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Abstract—In this paper, we are studying a generalized version
of the Strength Pareto Evolutionary Algorithm 2 (SPEA2). By
replacing the algorithmic-internal role of the Pareto-dominance
relation with a different, not necessarily transitive relation, the
algorithm can become capable to search for the maximum
set of the replacing relation. Thus, the SPEA2 algorithm can
also become capable of on-line decision making during the
evolutionary search. The approach will be exemplified by using
the maxmin-fair relation among objective vectors that avoids
extremities of a subset of a few objectives only. But without the
Pareto-dominance relation, also the way of filling the archive
of the SPEA2 algorithm has to be revised. The matter becomes
complicated by the fact that the replacing relations might be only
transitive in some subpspaces - as it is the case for the maxmin-
fair relation. Different methods for maintaining an archive are
proposed and experimentally compared. The results of the study
suggest, for the case of a larger number of objectives, to use an
archiving strategy, which is based on transitive subspaces of the
replacing relation.

I. INTRODUCTION

Recently, the usage of evolutionary computation to search
the Pareto set of a multi-objective optimization problem has
gained a rapidly increasing interest (see [1] for a review
of recent work). In contrary to single-objective optimization,
there is often a trade-off between competing objectives, and
the solution set usually contains more than one element.
Often, reference is made to a decision maker as a means to
incorporate further application knowledge, which is not fully
represented by the various objectives, into the approach for
soliciting final solutions from the obtained trade-off sets. In
typical scenarios, this is done off-line, i.e. after the Pareto
set of the search problem has been approximated, and by
qualifying different parts of this Pareto set to establish an
external decision.

In this paper, we want to continue with the rather in-
frequently considered approach to incorporate the decision
maker already into the evolutionary multi-objective search, and
are presenting a general framework for such on-line decision
making. For introducing this approach, it is necessary to see
what kind of generic external knowledge can there be in multi-
objective optimization that cannot be simply represented by an
additional objective. Actually, such knowledge sources can be
easily identified, but they are often only given in human terms.
Just to give a few examples: there might be the interest to have
flexible solutions for a problem, i.e. solutions, which are not
changing strongly under slight changes in the environment.

In a modern human-centered application context, one might
look for a natural solution to a problem, i.e. a solution that
resembles the human way of handling similar problems and
fulfills some kind of simplicity. Also, there might be the
interest for fair solutions, i.e. solutions that avoid the trade-
off extremes where only a few objectives attain their extreme
values.

The formalization of such knowledge sources can be either
a mathematical relation between two solutions, stating e.g. that
solution A is more flexible/natural/fair than solution B, or by
the definition of a kind of stable state, where e.g. a solution
A is flexible/natural/fair since any attempt to change it into
a solution B will be in opposition to some criterion derived
from the knowledge source.

In case a formal representation of such a knowledge source
as a relation between two solutions can be provided, it is
possible to use such a relation in an evolutionary multi-
objective optimization (EMO) algorithm, e.g. by a correspond-
ing alteration of the selection operator. Then, as will be shown
below, the whole algorithm can be opted to search for the
maximum set of the relation instead of the Pareto front.

However, a main problem for the usage of alternate selec-
tion operators is that the underlying formal relations among
solutions (which replace the Pareto-dominance relation) are
not necessarily transitive anymore. Taking or examples from
above again (flexibility, naturalness, fairness), there is no need
to require that a formalization of such relations has to be
transitive. Thus, the question of archiving, i.e. a means for
maintaining a set of good solutions in the sense of the used
formal relation becomes of high importance1.

In this paper, we will provide a general framework for the
on-line incorporation of a decision maker into the evolutionary
search by using alternative selection operators, and consider
different archiving strategies. The main focus will be on the
provision of fairness among the objectives, and we can base

1There is an additional interest in such approaches that should be mentioned
here. In case of a larger number of objectives (which should be understand
as substantially more than three objectives, and is commonly referred to
as many-objective optimization), the exponentially decreasing frequency of
the appearance of the Pareto-dominance relation among i.i.d. random vectors
gives a large hinderation to the application of EMOs in such a context. Using
alternative selection operators, this frequency might fall less than exponential
(and here we will study an example where this probability falls linearily with
the number of objectives, for example). But also here, previously studied
amendments to the Pareto-dominance relation are not necessarily transitive
anymore



our study on a number of related works in the network
congestion control.

Section II of this paper will present the general frame-
work, and a subsection will exemplify this for the maxmin-
fairness, which was already intensively studied in the context
of congestion control for elastic networks. Then, section III
will discuss the possible archiving approaches, taking the non-
transitivity of the derived maxmin-fair relation into account.
Section IV will provide a comparative study of these archiving
approaches, for gaining a better understanding of their advan-
tages and drawbacks. A conclusion section is provided at the
end of the paper.

II. A FRAMEWORK FOR ON-LINE DECISION MAKING IN
EVOLUTIONARY SEARCH

For an arbitrary relation ∼ we have the notions of a
maximum set and a best set[2]:

Definition 1. For a feasible space X and a relation ∼ (seen
as subset of X × X), the maximum set XM is the set of all
elements x ∈ X , for which no other element y ∈ X exists
such that y ∼ x.

Definition 2. For a feasible space X and a relation ∼, the
best set is the subset of all elements x ∈ X such that x ∼ y
for any other y ∈ X holds.

For the following discussions, we also need the formal defi-
nition of the Pareto-dominance relation:

Definition 3. A point x ∈ Rn
+ (where Rn

+ = {x ∈ Rn|xi ≥
0, i = 1, 2, . . . , n}) is said to Pareto-dominate a point y ∈ Rn

+,
formally x >P y, if for all i = 1, . . . , n xi ≥ yi and for at
least one j = 1, . . . , n xj > yj .

If ∼ would be an equivalence relation, the maximum set for
example would be the set of all elements of the feasible
space, which are different to any other element. However,
these notions will rather target cases where the relation is
somehow related to the concept of ranking, voting or deciding.
For example, for the Pareto-dominance relation, the maximum
set equals to what is commonly called the Pareto front or
Pareto set, and the best set is usually empty. But here, we will
not require any other “typical” property of order relations like
completeness or transitivity.

While keeping this general picture, we observe that among
many evolutionary multi-objective optimization algorithms,
especially the Strength Pareto Evolutionary Algorithm 2
(SPEA2)[3], by simple modification, can be made capable to
find the maximum set of an arbitrary relation. To see this,
we shortly recall the processing of this algorithm. The SPEA2
algorithm is basically a standard evolutionary algorithm, with
only the selection operator replaced. The processing of SPEA2
assigns a so-called S-value to each individual in the popula-
tion. For each individual of the population at some generation,
it is counted how often its objectives (seen as a point in the
real-valued objective space) are Pareto-dominating other indi-
viduals of the population. This is the so-called Pareto-strengths

of this individual. Then, the S-value of each individual is the
sum of the Pareto-strengths of all individuals, by which it is
dominated. Clearly, a solution is considered weaker if its S-
value is larger, and all individuals having objectives on the
Pareto-front of the population have the S-value 0. However,
this notion of an S-value can be expanded to any other relation
as well.

Thus, we propose a generic set-up for a search algorithm
for general maximum sets. The search problem is formalized
by a mapping from a feature space X into an objective space
Y . Among the elements of Y , a relation 'R is considered.
The search problem is to find feasible feature vectors that
are mapped into the maximum set of all feasible objective
vectors. Note that in such a context, the objective space Y is
not necessarily numerical.
1. A first parent population of N individual points Xi is
randomly initialized. For each point Xi, the corresponding
objective Yi is assigned. To each individual i, the number
Pi of other individuals j such that Yi 'R Yj is counted.
Then, each individual i gets the S-value assigned as Si =∑

j 6=i,yj'Ryi
Pj .

2. From the parent population of the former step, N children
are generated by using selection, cross-over and mutation
operators. The selection is tournament selection: two pairs of
individuals are drawn at random, and the one with the lower
S-value of each pair is kept. By uniform cross-over, a new in-
dividual is generated. With probability pmut, each component
of an individuals’ position gets uniformly modified. However,
other genetic operators can be applied as well.
3. The union of the former parent population and the new
set of children is established, and the S-values are computed
(note that the parents’ S-values might change). The union set
is sorted according to increasing S-values, and the first N
individuals are taken as the new parent generation.
4. If some stopping criteria is met (like number of parent
generations), stop, otherwise, go to step 2.
Thus, we are able to provide algorithms especially soliciting
specific properties of the Pareto set, as long as we are able
to provide a corresponding relation. But the SPEA2 algorithm
also employs an archive that contains the Pareto set of all
visited points in search space (with some additional means
to reduce the size of this archive, if it grows too large, and
ensuring diversity in the archive). Since we propose to replace
the Pareto-dominance relation in SPEA2 by other relations,
the question is what to do with the archive in this case. This
will be the main topic of the following discussions. For doing
so, we will at first provide a working version of the generic
algorithm given above in the following subsection.

A. Instantiation by the Maxmin-fair relation

Recently, a special version of such a modified SPEA2 algo-
rithm has been proposed for fair network resource allocation
and congestion control[4], and some of the points made there
have to be recalled here. In general, we are considering a
fairness relation in the general domain of points x in Rn

+.



Then, among two points x and y, to be maxmin-fair related
is defined as follows:

Definition 4. A point x ∈ Rn
+ is said to be maxmin-fair related

to a point y ∈ Rn
+, x 'F y, if for any yi > xi there exists

at least one j 6= i such that xj ≤ xi and yj < xj (i, j =
1, . . . , n).

This definition is derived from the common definition of
maxmin-fairness, where a point x is sought that is maxmin-
fair related to any other point y of the feasible space [5].
However, the complication is there that in the general case,
often no such single maxmin-fairness point exists, since this
relation is not complete (see below).

The motivation for such a definition of fairness comes
from the field of network resource allocation and congestion
control, where global optimization may sometimes lead to
unwanted solutions. For example, consider a so-called parking-
slot scenario [6]. There, a sender 1 is sharing links in a network
with two other senders 2 and 3. With sender 2, she has to share
link 1, and with sender 3 link 2. Both links have a maximum
capacity m for data transmission. If the incoming traffic for a
link exceeds this maximum capacity (i.e. congestion occurs),
the link distributes the overexcess traffic in a linear manner
(the traffic of sender i is denoted by xi): If x1 +x2 > m, then
x1 can only transmit y1 = m?x1/(x1+x2), and similarily for
senders 2 and 3. If we want to maximize the total throughput
T = y1 + y2 + y3 of this network, we have to consider
whether links are getting congested or not. For simplicity, we
will assume x2 = x3. Then, if both links are congested, the
throughput T will be

T = m
x1

x1 + x2
+ 2m

x2

x1 + x2
= m

(
1 +

x2

x1 + x2

)
(1)

and since all xi ≥ 0, this expression attains its maximum
2m if x1 = 0. However, if at least one of the links is not
congested, the total throughput will be surely lower than 2m,
and the global optimum for the total throughput in this network
is indeed 2m for x1 = 0 and x2 = x3 ≥ m. In this optimum,
sender 1 is not allowed to send any traffic into the network.

The maxmin-fairness approach, which is an attempt to
avoid such a situation, is to give higher priority to the lower
demands. Roughly spoken, a solution to resource allocation
is considered to be maxmin-fair, if for any other solution,
which gives more to someone, there is always someone else,
who already receives the same or less and will get lesser in
this other solution. In simple scenarios like the parking slots
just studied, the maxmin-fair resource allocation exists and is
unique. Also, there are algorithms like Progressive Filling of
Bottleneck-Links [6] that allow for finding this maxmin-fair
point.

Some notes on the definition of the maxmin-fair relation: if
there is no component, at which x is smaller than y (i.e. at
any component i, xi ≥ yi), then the condition of the definition
is also considered to be fulfilled. This also means:

Theorem 1. In Rn, x >P y implies x 'F y. The maximum

set of the maxmin-fair relation is a subset of the maximum set
of the Pareto-dominance relation.

In the following, we provide some other mathematical prop-
erties of the maxmin-fair relation.

Theorem 2. The maxmin-fair relation is reflexive.

This follows directly from the definition.

Theorem 3. For the feasible space Rn, the maxmin-fair
relation is not complete.

Providing a counter-example is sufficient: for x = (6, 5, 4)
and y = (3, 5, 6), neither x 'F y nor y 'F x holds,
since only their smallest components are getting larger in the
corresponding other vector.

Theorem 4. For the feasible space Rn, the maxmin-fair
relation is not transitive.

This can be seen from the counterexample x = (4, 5), y =
(3, 2) and z = (5, 1). Here, x 'F y and y 'F z, but not
x 'F z. Due to this lack of transitivity, we also did not use a
symbol containing “>” in the notation.

Definition 5. A set of points from Rn is said to be all-different
if any pair of different components taken from the same or
different points is different.

Theorem 5. Within a subset of all-different points, where each
of them has its (unique) minimum component at the same
position k, the maxmin-fair relation is transitive.

Proof: This follows directly from the definition of the
maxmin-fair relation. Assume two vectors a and b both having
their smallest component at index k with ak > bk. Then, if
already a >P b, also a 'F b follows directly. If not, there
must exist at least one other component l 6= k with bl > al

and we can see that the definition of maxmin-fair relation is
fulfilled for vector a: for all such l, bl > al but there is always
ak ≤ al and bk < ak. So, a 'F b, and in this subspace, the
maxmin-fair relation equals the maximum relation for the k-th
component.

Finally, we recall an important property for the size of the
maximum set of the maxmin-fair relation[4].

Theorem 6. The maximum set of the maxmin-fair relation for
any subset of Rn with all-different points can have at most n
elements.

Proof: This can be seen by assuming a set M of m points,
which are pairwise not maxmin-fair related to each other. Any
maximum set of a maxmin-fair relation for some feasible space
will have this form, since in the maximum set, no other point
of the feasible space, including the maximum set itself, can
be maxmin-fair related to any other point of the maximum
set. With x∗i we denote the point x that has a minimal value
among all points in M in regard with component i. Having
all-different points ensures that for each i, there is exactly one
such point in M . If some point x, which takes its minimum
at component i, is not maxmin-fair related to another point y,



then xi < yi has to hold. Thus, if x is not maxmin-fair related
to any different y ∈ M , then it has to be x = x∗i and therefore
there could be at most n points such that each of which is not
maxmin-fair related to any other point.
This maximum size can also always be attained. For any n,
there is also a set of n points such that none of them is
maxmin-fair related to any other. For example, take as the i-th
component of the k-th point the value n((k + i− 1)modn)−
(k − 1).

III. ARCHIVING STRATEGIES FOR NON-TRANSITIVE
SELECTION RELATIONS

EMO and also single-objective evolutionary optimization
algorithms (EC) usually maintain an archive of the “best
solutions” found over the concourse of the whole algorithm
over several generations. For EC, this is a rather straight-
forward task, since any set of real or integer numbers has
a unique supremum (or infimum). For EMO algorithms, this
archive contains a sub-set of the Pareto-front of all solutions
considered so far. Transitivity of the Pareto-dominance relation
ensures the usability of the archive to provide the final
outcome of an algorithm. Moreover, an EMO algorithm cannot
be considered to be complete without a specific archiving
strategy, which also gives the means for any performance
evaluation. However, if considering the maxmin-fair relation,
it is generally not transitive, and the question comes up how to
register “good solutions” during the evolutionary search here.

To answer this question, we recall two of the mathematical
properties of this relation that can help to establish a sufficient
archiving strategy. At first, it has to be remembered that an
element of the maximum set is also an element of the Pareto
set. So, an archive could be simply based on the Pareto-
dominance relation in a similar manner as for most other EMO
algorithms. But also, transitivity in subspaces can be employed
for archiving. Essentially the fact that the maxmin-fair relation
is transitive among all all-different vectors vi, where element
k is the smallest component can be employed for deriving a
suitable archiving strategy.

Based on this consideration of the mathematical properties
of the maxmin-fair relation, we can consider three paradigms
for an archiving strategy: basing the archive update on the
Pareto-dominance relation, on the maxmin-fair relation, or on
transitive subspaces. These archiving strategies will be detailed
in the following subsections. In each version, the archive A
gets updated after each generation. The objective vector of
each element of the population of size N is used to update
the archive.

A. Maxmin-fair relation based archive

The first approach is to use the same relation for the
archiving as for the selection operator, despite of the lack of
full transitivity (or subspace transitivity only).

1) Initially, A = ∅.
2) After each generation, and for each vi being the ob-

jective vector of individual i = 1, . . . , N , and for each

a ∈ A: if there is no a ∈ A such that a 'F vi, then
A = A ∪ {vi}.

3) If vi ∈ A, then all a ∈ A are removed, for which vi is
maxmin-fair related to a: A = A \ {a | vi 'F a}.

For reasons given before, the archive will never contain more
elements than the number of objectives (or components of vi).

B. Pareto-dominance relation based archive

Alternatively, one can left the task of promoting maxmin-
fairness to the selection operation, and use the Pareto-
dominance relation for archiving. The procedure is similar
to the former one, with the role of maxmin-fair relation
replaced by the Pareto-dominance relation. But additionally,
the growing of the archive size has to be limited. Especially in
case of a larger number of objectives, the Pareto-dominance
relation becomes rapidly unlikely, and thus more and more
elements get added to the archive.

1) Initially, A = ∅.
2) After each generation, and for each vi being the ob-

jective vector of individual i = 1, . . . , N , and for each
a ∈ A: if there is no a ∈ A such that a >P vi, then
A = A ∪ {vi}.

3) If vi ∈ A, then all a ∈ A are removed that are Pareto
dominated by vi: A = A \ {a | vi >P a}.

4) If |A| > α, where α is the maximum allowed size for
the archive, then all elements of A are sorted by their
sum of components, and A is replaced by the first α
elements of the sorted set.

C. Transitive subspace based archive

Here, the archive is specially designed from the specific
mathematical properties of the selection operation. In our case,
we have seen that the maxmin-fair relation is transitive in some
subspaces. Subspace i equals the open subset of all objective
vectors, where component i is the smallest. This can be used
to define another archiving strategy:

1) Initially, A is a set of size n (the number of objectives)
with each element being nil.

2) After each generation, and for each vi being the ob-
jective vector of individual i = 1, . . . , N , and for each
a ∈ A: determine the set of indices I = {i1, . . . , iK}
such that for each ik ∈ I vi,ik

= mini(vi), i.e. which
are equal to the smallest element of vi.

3) Now, for each ik ∈ I: if Aik
is (still) nil, then Aik

is set
to vi. If there is already an entry Aik

in the archive, and
vi,ik

> Aik,ik
, i.e the individuals’ objective vector vi has

a larger smallest component at ik then the vector already
in the archive, the vector in the archive is replaced by
vi.

Also here, the archive size is at most the number of objectives.

IV. RESULTS

It has to be taken into account that the archiving strategy
is not there to improve the algorithm alone. Its main purpose
is to solicit solution tested over the generations, which are in
favour of the optimization goal.



TABLE I
RESULTS FOR THE RELAXED BOTTLENECKS PROBLEM FOR THE THREE DIFFERENT ARCHIVING STRATEGIES (SEE TEXT FOR DETAILS).

method |A| y2(lastgen) y3(lastgen) y2(bestgen) y3(bestgen) #hits
5 objectives

fairdom 2 146.97 99.26 147.37 99.45 90%
pareto 234.5 152.09 102.12 152.91 103.49 100%

subspace 5 137.66 96.88 139.30 96.88 80%
10 objectives

fairdom 6 92.35 72.55 112.51 71.45 0%
pareto 308.9 107.96 88.22 117.76 89.61 10%

subspace 10 93.85 83.41 99.69 84.83 10%
15 objectives

fairdom 6.9 73.68 74.10 80.77 75.45 0%
pareto 287 79.57 90.15 89.79 89.37 10%

subspace 15 88.03 85.71 91.19 88.12 20%

We have studied the algorithm presented in section II for
a scalable network congestion problem with known solution.
We consider the “parking slot” scenario, where the network
is a linear chain of at least four links and each traffic enters
at one node and leaves at the next. Only one traffic enters
the network at the first node and leaves at the last one. The
maximum capacity of each link but two is set to 100 (whatever
unit), and each link maintains linear congestion control. For
link 2 and 3, we used 200 and 150 as maximum capacity.

If all links would have equal maximum capacity of 100,
the maxmin-fair point is achieved by sending an amount of
50 for each sender into the network. That this is a maxmin-
fair point can be easily seen: if any sender entering at node
i and leaving at node i + 1 would increase its traffic to more
than 50, the traffic of the sender entering at node 1 and leaving
at the last node would be reduced to less than 50. So, there
is a sender who already receives less or equal and who would
receive less in case of traffic increase, and the definition for
maxmin-fairness is fulfilled. The same can be seen for the first
sender.

If there is a higher capacity provided for some links, then for
each such link there is exactly one sender sharing this link with
the sender entering at node 1 and leaving at the last node. The
sender on node 1 is restricted to 50 by the fairness demands to
other links of capacity 100, so the other sender can take full
benefit of the increased capacity, without affecting any other
traffic share. So, in the example case studied here, providing
capacities 200 and 150 to links 2 and 3 allows sender 2 and
3 to send traffic amounts 150 and 100 into the network, and
50 for all others. For reasons just given we want to call such
kind of problems “relaxed bottlenecks problem.”

For all these studies, the algorithm settings were as follows:
population size m = 20, 300 generations, mutation probability
pmut = 0.3 and all average results were taken over 10 runs
of the algorithm. At the beginning, each component of each
individual of the population was randomly initialized with an
i.i.d drawn number from [0, 100]. For the pareto method, the
maximum allowed archive size was set to 500. The settings for
population size, number of generations and maximum archive
size were appropriate to handle these dimensions, but it could
not be directly expanded to a larger dimension. For e.g. 20
objectives and after 300 generations, there wouldn’t be enough

points close enough to 50 to allow for a further evaluation.
The results can be found in table I. For three choices of

the problem dimension (5, 10 and 15), all three archiving
strategies were tested. The first entry is the average size |A|
of the archive after 300 generations. The next two entries in
each row give the 2nd and 3rd component of that element
of the archive in the last generation, which has the largest
sum of these two components. In the same manner, the next
two entries show the values maximizing the sum of the 2nd
and 3rd component over all generations. The last entry is the
number of runs, where this element was within 10% of the
maxmin-fairness point.

While there was no obvious problem to allocate a traffic of
about 50 to any other sender than 2 and 3 (which was already
reported in [4]), the relaxed bottlenecks, as can be seen,
cause some problems to the algorithm, especially when the
number of senders is increasing. The search effort is strongly
increasing with the number of objectives, and the best results
yielded after 300 generations differ more and more from the
possible best values 150 and 100.

While all three methods do not behave extremely different,
some tendencies can be clearly seen. In general, the method
pareto provides the best results, followed by fairdom and
last seems subspace. However, for the many-objective case
with 15 senders, the method subspace becomes comparable in
performance with the pareto method. Given the more simple
processing and the fact that the subspace method was more
often able to come closer to the true optimum, this method
seems to be more attractive for the many-objective case.

There is a rather simple explanation for the lower perfor-
mance of archiving by transitive subspaces in the case of
a lower number of objectives: the lack of updates for the
subspaces for the second and third component. Since the
goal is to increase these two values to values larger than 50,
they will never provide the minimum component for better
solutions. So, the archive entries here get stuck after the first
generations. In case of e.g. five objectives, this means that
nearly half of the archive members are not being updated
anymore, and the archiving strategy is less efficient. For more
objectives, this effect can be more and more neglected.

The results for all methods also indicate that the best results
were not always found in the last generation. This means, even



in the case of the pareto method, that the archiving strategy
may always loose good solutions again due to intransitivity,
and that a kind of meta-archiving (as it was done here for
example by monitoring the archive over all generations) seems
nevertheless unavoidable.

V. CONCLUSIONS

In this paper, a generic framework for the evolutionary
finding of maximum sets of arbitrary relations (preferrably
relations related to ranking, sorting, deciding or voting) was
presented. The framework is based on a corresponding mod-
ification of the SPEA2 algorithm by replacing the Pareto-
dominance relation in the internal computation of the S-values
with the other relation. This approach could be exemplified
by using the maxmin-fair relation, which represents maxmin-
fairness and is motivated from related research in network
resource allocation and congestion control: a point of a feasible
space is said to be maxmin fair if an increase in any of
its components is accompanied by a decrease of another
component of the same point, which is already smaller or
equal. This relation has a maximum set, which is a subset
of the Pareto set and has at most as much components
as there are objectives. However, depending on the feasible
space, this relation is not always transitive. Thus, while the
internal processing of SPEA2 can be easily modified to use the
maxmin-fair relation instead of the Pareto-dominance relation,
the usage of the same relation for the update of the archive of
SPEA2 is questionable. So, other strategies for archiving have
been comparatively studied in this paper as well. Essentially

there are three different choices for an archiving strategy:
using the replacing relation like the maxmin-fair relation;
using the Pareto-dominance relation; or specifying an archive
due to the subspaces, where the relation is transitive. By a
comparative study, the approach using the Pareto-dominance
relation seems to show slightly better general performance.
However, for a larger number of objectives, the transitive
subspace approach shows a comparable performance. Due to
other factors like lower computational effort, this seems to be
the recommendable choice for an archiving strategy.
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[4] M. Köppen, M. Tsuru, and Y. Oie, “Evolutionary approach to maxmin-fair
network-resource allocation,” in Proceedings of The 2008 International
Symposium on Applications and the Internet (SAINT 2008), vol. SAINT08
Workshops, 2008.

[5] D. Bertsekas and R. Gallager, Data Networks. Prentice-Hall, Englewood
Cliffs, New Jersey, 1992.

[6] J. Y. L. Boudec. Rate adaptation, congestion control and fairness: a tu-
torial. [Online]. Available: http://ica1www.epfl.ch/PS files/LEB3132.pdf


