
Robust Clustering by Evolutionary Computation

Wolfgang von der Gablentz
Fraunhofer IPK

Pascalstr. 8-9, 10587 Berlin, Germany
wolfgang.gablentz@ipk.fhg.de

Mario Köppen
Fraunhofer IPK

Pascalstr. 8-9, 10587 Berlin, Germany
mario.koeppen@ipk.fhg.de

Evgenia Dimitriadou
Institut für Statistik TU Wien

Wiedener Hauptstr. 8-10,A-1040 Wien, Austria
evgenia.dimitriadou@ci.tuwien.ac.at

Abstract

In this paper we present a scheme driven by evolution-
ary computation to overcome the problem of comparing
clustering results. The clustering results are achieved
by qualitatively different clustering algorithms, which
produce different partitionings. Our scheme helps us
to overcome these problems of algorithms by generat-
ing clustering ones and selecting the best evaluated to
evolve in another generation until the whole procedure
reaches a robust result.

1 Introduction

Partitioning a given population of individuals
into ”similarity” groups has many applications
in science and business. Many clustering al-
gorithms have been suggested and used in the
literature to partition data into clusters (see
[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],
[15],[16],[17]). When partitioning individuals into
plausible subgroups, due to the origin of the data sets
and also to the algorithms themselves, some main
problems for this task are encountered. The true
structure (ground truth), especially the number and
shapes of the clusters, remains unknown. Different
cluster algorithms and even multiple replications of
the same algorithm result in different solutions due to
random initializations and stochastic learning methods.
Moreover, there is no clear indication which of the
different solutions of the replications of an algorithm is
the best one. Different clustering algorithms applied on

a specific data set result in different results (see [18]).
The quality criteria commonly used from the clustering
methods are not compatible for different clustering
approaches, i.e. from a good value of such a criterion
it can not be decided, whether the clustering was the
more suitable one for a given kind of data. Any attempt
to fuse a clustering result for an uninspected data set
simply has to reject one method and choose another.
However, this selection can not be done by using the
”native” quality measures of the clustering methods.
Perturbations or shuffling of the data points in a data
set have been also introduced to overcome the problem
of instabilities and of wrong partitioning results. In this
way artificial instabilities are, applied in a data set by
perturbing its points. The idea is that clusterings which
does’nt change when the points in the datasets are
slightly modified will be the adequate ones. Moreover,
this method can influence the clustering algorithm to
create more different cluster structures of the ones
normally achieved by the algorithms and it also pro-
vides more robust results that explain adequately the
structure of the original set (for more details see [19]).
In this paper we introduce a method which produces
different clustering results following a scheme driven
by evolutionary computation. This scheme takes
advantage of the polyphony of the clustering results,
produced by the several algorithms due to the referred
problems, by maintaining and using them as a point of
comparison. The best results generated continue their
evolution in a next step generation until we reach a
robust result. This paper is organized as follows. In
section 2 we describe how instabilities and a wrong

clustering result caused by an improper choice of
clustering algorithm can be solved. The section 3
explains the use of evolutionary computation for the
proposed task. In section 4 we explain the algorithms
and datasets used in deeper detail. Section 5 descibes
the results of our experiments, which leads to the
conclusions descibed in section 6.

2 Robust Clustering

The basic assumption on robust clustering, which
guides to the framework presented in this paper, is as
follows: When a clustering method is inappropriate for
the given data set, it will give more differing cluster-
ing results when the initial conditions or the given data
values are randomly modified, than for an appropriate
clustering method. Assume a (numbered) data setd =
(d1;d2; : : :;dn), which has to be separated into two clus-
tersC1 andC2. Further assume a set ofM1;M2; : : :;Mk

clustering algorithms (e.g. k-means, neural gas,...), the
M1(ci);M2(ci); : : :;Mk(ci);1� i � 2, results of which,
when applied tod, will depend on an initial configu-
ration of theci centers, and a setV of l random mod-
ifications ofd, e.g. moving the data point by a small
amount in a random direction. Then, when a clustering
algorithmMp;1� p� k, is applied to the modified data
setVj(d), it will assign each data point in d to eitherC1

or C2. This can be represented by a clustering-bitstring.
For example, if there are four data points, the bitstring
0110 describes that data pointd1 andd4 have been as-
signed to clusterC1 and data pointsd2 andd3 have been
assigned to clusterC2. Applying all k clustering algo-
rithms to all l modifications of the data setd will give
k � l bitstrings. Under the assumption given above, for
appropriate clustering methods, there should be more
similar bitstrings than for inappropriate ones. In other
words: the common schemata of allk � l bitstrings hint
on a more fitted clustering. In search is a method for se-
lecting common schemata. Genetic algoritms are well-
known optimization-methods for such a purpose.

3 Scheme Abstract

The proposed scheme generates clustering-bitstrings by
clustering thel modifications with all clustering algo-
rithm in use. Then these clustering-bitstrings are eval-
uated, compared through a fitness function. The best
ones continue their evolution to the next generation.

The final clustering bitstrings have evolved towards the
stable schemata, which provide us a robust partition of
the data points in the set.

4 Description of Experiment

4.1 Clustering Approaches

While studying the famous problem ofintertwined spi-
rals we achieved in former experiments (see [20], for
more details on the problem and its definition, see [21])
the result that the submethodsingle-linkageof the class
of agglomerative Clustering Algorithms is suitable to
cluster them (due to some limitations). That’s why we
now use results of some of these algorithms to compare
their suitability for a special kind of clustering problem.

4.1.1 Agglomerative Clustering

The basic scheme of the Agglomerative Clustering,
which stands for a class of algorithms, fuses in each step
one pair of clusters, consisting of only one datapoint at
the beginning. The selection of the pair to fuse is based
on some distance-criterion, thats why an adjacency ma-
trix is used. Suppose a set of dataE=fe1;e2; :::;eig:

1. start with the partitioningG , wheregi = feig

2. search the two groups of data with the smallest dis-
tance between them among all possible pairs e.g.
gp undgq mit dpq = min di j , i 6= j

3. fuse the groupsgp andgq into the new groupgqnew.
gqnew= gp[gq

4. change the q-th row and column of the adjacency
matrix by recomputing all distances between the
new groupgqnewand the other groups and remove
thep th row and column.

5. stop if a given criterion is reached, otherwise go
back to the second step

4.1.2 Specification of a single Algorithm

The single algorithm is specified according to the man-
ner, in which the distances are computed. It is usual
to compute the distance of two clusters based on their
centerpoints, what leads to the submethodaverage-
linked . Another submethod computes the distance of
two clusters using one abitrary element of each clus-
ter. Two clusters will possess the smallest distance, if

one of their pairs of elements has a smaller distance
than every possible pairs of elements between all the
other pairs of clusters. This submethod, which is called
single-linkageis, according to former experiments (see
[20]) suitable to fuse datapoints located on an arbitrary
bended line. This means, that this algorithm is suitable
to cluster the famous problem of intertwined spirals un-
less the amount of datapoints is too great, so that the
adjacency matrix which all Agglomarative Clustering
algorithm depend on, will not be capable by computer
memory (RAM).

4.2 Datasets

According to the results of our former work we use as
one original set of data the intertwined spirals. They
are produced by the method ”mlbench.spirals” of the
R language. The R Language is an open source re-
implementation of the S Language which is meant to be
a programming enviroment for dataanalysis and graph-
ics (can be received at [22]). So, our former results lead
to the assumption that this clustering problem could be
solved by one of the algorithms in use.
The second original set of data is also implemented in
R and is nearly suitable to be clustered by theaverage-
linkage submethod.

Clustering Result (singlelinkage)

Figure 1: Intertwined spirals clustered by the single-
linkage algorithm.

4.3 Search of Schemata

Evolutionary algorithms are a family of computer mod-
els based on the mechanics of natural selection and nat-
ural genetics. Among them are genetic algorithms (GA)
[23] and genetic programming (GP) [24]. Genetic algo-
rithms were introduced and investigated by John Hol-
land [23]. Later, they becamepopular by the book of

Clustering Result (averagelinkage)

Figure 2: Intertwined spirals clustered by the average-
linkage algorithm.

David Goldberg [25]. Also, consider the GA tutorial of
David Whitley [26] as a very good introduction to the
field.

GAs and GPs are typically used for optimization
problems. An optimization problem is given by a map-
ping F : X !Y. The task is to find an elementx2 X
for whichy= f (x);y2Y is optimal in some sense. Ge-
netic algorithms encodes a potential solution on a sim-
ple chromosome-like data structure, and apply genetic
operators such as crossover or mutation to these struc-
tures. Then, the potential solution is decoded to the
value x in the search spaceX, and y = f (x) is com-
puted. The obtained valuey is considered as a quality
measure, i.e. thefitnessfor this data structure. Some
genetic operators, such as the mating selection, are un-
der control of these fitness values, some other, like the
mutation, are not related to fitness at all.

An implementation of a GA begins with a population
of ”chromosomes” (generation 1). For standard GA,
each chromosome (also referred to as individual) is rep-
resented as a bitstring of a fixed length (e.g.0101101
as a bitstring of length 7). Then, the genetic operators
are applied onto all bitstrings iteratively in a fixed order,
going from one generation to the next until a given goal
(e.g. fitness value exceeds a given threshold or a prede-
fined number of generations was completed) is met. Fi-
nally, the individual (or chromosome) with the best fit-
ness value in the final generation is taken as the evolved
solution of the optimization problem.

At first, 2m bitstrings are selected out of thek indi-
viduals of generationn for mating. Usually, this is done
by fitness-proportionateselection, i.e., the relative prob-
ability for an individual to be selected is proportional to
its fitness value. The better the fitness, the better is the
chance to spread out its “genetic material” (i.e., some

of its bits) over the next generation.
Once the 2m individuals are chosen, they are paired.

In the two bitstrings of each pair, a common splitting
point is randomly selected, and a new bitstring is con-
structed by combining a half of the first bitstring with
the other half of the other bitstring. Then, the new in-
dividuals are mutated, i.e. some of its bits are reversed
with a given (usually small) probability. This gives the
so-calledm childrenof parent generationn.

Now, the fitness values of the children are evaluated
by decoding them intox values and computing thef (x).
Some of the children might have a better fitness than
its parents. From thek individuals of generationn and
themchildren, the bestk individuals constitute the next
generation(n+1).

While randomized, GAs are no simple random
walks. For the standard GA, John Holland has derived
the well-known Schemata Theorem, which models a
GA by means of the so-called schematas (or similarity
templates). A schema is an incomplete bitstring in the
sense that it contains unspecified bits. An example for
a schema is10*110 , which leaves position 3 unspeci-
fied. 101110 is a realization of this schema. Genera-
tion n contains each possible schema to some extent. It
can be said, that such a schema is tested by the GA, or
that trials are allocated to it by the GA. Now, one mea-
sure for a schema is the average fitness of all of its real-
izations. A second measure is the ratio of this avarage
to the ”average average” of all schemata present in the
generationn, i.e. itsabove-averageness. The Schemata
Theorem relates the rate of a schema within a popula-
tion with this measure. It says, that the rate of a schema
within a population grows exponentially with its above-
averageness. The most important point here is that all
schematas are tested in parallel.

Strongly related to the application of a GA is the en-
coding problem. In general, GAs are applied to highly
non-linear, complex problems, where it is hard to find
a model which provides an approach to the solution. In
these applications, they are the most simple approach.
However, a GA is not guaranteed to find the global op-
timum of a problem. It only ensures, by the Schemata
Theorem, to find better solutions than the random ini-
tialized ones. GAs find evolved solutions.

4.4 Fitness Function

The fitness functiony = f (x);x 2 X in search, has to
keep track of the difference of the tested indiviual com-
pared to all other (original) individuals. Because all in-

dividuals are given as bitstrings, the Hamming distance,
which keeps track of inverted bitstrings will be the right
measure. So we define the fitness functiony(b) as fol-
lows:

y(b) =
1
m

m

∑
i=1

min

"
n

∑
j=1

jxi; j �bj j;
n

∑
j=1

j(1�xi; j)�bjj

#

where:
n= length of the Bitstring

m= number of orginals (clusterstrings)

xg 2X

so that:

xg;v is thevth bit of gth original

clustering-string

The alternating measure of the fitness function reflects
the issue that different clustering approaches may de-
cide differently for assigning class 1 or 2. Hence, the
more suitable schema should be more similar to either
the cluster string or its inverted form.

5 Experimental Results

We started our experiment so that 28 original clustering-
strings with a length of 100 bit were computed. As
parameterization of the Genetic Algorithm we decided
to chose

� as the stop criteria 300 generations

� 30 parents in each generation

� 70 children in each generation

� one-point crossover

� mutation:

– probability = 0.8

– mutation methods: swapping of two random
bits, invertation of a random bit

The highest fitness 1=y(b) we achieved was
1=y(bbest) = 0:0393256. This bitstringbbest was not
equal to any original clustering-string, but had a very
low distance (Hamming distance) to the first of the orig-
inals. That’s why we decided to name the clustering-
bitstring with the minimal Hamming distance compared

with the individual reaching the highest fitness (bbest
where y(bbest) = min(y(b))8b2X) the result of the
procedure. The first original clustering-string, which
represents, according to our results, the most appropri-
ate clustering, is the one shown in figure 1, which shows
obviously the correct partitioningof the intertwined spi-
rals problem. After some more trials we got even more
results leading again to the first original clustering-
bitstring with even higher fitnesses, i.e. 1=y(bbest) =
0:04096 with only four different bits inside the com-
pared strings.

6 Conclusions

In this paper we have presented a scheme driven by evo-
lutionary computation to overcome the problem of com-
paring results achieved by qualitatively different clus-
tering algorithms. We have produced a couple of noisy
copies of a given two-class clustering problem. Because
it was a two-class problems, which means that we were
clustering all data into two clusters, the clustering re-
sults could be represented as binary bitstrings, so they
were compatible to the format genetic algorithms work
on. Taking the whole lot of clustering results as input
to the genetic algorithm we assumed to let it find the
scheme of the right clustering for the presented prob-
lem. At the end we achieved reproducable result, for
many runs of the genetic algorithm were leading to
the same original clustering-bitstring which of course
points to the most appropriate clustering algorithm. It
is, according to our results, possible to find the appro-
priate clustering for a given problem, but it is also pos-
sible to identify the most suitable clustering algorithm
for an unknown dataset. Last but not least it seems to
be feasible, to classify clustering problems in compari-
son to their appropriate clustering algorithm. For future
work we are going to apply the proposed approach to
real data, including also more than two classes. Also,
the study of the application of other evolutionary algo-
rithms, like Cultural Algorithms (see [27]), are a topic
of ongoing resaerch.

References

[1] Peng-Yeng Yin and Ling-Hwei Chen. A new non-
iterative approach for clustering.Pattern Recog-
nition Letters, 15:125–133, 1994.

[2] D. Chaudhuri, B. B. Chaudhuri, and C. A. Murthy.
A new split-and-merge clustering technique.Pat-
tern Recognition Letters, 13:399–409, 1992.

[3] Torbjorn Eltoft and Rui J. P. DeFigueiredo. A
new neural network for cluster-detection-and-
labeling.IEEE Transactions on Neural Networks,
9(5):1021–1034, September 1998.

[4] C. L. Begovich and V. E. Kane. Estimating the
number of groups and group membership using
simulation cluster analysis.Pattern Recognition,
15(4):335–342, 1982.

[5] Donald E. Brown, Christopher L. Huntley, and
Paul J. Garvey. Clustering of homogeneous sub-
sets. Pattern Recognition Letters, 12:401–408,
1991.

[6] Lei Xu, Adam Krzyzak, and Erkki Oja. Rival pe-
nalized competitive learning for clustering analy-
sis, rbf net, and curve detection.IEEE Transac-
tions on Neural Networks, 4(4):636–649, 1993.

[7] Lei Xu. Bayesian ying-yang machine, clusterong
and number of clusters.Pattern Recognition Let-
ters, 18:1167–1178, 1997.

[8] G. Celeux and G. Soromenho. An entropy crite-
rion for assessing the number of clusters in amix-
ture model. Journal of Classification, 13:195–
212, 1996.

[9] Christophe Biernacki, Gilles Celeux, and Ger-
ard Govaert. Assessing a mixture model for
clustering with the integrated classification likeli-
hood. Rapport de recherche 3521, Theme 4, Unite
de recherche INRIA Lorraine, http://www.inria.fr,
1997.

[10] Richard S. Wallace and Takeo Kanade. Find-
ing natural clusters having minimum description
length. InProceedings of the 10th International
Conference on Pattern Recognition, volume 1,
pages 438–442, Los Alamitos, CA, USA, 1990.
IEEE Comput. S. Press.

[11] A. Marazzi, P. Gamba, A. Mecocci, and A. Sem-
boloni. Automatic selection of the number of clus-
ters in multidimensional data problems. InPro-
ceedings of the International Conference on Im-
age Processing, volume 3, pages 631–634, NY,
USA, 1996. IEEE.

[12] Shri Kant, T. L. Rao, and P. N. Sundaram. An
automatic and stable clustering algorithm.Pattern
Recognotion Letters, 15:543–549, 1994.

[13] G. H. Ball and D. J. Hall. Isodata, a novel method
of data analysis and pattern classification. Tech-
nical report, Stanford Research Institute, Menlo
Park, 1965.

[14] G. Carpenter and S. Grossberg. Adaptive reso-
nance theory: Stable selforganization of neural
recognition codes in response to arbitrary lists of
input patterns. InProc. 8th Annu. Conf. Cognitive
Sci. Soc., pages 45–62, 1986.

[15] R. J. P. DeFigueiredo. The oi, os, omni and os-
man networks as best approximations of nonlinear
systems under training data constraints. InProc.
IEEE Int. Symp. Circuits Syst., Seattle, WA, 1996.

[16] Yoseph Linde, Andrs Buzo, and Robert M. Gray.
An algorithm for vector quantizer design. COM-
28(1):84–95, January 1980.

[17] Thomas M. Martinetz, Stanislav G. Berkovich,
and Klaus J. Schulten. “Neural-Gas” network for
vector quantization and its application to time-
series prediction. 4(4):558–569, July 1993.

[18] A. Weingessel E. Dimitriadou and K. Hornik. A
voting-merging clustering algorithm. In Fuzzy-
Neuro Systems ’99, editor,SFB ”Adaptive Infor-
mation Systems and Modeling in Economics and
Management Science, number Working Paper 31,
1999.

[19] A. Weingessel E. Dimitriadou and K. Hornik.
Fuzzy voting in clustering. In Fuzzy-Neuro Sys-
tems ’99, editor,G. Brewka, R. Der S. Gottwald
and A. Schierwagen, pages 63–74, 1999.

[20] Wolfgang von der Gablentz and Mario K¨oppen.
agglomerative single-linkage clustering and its ca-
pability for solving the interwtined spirals prob-
lem, a technical report. experimental results,
Fraunhofer IPK, http://www.ipk.fhg.de, 2000.

[21] Marvin L. Minsky and Seymour A. Papert.Per-
ceptrons – Expanded Edition. MIT Press, 1988.

[22] Cran. http://cran.at.r-projects.org.

[23] J. A. Holland.Adaptation in natural and artificial
systems. MIT Press, Cambridge,MA, 1975.

[24] J. Koza. Genetic programming — On the pro-
gramming of computers by means of natural se-
lection. MIT Press, Cambridge, MA, 1992.

[25] D. E. Goldberg. Genetic algorithms in search,
optimization & machine learning. Addison-
Wesley,Reading, MA, 1989.

[26] D. Whitley. A genetic algorithm tutorial. InStatis-
tics and Computing, 4, pages 65–85, 1994.

[27] R. G. Reynolds. An introduction tu cultural al-
gorithm. In In Proceedings of Evolutionary Pro-
gramming, EP-94. San Diego. CA, 1994.

