects
of two datoids and returns a value in[0,1], whereby 1 means that both datoids are
equal and 0 that both are maximal dissimilar.

S : X×X → [0,1] (7)

This similarity function is problem-specific. For the datasets used in the experi-
ments later on, the Euclidian distance as defined in Eq. (25) (section 7) is used.

The distance between two datoids on the two-dimensional plane is also deter-
mined by Euclidian distance as shown in Eq. (8).

d : R
2×R

2→R , d(a,b) =

√
2

∑
c=1

(ac−bc)2 (8)

An iteration step performs the following computation to each datoidD(i) ∈
D,∀i ∈ {1, · · · ,Ndat}.

First, the nearest similar neighborD(ni,similar) of D(i) as depicted in Figure 3 is
determined. For this, the similarity distance functionSD(i, j) as defined in Eq. (9) is
used to compute the distance between two datoids.

SD(i, j) = S(oi,o j)d(xi,x j)+ (1−S(oi,o j))dmax (9)

The more similar two datoids are, the more the real distance is used as similarity
distance. The more dissimilar they are, the more the maximal possible distance on
the plane is used. This punish dissimilar neighbors by increasing their similarity
distance. The index number of the nearest similar neighbor can be computed as in
Eq. (10).
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ni,similar = n s.t. SD(i,n) = min
∀ j∈{1,···,Ndat}

i�= j

{SD(i, j)} (10)

The nearest similar neighbor is needed for rule 3:Velocity Matching of Similar
Datoids.

D(i)

D(n            )i,similar

Fig. 3. The nearest similar neighborD(ni,similar). The gray-colored object is the nearest simi-
lar neighbor toD(i). It is the one with the best similarity of the nearest neighbors.

Then, the nearest dissimilar neighborD(ni,dissimilar) of D(i) as illustrated in Fig-
ure 4 is determined. For this, the dissimilarity distance functionDD(i, j) as defined
in Eq. (11) is used to compute the distance between two datoids.

DD(i, j) = (1−S(oi,o j))d(xi,x j)+ S(oi,o j)dmax (11)

The more dissimilar two datoids are, the more the real distance is used as dissim-
ilarity distance. The more similar they are, the more the maximal possible distance
on the plane is used. This punish similar neighbors by increasing their dissimilarity
distance. The index number of the nearest dissimilar neighbor can be computed as in
Eq. (12).

ni,dissimilar = n s.t. DD(i,n) = min
∀ j∈{1,···,Ndat}

i�= j

{DD(i, j)} (12)

The nearest dissimilar neighbor is needed for rule 2:Approach Avoidance to
Dissimilar Datoids.

For rule 1:Swarm Centering of Similar Datoids the center position of thek near-
est similar neighborsci,similar of D(i) on the two-dimensional plane is needed. This
is illustrated in Figure 5.

If n = (n1, · · · ,nk) represents the sequence of indices of thek nearest similar
neighbors (according to the similarity distance function SD), then Eq. (13) computes
the needed center of those neighbors.

ci,similar =




1
k ∑k

j=1 xn j 1

1
k ∑k

j=1 xn j 2


 ∈ R

2 (13)
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D(i) D(n               )i,dissimilar

Fig. 4. The nearest dissimilar neighborD(ni,dissimilar). The gray-colored object is the nearest
dissimilar neighbor toD(i). It is the one with the best dissimilarity of the nearest neighbors.

D(i)

ci,similar

Fig. 5. The center positionci,similar of thek nearest similar neighbors toD(i).

In Flock Algorithms a boid tries to match its velocity to the velocity of its neigh-
bors. This mechanism is used in DSC to synchronize the sub-swarms to build a better
unity. Instead of several neighbors, in DSC the velocity is matched only to the near-
est similar neighbor as in Eq. (14). In Figure 6 this is presented by a line between the
gray-colored datoid and its nearest similar neighbor.

The gray-colored datoid matches its velocity to its neighbor as defined in Eq. (14).
The degree of matching is weighted withwV .

∆velo = wV (v(t)
ni,similar − v(t)

i ) (14)

The swarm-mates in PSO and Flock Algorithms try to stay close to nearby
swarm-mates. This behavior produces sub-swarms or one big compact swarm, de-
pending on the size of neighborhood. In PSO there is often a pre-defined and pre-
assigned neighborhood to which a particle tries to stay close. This reduces the com-
putation time. But as shown in Figure 7 in DSC a datoid steers to the center of thek
nearest similar neighbors as in Flock Algorithms.
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Fig. 6. Datoids match their velocity to their nearest similar neighbor. The new velocity is
drawn as gray-colored arrow.

Fig. 7. Datoids steer to the center of the nearest similar neighbors.

This way the neighborhood is variable what is neccessary, because a pre-defined
neighborhood would mean a pre-defined sub-swarm (i.e., cluster) of arbitrary da-
toids. This would work contrary to the clustering process.

∆neighbors = S(oi,oni,similar) wN R0,1 (c(t)
i,similar− x(t)

i ) (15)

The influence of the neighbors∆neighbors as shown in Eq. (15) is computed quite

similar to PSO. The difference of the current positionx (t)
i and the center of the sim-

ilar neighborsc(t)
i,similar is weighted bywN . Here,R0,1 is a random number in[0,1].

Additionally, the influence of the neighbors is weighted by the degree of similarity
between them and the current datoidD(i). As representant of thek nearest simi-
lar neighbors, the nearest similar neighborD(ni,similar) is used. The similarity be-
tween the data objects bound to the current datoid and the nearest similar neighbor
S(oi,oni,similar) weights the influence of the neighbors.
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To provide the separation of dissimilar datoids and to avoid the merging of dis-
similar sub-swarms, the current datoid tries to move away from the nearest dissimilar
neighbor, if the distance between them becomes too close (i.e.,d(x i,xni,dissimilar) < τd).
This is illustrated in Figure 8.

τd

Fig. 8. Datoids try to move away from their nearest dissimilar neighbor.

For this, the difference between the current positionx (t)
i and the nearest dissim-

ilar neighborx(t)
ni,dissimilar is computed in a way that it points away from the nearest

dissimilar neighbor (see Eq. (16)).

a =

{
x(t)

i − x(t)
ni,dissimilar , d(xi,xni,dissimilar) < τd

0 , otherwise

∆avoidance = (1−S(oi,oni,similar)) wA a (16)

The avoidance vectora is weighted withwA and set to a dependency to the influ-
ence of similar neighbors. That is, if a datoid has very similar neighbors, the avoid-
ance to the dissimilar neighbor is reduced by(1−S(o i,oni,similar)). On the other hand,
if a datoid has few similar neighbors, the effect of avoidance is stronger.

After determining the velocity matching∆velo, the influence of thek nearest sim-
ilar neigbors∆neighbors and the avoidance∆avoidance to dissimilar neighbors, the new

velocityv(t+1)
i as in Eq. (17) can be computed.

v(t+1)
i = w(t)

I v(t)
i +∆velo +∆neighbors +∆avoidance (17)

The inertia weightw(t)
I determines the influence of the previous velocity. As in

PSO this weight is decreased over time (see section 4). This decreasing procedure
starts at iteration numbersI (1≤ sI ≤ Niter). Every iteration the inertia weight is
decreased by an amount ofaI . DecreasingwI results in more compact and dense
sub-swarms which is an advantage in the latter cluster retrieval.
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After computing the new velocity, the new positionx (t+1)
i is computed as in

Eq. (2).

Afterwards, the new velocityv(t+1)
i , is clamped to[−Vmax,+Vmax] by Eq. (18).

∀c ∈ {1,2} : vic
(t+1) = max[−Vmax,min(+Vmax,vic

(t+1))] (18)

If the new positionx(t+1)
i of the datoid lies outside the restricted plane, the datoid

bounces against the border.
In the following the pseudo-code of the DSC iteration is shown:

for i = 1 to Ndat

// Move datoid D(i)
ni,similar← index of nearest similar neighbor by Eq. (10)
ni,dissimilar← index of nearest dissimilar neighbor by Eq. (12)
ci,similar ← center ofk nearest similar neighbors by Eq. (13)

Compute new velocityv(t+1)
i by Eq. (17)

Compute new positionx(t+1)
i by Eq. (2)

// Ensure validity of datoid
for c = 1 to 2

// Clamp velocity
vic

(t+1)←max[−Vmax,min(+Vmax,vic
(t+1))]

// Bounce against the borders
if xic

(t+1) < 0
xic

(t+1)← xic
(t+1) +2(−xic

(t+1))
vic

(t+1)←−vic
(t+1)

else if xic
(t+1) > Xmax

xic
(t+1)← xic

(t+1)−2(xic
(t+1)−Xmax)

vic
(t+1)←−vic

(t+1)

end if
end for c

end for i

// Update parameters
if numIterations≥ sI ∧ wI > 0.1

wI ← wI −aI

end if
numIterations← numIterations + 1

The variablenumIterations represents the number of iterations performed so
far and is initialized to 0 before calling the first iteration.
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5.3 Cluster Retrieval

After a certain number of iterations, sub-swarms of similar datoids have formed.
These sub-swarms represent the clusters. Therefore, the datoids of a given sub-swarm
need to be grouped together as a cluster.

To realize this, a sort of an agglomerative clustering algorithm applied to the
positions of the datoids on the two-dimensional plane is used.

All datoidsD(i),D( j) ∈D (∀i, j ∈ {1, · · · ,Ndat}, i �= j) whose Euclidean distance
d(xi,x j)≤ τc is lower than a given thresholdτ c belong to the same cluster.

6 Experimental Setup

To evaluate the cluster capabilities of DSC it was tested on four datasets: two syn-
thetical and two real life datasets. These datasets as well as the used parameterization
of DSC are described in the following sections.

6.1 Synthetical Datasets

The synthetically generated datasets used are:

Corners
The datasetCorners contains 4 randomly created clusters in 200 records located at
the 4 corners of a quadratic grid as presented in Figure 9. All clusters are separable
by lines on the grid, i.e., in the attribute space.

The Ndat = 200 records are divided by four to create four corners of similar
size. If Int(x) denotes the integer part of x then the numbern of records per class is
computed asn = Int(0.25·Ndat).

Let Xmax be the length of a side of the quadratic grid. Then, the side length of a
single quadratic corner is computed asscorner = 0.4 ·Xmax.

The four corners can now be defined as relations:

Top Left isT L = {0, · · · ,scorner}×{0, · · ·,scorner}
Top Right isT R = {Xmax− scorner, · · · ,Xmax−1}×{0, · · ·,scorner}
Bottom Left isBL = {0, · · · ,scorner}×{Xmax− scorner, · · · ,Xmax−1}
Bottom Right isBR = {Xmax− scorner, · · · ,Xmax−1}×{Xmax− scorner, · · · ,Xmax−1}

The four clusters are created as follows:

Cluster 0 (top left): Randomly createn points(x(i),y(i)) ∈ TL.
Cluster 1 (top right): Randomly createn points(x(i),y(i)) ∈ T R.
Cluster 2 (bottom left): Randomly createn points(x(i),y(i)) ∈ BL.
Cluster 3 (bottom right): Randomly createNdat −3n points(x(i),y(i)) ∈ BR.
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Nested
As shown in Figure 10 the datasetNested contains 2 randomly created clusters in
200 records, whereby one cluster is located at the center area of a quadratic grid and
the other surrounds it. The clusters are not separable by lines on the grid, i.e., in the
attribute space.

The Ndat = 200 records are divided into five sets for the four border areas as
well as the center area. The numbernborder of records per border area is computed as
nborder = Int(0.2·Ndat). The numberncenter of records for the center area is computed
asncenter = Ndat −4 ·nborder.

Again, letXmax be the side length of the quadratic grid. Then, the marginm of
the center area is computed asm = 0.4 ·Xmax.

The five sets for the four border areas and the center area can be defined as
relations:

Border Top isBT = {0, · · · ,Xmax−1}×{0, · · ·,0.5 ·m}
Border Bottom isBB = {0, · · · ,Xmax−1}×{Xmax−0.5 ·m, · · ·,Xmax−1}
Border Left isBL = {0, · · · ,0.5 ·m}×{0, · · ·,Xmax−1}
Border Right isBR = {Xmax−0.5 ·m, · · ·,Xmax−1}×{0, · · ·,Xmax−1}
Center Area isCA = {m, · · · ,Xmax−m}×{m, · · ·,Xmax−m}

The two clusters are created as follows:

Cluster 0 (borders): Randomly createnborder points(x(i),y(i)) ∈ BT , nborder points
(x(i),y(i)) ∈ BB, nborder points(x(i),y(i)) ∈ BL andnborder points(x(i),y(i)) ∈
BR.

Cluster 1 (center): Randomly createncenter points(x(i),y(i)) ∈CA.

6.2 Real Life Datasets

The following real life datasets are used:

Iris: The datasetIris contains 3 clusters in 150 records with
4 numerical attributes (sepal length, sepal width, petal
length, petal width). Each of the 3 classes (Setosa, Ver-
sicolour, Virginica) contains 50 records.

WBC: The dataset Wisconsin Breast Cancer (WBC) contains 2
clusters of 2 classes (Benign, Malignant) in 683 records
with 10 numerical attributes (Clump Thickness, Unifor-
mity of Cell Size, Uniformity of Cell Shape, Marginal
Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland
Chromatin, Normal Nucleoli, Mitoses).

Both datasets are taken from the UCI Repository Of Machine Learning Databases
[11] and the attribute values were normalized.
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Fig. 9. Synthetical datasetCorners.

Fig. 10. Synthetical datasetNested.
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6.3 Parameters

In Table 1 the used parameter settings for DSC are shown. These parameters are
determined by experimentation and have the following meaning:

Ndat := Number of datoids.
Niter := Number of iterations.
Xmax := Size of 2D plane.
Vmax := Range of velocity.
k := Number of considered neighbors, i.e., size of neighbor-

hood.
wI := Start value of inertia weight.
sI := Iteration number to start decreasing of inertia weight.
aI := Amount of decreasingwI .
wV := Weight of velocity matching.
wN := Weight of neighbors.
wA := Weight of avoidance.
τd := Distance threshold to dissimilar datoids.
τc := Threshold for cluster retrieval.

Corners Nested Iris WBC

Ndat 200 200 150 683
Niter 200 300 1500 100
Xmax 400 400 400 400
Vmax 10 10 10 10
k 20 20 15 68
wI 1.0 1.0 1.0 1.0
sI 0 0 500 0
aI 0.001 0.001 0.001 0.01
wV 0.5 0.5 0.5 0.5
wN 0.5 2.0 0.5 0.5
wA 0.5 0.5 0.5 0.5
τd 10 10 10 10
τc 5 10 5 10

Table 1. Used parameters for DSC.

The experiments showed that the parameters aren’t too sensitive. In spite of little
changes the clustering process works. Merely the numbers of correct clustered data
items and of formed clusters change. Therefore, one can work towards a working
parameter set for a given clustering problem.
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7 Results

In section 6 the used datasets and their parameter settings are described. To evaluate
the cluster capabilities, the DSC algorithm was applied to the datasets 50 times, i.e.,
50 independent runs for each dataset. The results as shown in Table 2 are the averaged
results over these 50 runs. The used measures are described in the following.

First, all correctly clustered data items are counted. For this it is neccessary to
determine the cluster type of a cluster which means, to which of the real known
classes of the dataset belongs the cluster. IfC is the set of computed clustersCi ⊆ X
andT the set of labelst of the real known classes of a dataset, then the class of cluster
Ci is computed as shown in Eq. (19),

Class(Ci) = c s.t. Nci = max
t∈T
{Nti}, c ∈ T (19)

whereNti is the number of data items of classt within clusterCi. The class of a
cluster is the class of the biggest part of data items belonging to the same class. With
this assumption the proportion of correctly clustered data items is just the number
of data items which represent the class of the cluster summed over all clustersCi as
shown in Eq. (20).

Correct(C) =
1
|X | ∑

Ci∈C

max
t∈T
{Nti} (20)

Correct(C) is to maximize. A second measure is just the number of found clusters
|C|. This is important, because in DSC the number of clusters is not given by the user.

Another measure used is the entropy within a cluster as in Eq. (21),

Entropy(Ci) =− 1
log(|X |) ∑

t∈T

Nti

Ni
log(

Nti

Ni
) (21)

whereNi is the size of clusterCi, i.e.,Ni = |Ci|. The entropy measures the relative
degree of randomness of clusterCi. That is, it is 0 if the cluster contains data only
from one class and 1 if the cluster is uniformly filled with data of all classes. The
overall entropyEntr(C) as given in Eq. (22) is the average over all clusters and is to
minimize.

Entr(C) =
1
|C| ∑

Ci∈C

Entropy(Ci) (22)

The last measure is the F-measure known from information retrieval as shown
in Eq. (23). It uses the purity of the considered clusterCi with Prec(t,Ci) = Nti

Ni
, i.e.,

how strong belongs clusterCi completely to classt. Furthermore, it considers, how
much of the data of classt are contained within clusterCi with Rec(t,Ci) = Nti

Nt
and

Nt being the number of data in classt.

FMeasure(t,Ci) =
2 ·Prec(t,Ci) ·Rec(t,Ci)
Prec(t,Ci)+ Rec(t,Ci)

(23)
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The best situation is to have each cluster consisting completely of data of the
same classt (Prec(t,Ci) = 1) and for each classt having all data placed in just one
cluster (Rec(t,Ci) = 1). This measure is limited to[0,1] and to be maximized. The
overall F-measure value is determined as in Eq. (24).

FMeas(C) = ∑
t∈T

Nt

|X |max
Ci∈C
{FMeasure(t,Ci)} (24)

All described measures are computed for each dataset and presented in Table 2.
For each dataset, simply the Euclidian distance normalized by the maximal possi-
ble dissimilarity between two data items is used as similarity function as defined in
Eq. (25).

S(di,d j) = 1−
√

∑n
c=1(dic−d jc)

2√
∑n

v=1max(Av)2
(25)

The synthetic datasetCorners is a very simple one having four separable classes.
This works very well as expectable.

The synthetic datasetNested is not so simple but can be solved very good by
DSC. The reason is that the clustering doesn’t occur in the attribute space, but on a
plane where the data items are carried by datoids. The datoids interact according to
their similarity and not only to their positions on the plane.

The real datasetIris is not easy, because two attributes of two classes are strongly
correlated. But the results of DSC are comparable with other clustering methods as
can be seen in Table 3. There, DSC is compared to Ant-based clustering [4] and the
well-knownk-means algorithm. The comparative values are taken from [5]. On the
one hand the determined number of clusters in average is a bit more stable in Ant-
based clustering compared to DSC. Ink-means the number of expected clusters is
givena priori. Thus, this point is not comparable. On the other hand, the F-measure
value of DSC is better than those of Ant-based clustering andk-means. That means,
the computed clusters have a better purity.

The real datasetWBC is not solved well by DSC. An acceptable high number
of similar data items are correctly clustered, but DSC produces too much clusters at
all. This results in a bad F-measure value as revealed in Table 4, because the data
items of a class are spread over several clusters. Ant-based clustering andk-means
are better in clusteringWBC.

The number of clusters and the F-measure values of the real datasets reveal
one weak point of DSC. DSC sometimes produces several sub-swarms (i.e., clus-
ters) which belong to the same classt while having a purity of 1 (Prec(t,Ci) =
Prec(t,Cj) = 1, Ci �= Cj). That is the data items of a class can be split up to sev-
eral clusters and those clusters consist of data items of just this class.

A positive property of DSC is the transformation of the data items to the plane of
the datoids. This is an advantage in problems likeNested.

The entropy of all datasets shows that each determined cluster is good dominated
by data items of the same class. The clusters aren’t mixed strongly. It seems that DSC
produces clusters with a good purity.



20 Christian Veenhuis and Mario K¨oppen

Corners Nested Iris WBC

Correct(C) ·100 100.0%100.0%94.786667%94.585652%
standard deviation 0.0% 0.0% 3.496513% 5.754342%

|C| (real number) 4 (4) 2 (2) 4 (3) 6 (2)
standard deviation 0 0 1.363818 1.462874

Entr(C) 0 0 0.026367 0.02042
standard deviation 0 0 0.006275 0.006602

FMeas(C) 1 1 0.830683 0.685732
standard deviation 0 0 0.073264 0.062420

Table 2. Averaged results over 50 independent runs for all datasets.

Iris DSC Ant-based Clustering k-means

|C| 4 3.02 3 (givena priori)

standard deviation 1.36 0.14 0 (givena priori)

FMeas(C) 0.830683 0.816812 0.824521
standard deviation0.073264 0.014846 0.084866

Table 3. Results for the datasetIris. The comparative values are taken from [5].

WBC DSC Ant-based Clustering k-means

|C| 6 2 2 (givena priori)

standard deviation 1.46 0 0 (givena priori)

FMeas(C) 0.685732 0.967604 0.965825
standard deviation0.062420 0.001447 0

Table 4. Results for the datasetWBC. The comparative values are taken from [5].

8 Conclusion

The experimentations show that it is possible to cluster data by using swarm tech-
niques. The power of swarm clustering is due to the local interaction between similar
datoids. The data items to be clustered aren’t clustered in their attribute space, but in
the space of the datoids. Therefore, data items belonging to the same class don’t need
to be close in the attribute space. Datoids move in their space and have an affinity to
their nearest similar neighbors. This allows the datoids to perform good on problems
like the Nested dataset. The data items in the top region and bottom region of the
Nested dataset aren’t close in their space. But the datoids group together with their
similar neighbors. The next near similar neighbors of the data items in the bottom
region are the ones on both sides. And the next near similar neighbors of the side
regions are the ones in the top region. Because of this behavior based on local inter-
action between similar datoids the data items of the four sides can be separated from
the nested data items.

DSC uses a similarity functionS to determine the similarity between two datoids.
Thus, it can work with each data structure or attribute type, because DSC only gives
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the data objects carried by datoids to this similarity function. Therefore, a lot of
properties of DSC depend on the used similarity function. One disadvantage of DSC
is the great number of needed parameters. On the other hand, you don’t need to
specify the number of clustersa priori.
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